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Abstract

We show that global properties of gauge groups can be understood as geometric properties in M-theory. 
Different wrappings of a system of N M5-branes on a torus reduce to four-dimensional theories with AN−1
gauge algebra and different unitary groups. The classical properties of the wrappings determine the global 
properties of the gauge theories without the need to impose any quantum conditions. We count the inequiv-
alent wrappings as they fall into orbits of the modular group of the torus, which correspond to the S-duality 
orbits of the gauge theories.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In this work, we show how global quantum properties of gauge theories are determined purely 
by the classical set-up of its M-theory parent theory. We consider N M5-branes wrapped on a 
two-torus. We probe this geometry using M2-branes wrapping a curve on the two-torus. The ge-
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ometrical requirement that this curve is closed translates directly into the quantization condition 
of Dirac–Schwinger–Zwanziger for dyonic lines after reduction to four-dimensional field theory, 
without the need of imposing any external constraint. This is yet another example of the power of 
the M-theory point of view which allows us to make quantum statements for gauge theories based 
on purely classical considerations in M-theory, see e.g. [1,2]. Our results tie in with a number of 
recent field theory results which study line operators in gauge theory [3–15].

In the analysis of Abelian gauge theories, there are two types of charges associated to the 
gauge group, electric and magnetic. These charges are constrained by the Dirac quantization 
condition: an electrically charged particle living in the field of a monopole must have a quantized 
charge in terms of units of the Planck’s constant. A similar condition must be imposed when 
there are particles charged both electrically and magnetically, i.e. dyons. In this case the condi-
tion involves pairs of charges and is known as the Dirac–Schwinger–Zwanziger (DSZ) condition. 
One can consider also non-Abelian Yang–Mills (YM) gauge theories. In this case, the magnetic 
charges are the Goddard–Nuyts–Olive [16] (GNO) charges. The same quantization condition ex-
ists for this case and involves the charges of the fields under the center of the gauge group. It is 
important to observe that the quantization condition exists only for quantum theories: the con-
dition follows after imposing some extra constraint, for example the quantization of the angular 
momentum.

The DSZ condition has been recently used in [8] to read off the global properties of the gauge 
group associated to a gauge algebra. When considering YM theories one can study the spec-
trum of Wilson lines (W-lines) under different representations of the algebra. These lines are the 
electrically charged objects. The magnetically charged objects are the ’t Hooft lines (H-lines). 
For fixed gauge algebra the gauge group is specified by the spectrum of representations of the 
allowed W-lines, H-lines or Wilson–’t Hooft line (WH-lines). The final result is that a group is 
specified by the maximal choice of mutually local lines. The requirement of mutual locality cor-
responds to the validity of the DSZ quantization condition between each pair of lines.

An interesting result following from this analysis regards N = 4 super Yang–Mills (SYM) 
theories. In this case, the distinct gauge groups are naively related to each other by S-duality [17], 
or more mathematically by the action of the modular group SL(2, Z). After a careful analysis of 
the global properties it has been observed that the situation is more involved. There are indeed 
orbits under the modular group and the action of SL(2, Z) cannot link all the theories with the 
same gauge algebra.

Motivated by these field theory results, we analyze the problem in this paper from the M-
theory perspective. Our two main results are the following.

• We show that the structure of SL(2, Z) depends on the torus defined by wrapping N

M5-branes along the two compact directions of M-theory. There are indeed many possi-
ble tori defined by the wrapping of the M5-branes, and they correspond to the choice of the 
gauge group. In general the new tori are not all mapped into each other by modular trans-
formations. This corresponds to the existence of orbits in the action of SL(2, Z) in N = 4
SYM.

• We give a geometric derivation of the DSZ condition without any reference to the quantum 
properties: a quantum condition on the field theory side becomes geometrical and classical 
in M-theory.

The plan of our note is as follows. We begin our analysis with the geometric description of N
M5-branes wrapping the torus of M-theory in Section 2. This torus defines a Z2 lattice. When we 
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consider N M5-branes wrapping this torus we have to fix a choice of N cells in this lattice. This 
choice fixes a sublattice of index N (i.e. a lattice in Z2 where the elementary cell has area N ) 
and this sublattice defines a new torus that we will call TN;k,i . Note that the restriction of a 
sublattice �N;k,i ⊂ Z

2 defines a Lagrangian (maximal) sublattice in ZN × ZN : this condition is 
not imposed but is automatically satisfied by our setup for the M5-brane embedding. There is a 
geometric way to probe TN;k,i , it consists of wrapping M2-branes along closed curves on TN;k,i . 
The intersection number of pairs of M2-branes corresponds to the DSZ condition.

In order to associate this geometric construction to the global properties of gauge theories we 
first reduce the M-theory to type IIA and then T-dualize along the remaining compact direction, 
see Section 3. In this way we obtain a type IIB description with a stack of N parallel D3-branes 
representing 4d N = 4 SYM with gauge algebra su(N). The M2-lines become bound states of 
D1/F1 strings. They correspond to WH-lines. The set of allowed bound states depends on the 
geometric construction in M-theory. We can associate a set of bound states to each TN;k,i , i.e.
to a lattice. Eventually TN;k,i lattices correspond to the lattices of allowed charges of the D1/F1 
bound states. We find in Section 4 that these correspond to the lattices discussed in [8] and fix the 
global properties as anticipated. For clarity, the explicit example of the case of SU(4) is discussed 
in Section 4.3.

In Section 5, we conclude with a comparison to field theory results and open questions. In 
Appendix A, we derive the number of orbits of SL(2, Z) in the set �(N) of sublattices of index N . 
In Appendix B, we discuss the representations of the AN−1 algebra in terms of D3/D1 systems.

2. M-theory setup

2.1. The torus TN;k,i

M5-branes and sublattices. We consider N M5-branes extended in the directions {x0, x1, x2,

x3} and wrapped on a torus (x9, x10). The torus is identified by a fundamental domain with 
sides y1, y2 ∈ C. Equivalently, this defines the Z2-lattice generated by y1 and y2. Wrapping the 
M5-branes corresponds to choose N cells in this lattice, i.e. defining a sublattice of index N . 
The standard way of defining a sublattice is to work in the Hermite normal form. Let 〈y1, . . . yd〉
be the generators of a lattice. Any sublattice is generated by 〈x1, . . . xd〉, which can always be 
written in the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = a11y1,

x2 = a21y1 + a22y2,

...

xd = ad1y1 + · · · + addyd,

(2.1)

where the positive integers aij satisfy 0 ≤ aij < ajj for all i > j and the index is N =∏i aii . In 
our case, d = 2 and we set a11 = k, a21 = i, a22 = k′ such that{

x1 = ky1,

x2 = iy1 + k′y2,
(2.2)

where kk′ = N and 0 ≤ i < k. We denote the sublattice generated by 〈x1, x2〉 as �N;k,i ⊂
�1;1,0 = Z

2. Equivalently, �N;k,i defines a new torus TN;k,i which contains all the information 
about the wrapping of the branes.
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Counting and generating functions. In this section we want to count the possible M5 wrap-
pings. It is immediate to see that for fixed N , there are

f (N) =
∑
k|N

k (2.3)

sublattices (the sum runs over the divisors of N ). It proves convenient to study the generating 
functions of f (N),

F(t) :=
∞∑

N=1

f (N)tN , (2.4)

F (s) :=
∞∑

N=1

f (N)

Ns
. (2.5)

In Appendix A we collected some details about sequences and their generating functions. We 
can exploit that f is multiplicative and decomposable as a convolution (see (A.3)),

f (N) =
∑
m|N

u(m)N(N/m) = (u � N)(N), (2.6)

where u(i) := 1 and N(i) := i for all i ∈N. It follows that

F(t) =
∞∑

j=1

∞∑
k=1

k tjk

=
∞∑

j=1

( 1 + t3j

(1 − tj )(1 − t2j )
− 1
)

=
∞∑

j=1

∞∑
n1,n2=0

(
(1 + t3j )tj (n1+2n2) − 1

)
, (2.7)

F (s) = ζ(s)ζ(s − 1) =
∏
p

1

1 − p−s − p−s+1 + p−2s+1
, (2.8)

where ζ(s) is the Riemann ζ -function.
These expressions turn out useful for practical purposes. From the expression (2.7) for the 

partition function we can extract the number of sublattices as the N th coefficient in an expansion 
in t . From the form of the Dirichlet series (2.8) we derive the average number of sublattices:

1

N̄

N̄∑
N=1

f (N) −−−−→
N̄→∞

π2

12
N̄ , (2.9)

where we have used (A.12). Note that (A.11) holds for α = 2 with A = 0, B(s) = ζ(s) and m = 0.
From a purely geometrical point of view, the sublattices �N;k,i are not inequivalent: some of 

them can be related via an SL(2, Z) transformation which will in general change k and i and leave 
N invariant (Fig. 1). We can define a new sequence f̂ (N) counting the number of sublattices up 
to the SL(2, Z) action. This sequence is again multiplicative and, as it is usually convenient in 
counting sublattices [18], can be decomposed in terms of a convolution of u:

f̂ (N) :=
∑
m|N

sq(m) = (u � sq)(N), (2.10)

where sq(i) is the characteristic function of squares given by
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Fig. 1. Index 4 sublattices of Z2 (the set �(4)) represented as the 2 orbits under modular transformations.

sq(i) =
{

1 if ∃b ∈N : i = b2,

0 otherwise.
(2.11)

In Appendix A.2 we give a proof that definition (2.10) indeed counts SL(2, Z) invariant orbits.
As before it is useful to rewrite the information in terms of the generating functions (2.4)

and (2.5) (where now f → f̂ ),

F̂(t) =
∞∑ ∞∑

tab2 =
∞∑ 1

1 − tk
2 − 1, (2.12)
a=1 b=1 k=1



A. Amariti et al. / Nuclear Physics B 901 (2015) 318–337 323
Fig. 2. In blue the (5, 2) curve as a vector in the lattice �4;2,1 (left) and as a line on the torus T (right). The line has 
homology (e = 5, m = 2) = (p = 2, q = 1)4;2,1. In red the generators x1 = (2, 0) and x2 = (1, 2). After the reduction 
to type IIB, this curve will correspond to a dyon of charge (5, 2) in (SU(4)/Z2)1 (Section 4). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

F̂ (s) = ζ(s)ζ(2s) =
∏
p

1

1 − p−s − p−2s + p−3s
. (2.13)

From (2.13) we obtain that, as opposed to the average total number of sublattices, the average 
number of sublattices modulo SL(2, Z) is asymptotically constant,

1

N̄

N̄∑
N=1

f̂ (N) −−−−→
N̄→∞

π2

6
, (2.14)

where we again applied (A.12).
On the other hand, from the expression (2.12) for F̂(t) we see that the number of sublattices 

modulo SL(2, Z) is the number of times in which N is divisible by a perfect square,

f̂ (N) =
∑

ab2=N

1 . (2.15)

Following the construction in Appendix A.2, each orbit has a representative of the form

Oa,b =
(

ab 0
0 b

)
, ab2 = N. (2.16)

2.2. M2s wrapping TN;k,i : the DSZ condition

Consider now an M2-brane extended in x0, x4 and wrapping a geodesic C on the torus TN;k,i .1

Since there are no other objects in the theory where the curve could end, C must be closed. The 
only constraint that we impose is that the curve does not cover the torus. In other words, we 
demand the curve to have homology (p, q)N;k,i with respect to the cycles of the torus TN;k,i .

In turn, since x1 = ky1 and x2 = iy1 +k′y2, the curve C has homology (e, m) = (pk +qi, qk′)
with respect to the torus T (remember that TN;k,i is an N -cover of T ). The curve can be repre-
sented by a vector in the plane joining the origin to the point (pk + qi, qk′) (Fig. 2). Using the 
homology class, we can evaluate the intersection number of two curves C and C′ in terms of the 
symplectic structures on T (or equivalently TN;k,i ):

1 The M5/M2 system preserves a total of eight supercharges.
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Table 1
Brane setup after reduction from M-theory to type IIB.

0 1 2 3 4 5 6 7 8 9

D3 × × × ×
D1 × ×
F1 × ×

#(C,C′) = (pk + qi qk′ )( 0 1
−1 0

)(
p′k + q ′i

q ′k′
)

= (p q
)( 0 N

−N 0

)(
p′
q ′
)

= (pq ′ − qp′)N, (2.17)

where we used the fact that kk′ = N .
It is worth to stopping a moment to stress this result. By construction, the M2-branes cor-

respond to curves that have to be closed and we only impose a geometrical condition (i.e. that 
they do not fill the torus). We find that such curves intersect in a number of points that satisfy
the condition #(C, C ′) = 0 mod N . In the following we will see how this classical condition in 
M-theory translates into the quantum DSZ condition in gauge theory.

3. From M-theory to string theory

In this section we discuss the reduction of the M-theory setup to type IIB. This reduction is 
necessary to link the lattices obtained in M-theory to the global properties of the gauge group 
in field theory. We show that the M2-branes become bound states of D1/F1 branes in type IIB. 
These bound states play the role of the W-lines and H-lines in field theory. The M-theory lattices 
become lattices of charges of these lines and the global properties can be read from these lattices.

We reduce the M-theory configuration to type IIB by reducing on x10 = 2πR10y1 and 
T-dualizing on x9 = 2πR9y2. We consider the decompactification limit, such that the T-dual 
radius R̃9 becomes non-compact. The M5-branes turn into D3-branes and an M2-brane wrapped 
on a curve C of homology (p, q)N;k,i turns into a bound state of e = (pk + qi) F1 and m = qk′
D1-branes. Equation (2.17) reduces to

em′ − me′ = 0 mod N (3.1)

for a pair of bound states (e, m) and (e′, m′). The resulting configuration is summarized in Ta-
ble 1.

Each choice of the embedding of the M5-branes corresponds to a sublattice �N;k,i which 
here turns into a configuration of D3-branes which we probe with the D1/F1 bound states. Two 
sublattices �N;k,i and �N;k′,i′ , related by an SL(2, Z) transformation, correspond at this level to 
two type IIB configurations related by S-duality.

The way in which the M5-branes wrap the torus fixes the theory completely. At the string 
theory level we lose the geometric picture since we have reduced on the torus and it becomes 
convenient to introduce the probe F1/D1 branes to distinguish among parallel D3-brane config-
urations which source different combinations of NS and RR fluxes. F1-branes are associated to
W-lines while D1-branes are associated to H-lines.

When considering the type IIB setup, there are two kinds of F1 and D1-branes. There are 
zero-length strings connecting two D3s in the stack, and there are semi-infinite F1 and D1-branes 
extended in the direction x4, with one endpoint ending at infinity and the other on the stack. These 
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are respectively regular and singular monopoles. The latter configurations have been studied 
in [13,19] (see also [4]). By allowing the presence of semi-infinite branes ending on the stack 
of D3-branes, we can systematically study a generic representation of the algebra in terms of 
the associated W-lines and H-lines. In Appendix B, we discuss the representation theory of these 
systems.

It turns out that we can associate the lattices obtained in M-theory to the spectrum of D1/F1 
bound states. The connection works as follows. First we consider a bound state with m D1-branes 
(the same discussion holds in the case of e F1-strings). We can associate to this configuration the 
m-index symmetric representation for the H-line. Other representations can be constructed acting 
with the roots which is equivalent to adding zero-length D1-strings connecting pairs of D3-branes 
in the stack (see Appendix B).

In general this procedure gives a descendant in the weight decomposition of the m-index sym-
metric representation. Observe that some of the descendants coincide with the highest weight of 
lower dimensional representations carrying the same number of semi-infinite branes. In this way 
we construct a sublattice of the weight lattice, such that each point is associated to one or more 
representations, identified by the same number of semi-infinite D1-branes (containing the same 
number of boxes in the Young tableau). We project the weight lattice to this one-dimensional 
lattice and choose a representative of each point. Here we choose the m-index symmetric repre-
sentation.

By repeating the discussion for the F1-branes we obtain a two-dimensional lattice. This lattice 
coincides with the lattice �N;k,i obtained from the M-theory construction. It is in general defined 
by two points (k, 0) and (i, k′). Indeed the integers k, k′ and i coincide with the number of 
semi-infinite F1 and D1-branes.

We can extract the general rule to construct the lattices in the type IIB description by choosing 
the two generating points and associating them to two brane configurations. The point (k, 0)

corresponds to the k-index symmetric representation, i.e. a stack of k semi-infinite F1-strings 
ending on the N -th D3-brane on the stack. The point (i, k′) is a stack of i F1-strings and k′
D1-branes ending on the N -th D3-brane. These two configurations generate all the possible 
representations: by acting with the roots (adding finite branes in the stack of D3s) we obtain 
the lower-dimensional representations with the same number of boxes. Other representations 
associated to the lattice are obtained by linearly combining the lines (k, 0) and (i, k′).

4. Field theory interpretation

We can now interpret the lattices associated to the bound states of F1/D1 strings in terms 
of field theory. As already observed in Section 3, these lattices coincide with the charges of 
the W-lines and H-lines. The set of allowed charges of these line operators specifies the global 
properties of the gauge group [20]. At the level of the Lagrangian, the gauge group is fixed by 
specifying the θ -angle, its periodicity and some possible discrete shift. These properties do not 
affect the correlators but they can be probed by putting the theory on a spin manifold [21]2 or, 
alternatively, as discussed here, by probing the theory with HW operators.

In this section we first review the argument of [20] and show that our M-theory construction 
coincides with the classification of the different global groups associated to the su(N) algebra. 

2 This idea has been used in [22] for studying the global properties on the superconformal index on a Lens space.
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In other words, we show that the global properties of the gauge theory are specified by the choice 
of the torus TN;k,i that encodes the wrapping of the M5-branes.

4.1. Gauge groups from W and H lines

Consider a connected gauge group G associated to a Lie algebra g. Fixing G from g requires 
some extra information because there are different possible gauge groups corresponding to the 
same algebra. The gauge group is fixed as follows: consider the universal covering group G̃ and 
mod it out by its center C or a subgroup H ⊂ C. The gauge group is G = G̃/H. This group is 
commonly referred to as the electric gauge group. Fixing completely the global properties of the 
gauge group requires a similar discussion on the magnetic side. The magnetic (GNO) dual group 
G∗ is not completely fixed by the electric choice G = G̃/H. The dual group is fixed by a choice 
of the charges in the GNO-dual g∗ algebra.

A possible way to fix the gauge group consists of choosing a (maximal) set of allowed line 
operators. These line operators are W-lines and H-lines. The W-lines fix the global properties of 
the electric group and the H-lines are used to fix the properties of the magnetic gauge group.

In 4d N = 4 su(N) SYM we consider W-lines preserving half of the supersymmetry. They are 
called 1/2 Bogomol’nyi–Prasad–Sommerfield (BPS) W-lines and are defined as

WR = TrR P exp

[∫
(iA0 + φ)dt

]
, (4.1)

where R corresponds to an irreducible representation of su(N). The scalar φ corresponds to one 
of the six scalars in the N = 4 vector multiplet. These operators are the electrically charged 
operators.

The magnetic lines correspond to 1/2 BPS H-operators. They are the S-dual of the W-lines. 
An H-line corresponds to the insertion of a Dirac monopole of charge m at the origin [23]. The 
boundary behavior of F and φ in spherical coordinates is

F � m

2
sin θdθ ∧ dϕ, φ � − m

2r
. (4.2)

In general, both W-lines and H-lines preserve half of the original supersymmetry. One can also 
consider more general 1/2 BPS WH-lines, preserving a different half of the original supersym-
metry.

After we fix the group G = G̃/H, the line operators have to be invariant under H. Here W-lines 
are invariant under H, i.e. they are labeled by representations of G. Analogously, the H-lines 
are labeled by representations of G∗. The spectrum of the allowed operators is in one-to-one 
correspondence with the gauge group. This problem can be further simplified: it is not necessary 
to specify all the possible representations but one can restrict to a subset of them, identified by 
their charge under the center C.

Let us first discuss the case of the electric lines, the W-lines. If the gauge group is the universal 
cover G̃ there is no restriction on the allowed representations. We can associate the representa-
tions to a lattice, the weight lattice �w of g, modulo the Weyl group W . If we mod G̃ by C only 
few representations survive. These are the representations invariant under C. In terms of lattices, 
the allowed representations are obtained by acting with the roots of g on a sublattice specified 
by the adjoint representation. The weights of the adjoint are the roots of the algebra g and this 
sublattice is denoted as the root lattice �r . One can choose also a subgroup H ⊂ C. In this case, 
the representation lives in a sublattice called the co-character lattice �∗

G. The three lattices are 
related as �c ⊂ �∗ ⊂ �w . The center H and the fundamental group π1(G) are
G
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H = �∗
G/�r, π1(G) = �w/�∗

G. (4.3)

A similar discussion can be applied to the GNO-dual algebra g∗. The center is C∗ = C and 
the Weyl group is W ∗ = W . The magnetic weight lattice �mw corresponds to the dual of the root 
lattice of g. The magnetic root lattice is called �cr, and it is usually called the co-root lattice. 
The dual of the co-character lattice is called the character lattice �G∗ . The inclusion here is 
�cr ⊂ �G∗ ⊂ �mw. The center H and the fundamental group π1(G

∗) are

H∗ = �mw/�G∗ , π1(G
∗) = �G∗/�cr. (4.4)

In the magnetic case, the set of lines corresponds to the ’t Hooft lines. The gauge group is fixed 
once their allowed representations are specified.

Observe that there are not only purely electric W-lines or purely magnetic H-lines but we can 
allow also dyonic WH-lines. It turns out that specifying the set of allowed W-lines and H-lines 
corresponds to specify a sublattice of �w × �mw modulo the action of the Weyl group.

Consider a general dyonic line (λe, λm) ∈ �w ×�mw. It is identified with the line (wλe, wλm), 
where w is an element of W . If the line (λe, λm) is allowed, also the line (−λe, −λm) is allowed. 
Moreover if two lines (λe, λm) and (λ′

e, λ
′
m) are allowed, also the line (λe + λ′

e, λm + λ′
m) is 

allowed. For every G there is always a pure electric line (re, 0) with re ∈ �r and a pure magnetic 
line (0, rm) with rm ∈ �cr.

At this level of the discussion we are still considering the electric and magnetic sublattices of 
the weight lattice �w and of the co-weight lattice �mw. We can project these lattices to the charge 
(under the center of the gauge group) lattices thanks to the following observation. Consider a 
dyonic line (λe, λm), it identifies a sublattice of �w and of �mw. We can always add to this line 
a line in the root lattice �r × �cr, specified by (p re, q rm) with p, q ∈ Z. In this way we reach 
all the points of the lattice with the same charge as (λe, λm) mod |C|. This explains why the lines 
can be organized in classes distinguished by their charge under the center. A generic point is of 
the form (e, m) ∈ C × C. A theory is specified by the complete set of allowed charges. Not all 
pairs of lines are admissible in the quantum theory due to a mutual locality condition. Take two 
dyons (e, m) and (e′, m′); if we fix the position of one and have the other describe a closed curve 
around it, the wavefunction picks up a phase proportional to their invariant pairing ((em′ − e′m)

for su(N)). Mutual locality implies that this phase must vanish: this is obtained by imposing the
DSZ quantization condition.

4.2. su(N) lattices and relation to M-theory

In this section we study the lattices of su(N) and observe that they coincide with the ones 
obtained from the M-theory construction.

When we consider an su(N) algebra, the center is C = ZN and, if N is not prime, a generic 
subgroup is H = Zk′ where k′k = N and k, k′, N ∈N. Since we are interested only in the charges 
under the center we can choose the representatives of the equivalence class of charges. For ex-
ample, by observing that the fundamental representation has unitary charge under the center, 
a generic point with charge (e, m) can be associated to the representation (Syme� ; Symm�), 
i.e. the symmetric product of e and m fundamentals.

In this case, the DSZ quantization condition for two pairs of charges (e, m) and (e′, m′) is

em′ − me′ = 0 mod N, (4.5)

as derived in (3.1). By following the discussion above, the gauge group in this case can be written 
in general as SU(N)/Zk (here we also allow k = 1 and k = N ). The generators of the lattice are 
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fixed to be (k, 0) and (i, k′) by the fact that π1(G) = Zk′ . The gauge group associated to such 
a choice is called (SU(N)/Zk)i , and it corresponds to the torus TN;k,i defined in the M-theory 
setup.

We have obtained all the possible lattices in ZN ×ZN : they are generated by the two vectors 
(k, 0) and (i, k′). This is the crucial observation: these generators coincide with the generators 
of the lattice �N;k,i ⊂ Z

2 that we have obtained from M-theory. The other charges are obtained 
in the field theory construction by combining these vectors or equivalently by applying the DSZ

condition. In the field theory interpretation this is a condition that is intrinsically quantum and 
has to be imposed. In the M-theory interpretation this condition is a classical constraint, and it 
corresponds to the requirement that the M2-branes are closed curves on the torus. The quantum 
condition becomes thus a classical condition on the M-theory side.

We conclude this section with an observation related to the choice of a maximal set of allowed 
line operators that one has to enforce on the field theory side. One may wonder whether a theory 
containing both W-lines and H-lines lines only in the adjoint class is consistent. In field theory 
nothing appears to forbid this choice. In the M-theory derivation this choice is automatically 
inconsistent because it corresponds to an N2 and not to an N -covering of the torus.

4.3. An example: SU(4)

In this section we study in detail an explicit example. We consider the case of 4 M5-branes 
and show how it reduces to SU(4) SYM. The possible sublattices associated to the M5-branes are 
shown in Fig. 1. Though in this simple example we do not strictly need the full-fledged formalism 
of generating functions, let us nevertheless quote that

F(t) = t + 3t2 + 4t3 + 7t4 +O(t5) , (4.6)

where we see that we indeed expect f (4) = 7 sublattices of index 4. The geodesic M2-branes 
probing these sublattices correspond to all the lines connecting the origin with each point of each 
sublattice (see e.g. Fig. 2).

Once we reduce to type IIB, these lines become bound states of semi-infinite F1/D1 strings. 
We can consider only those connected to the N -th brane in the stack. It means that a (e, m)

bound state is associated to a W-line in the e-index symmetric representation and to an H-line in 
the m-index symmetric representation. This choice is enough to specify the charge lattice.

For example the sublattice �4;1,0 on top of Fig. 1 defines the torus T4;1,0. Since the generators 
are 〈x1 = (1, 0), x2 = (0, 4)〉, when reducing to type IIB it corresponds to choosing a pure electric
W-line with charge (1, 0) and a pure magnetic H-line with charge (0, 4). In terms of associated 
representations, the Wilson lines are in the fundamental class and the H-lines are in the adjoint 
class. The corresponding gauge group is SU(N).

The T4;2,i tori are associated to a pure electric W-line with charge (2, 0). In this case the gauge 
group is obtained by modding out by a subgroup Z2 of the center C = Z4. The magnetic H-line 
(i, 2) completely fixes the gauge group. In the first case it has charge (0, 2) and the gauge group 
is (SU(4)/Z2)0 while in the second case its charge is (1, 2) and the gauge group is (SU(4)/Z2)1.

The four tori T4;1,i are all associated to W-lines in the adjoint class. Only the purely electric 
representations invariant under the Z4 center are admitted. The gauge group is SU(4)/Z4. The 
magnetic line is of the form (i, 1) where i = 0, 1, 2, 3 distinguishes the four lattices and fixes the 
gauge group as (SU(4)/Z4)i .
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Observe that in this example the number of M5-branes is not square-free (4 = 1 × 22) and we 
have two separate orbits in the S-duality group. Formally, this is also captured by the partition 
function

F̂(t) = t + t2 + t3 + 2t4 +O(t5) , (4.7)

where one reads off the number of SL(2, Z) orbits f̂ (4) = 2. At the geometric level, by applying 
the modular transformation on the T4;k,i tori, we observe that T4;2,0 is self-dual while the others 
transform among themselves. Equivalently, the (SU(4)/Z2)0 theory corresponds to a separate 
orbit of the S-duality group.

5. Conclusions and open questions

The connection between the curves probing the torus (or more generally a Riemann surface 
for N = 2 theories) and the charge lattices of WH dyons has been discussed in the literature [6]. 
It has been observed that the global properties are associated to the holonomies of the geodesic 
curves probing the Riemann surface. Other proposals for the origin of the global properties from 
higher dimensional theories have been proposed in [24,25].

Our analysis is conceptually different. We have given a purely geometric prescription, based 
on M-theory, to fix the global properties without referring to any specific probing. The prescrip-
tion can be summarized as follows: the gauge group is specified by the choice of the torus TN;k,i

wrapped by N M5-branes. This procedure indeed defines the lattice of charges. Only as a sec-
ond step we have probed the lattice by considering M2-branes wrapping geodesic curves on 
TN;k,i . By reducing to type IIB, we have identified these lattices with the lattices of charges of 
semi-infinite F1/D1 bound states probing a stack of N D3-branes. This is the string theory rep-
resentation of N = 4 SYM with gauge algebra su(N). The lattices are further associated to the 
lattices of charges of WH dyonic states in field theory. As discussed in [8], the global properties 
in this case are associated to the choice of the θ -angle, and the orbits in the modular group are 
associated to new discrete θ -like parameters.

We would like to stress once more that the classical M-theory properties of our realization of 
the wrapping imply automatically the conditions that one has to impose in gauge theory:

• the charges have to satisfy a DSZ quantization condition;
• the charge lattice is automatically Lagrangian in ZN ×ZN (which explains why it cannot be 

generated by two vectors in the corresponding adjoint classes).

Ultimately, the reason why classical properties in M-theory translate into quantum properties 
in field theory is that we are using only the topology of the torus. After the reduction, topo-
logical properties become quantum conditions as they are independent of the gauge coupling 
g = R10/R9.

There are many possible extensions of our work. The global properties associated to the choice 
of the gauge group are completely geometrized in the M-theory description: they are fixed by the 
torus TN;k,i . When reducing to type IIB these conditions should translate to a condition on the 
RR and NS fluxes carried by the D3-branes. Physically one can think of the D1s which are free 
to move on the D3s as generating an electric field on them. This would imply a quantization 
condition on the F1s sourced by the D3-branes. It would be interesting to work out this condition 
in the type IIB setup and to study how it translates into field theory in terms of discrete θ -like 
terms.
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One can also study systems with reduced supersymmetry. In the N = 2 case, the role of the 
torus is played by a Riemann surface and also in this case the connection between the lines 
and the charge lattices is known [6]. We expect also here the global properties to be fixed by 
the embedding of the M5-branes in the geometry. One can further reduce to N = 1 SYM and 
consider the effect of (fundamental) matter fields.

Another aspect that deserves some investigation is the study of the global properties of the 
symplectic and orthogonal gauge group. At the field theory level, if the rank is large enough, there 
are in each case two or more orbits under the action of S-duality. In this case there are non-trivial 
consequences also in the analysis of Seiberg duality because, as first observed in [26] and then 
remarked in [27], in this case Spin(N) gauge theories can be dual to SO(N) gauge theories. 
In the type IIB description, theories with symplectic and orthogonal gauge groups are obtained 
by adding orientifold planes. In the M-theory description, the projection is more complicated, 
because of the absence of an open string description of M-theory branes. Nevertheless we expect 
that the global properties are fixed by the geometric properties also in this case. We expect that 
the geometrization of the action of the O-planes in M-theory done in [28,29] should allow us to 
recover the charge lattices in a similar manner we did here. It would be also interesting to study 
the consequences on the brane engineering of [30,31] for the reduction of 4d Seiberg duality to 
3d discussed in [20,27].

We conclude with a comment on AdS/CFT. The different embeddings of the M5-branes re-
duce to configurations of multiple D3s sourcing different combinations of fluxes. Even though 
we cannot start from the fully back-reacted M-theory solution and simply reduce it to type IIB

(because of the T-duality step), we conjecture that the AdS/CFT duals of the theories with gauge 
algebra su(N) are the type IIB configuration with fixed AdS5 × S5 geometry sustained by differ-
ent 3-form fluxes. For example AdS5 × S5 with pure NS flux is the dual of (SU(N)/ZN)0.
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Appendix A. Counting formula

A.1. Some facts about (multiplicative) sequences

Definition 1. A sequence f is multiplicative if

f (nm) = f (n)f (m) , when gcd(n,m) = 1. (A.1)

It follows that f is completely determined by its values for primes and their powers, since for 
any N we can use the factorization N = p

k1p
k2 . . . p

kr
r , and
1 2
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f (N) = f (p
k1
1 )f (p

k2
2 ) . . . f (pkr

r ) . (A.2)

Multiplicative sequences form a group under the Dirichlet convolution.

Definition 2. The Dirichlet convolution of two sequences g and h is the sequence f defined by

f (n) = (g ∗ h)(n) =
∑
m|n

g(m)h(
n

m
) , (A.3)

where the notation m|n means that the sum runs over all the divisors m of n.

This convolution is commutative, g ∗h = h ∗g, and associative, f ∗ (g ∗ h) = (f ∗ g)∗h, and 
that the sequence id defined by

id(n) = {1,0,0, . . . } (A.4)

is the identity, f ∗ id = f .
The information contained in a sequence f can be encoded into two types of generating 

functions:

1. the formal power series (partition function)

F(t) =
∞∑

n=1

f (n)tn ; (A.5)

2. the Dirichlet series

F (s) =
∞∑

n=1

f (n)

ns
. (A.6)

If f is multiplicative, its Dirichlet series can be expanded in terms of an infinite product over 
the primes, the Euler product:

F (s) =
∞∑

n=1

f (n)

ns
=
∏
p

(
1 + f (p)

ps
+ f (p2)

p2s
+ . . .

)
. (A.7)

Both types of generating functions have a simple behavior under Dirichlet convolution. Let 
f, g and h be such that

f = g ∗ h . (A.8)

The power series for f reads:

F(t) =
∞∑

m=1

g(m)H(tm) =
∞∑

k=1

h(k)G(tk) , (A.9)

and the Dirichlet series is decomposed as

F (s) = G (s)H (s) . (A.10)

The asymptotic behavior of a sequence can be derived by looking at the corresponding Dirich-
let series, in the sense of the following
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Theorem 1. Let F (s) be a Dirichlet series with non-negative coefficients that converges for 
Re(s) > α > 0, and suppose that F(s) is holomorphic in all points of the line Re(s) = α, except 
for s = α. If for s → α+, the Dirichlet series behaves as

F (s) ∼ A(s) + B(s)

(s − α)m+1
, (A.11)

where m ∈ N, and both A(s) and B(s) are holomorphic in s = α, then the partial sum of the 
coefficients is asymptotic to:

N∑
n=1

f (n) ∼ B(α)

α m! Nα logm(N) . (A.12)

In order to apply this theorem to our example, we make use of the fact that the Riemann zeta 
function ζ(s) is analytic everywhere, except for a simple pole at s = 1 with residue 1.

A.2. A proof for the counting formula

In this appendix we show that the number of orbits of SL(2, Z) in the set �(N) of sublattices 
of index N is (2.15)

f̂ (N) =
∑

ab2=N

1 (A.13)

[OEIS A046951].
A lattice �N;k,i ∈ �(N) can be equivalently seen as a sublattice of ZN ×ZN . By the Chinese 

remainder theorem, if gcd(N1, N2) = 1 then ZN1 ×ZN2 = ZN1N2 . It follows that f̂ (N1)f̂ (N2) =
f̂ (N1N2), i.e. f̂ is multiplicative. This indeed is satisfied by the definition (2.10). From the 
property (A.2) of multiplicative sequences it follows that it is enough to prove that

f̂ (pn) =
⌊n

2

⌋
+ 1 (A.14)

is the number of SL(2, Z) orbits in the set �(pn) (i.e. the set of sublattices of index pn), where 
�·� is the floor function.

Let B be the matrix collecting the two generators x1 = (k, 0) and x2 = (i, k′) of the lattice 

�N;k,i : B =
(

k 0
i k′
)

. There are two actions of A ∈ SL(2, Z) on B that translate into actions on the 
corresponding lattice �N;k,i :

• the action on the left: B �→ AB gives a different basis for the same lattice: �AB = �B ;
• the action on the right: B �→ BAT gives the (in general) new lattice generated by the trans-

formed vectors 〈Ax1, Ax2〉.

Let B ∈ �(pn). B has the form

B =
(

pj1 0
i pj2

)
, (A.15)

where 0 ≤ ji, j2 ≤ n, j1 + j2 = n and 0 ≤ i < pj1 . If i �= 0 and gcd(i, p) = 1, then the matrices 

of the form 
(

pj1 0
j

)
can be related by an S-transformation to 

(
pj1+j2 0

j

)
:

i p 2 λp 2 1

https://oeis.org/A046951
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(
pj1 0
i pj2

)
· S =

(
0 pj1

−pj2 i

)
=
( −λ pj1

− iλ+1
pj1

i

)(
pj1+j2 0
λpj2 1

)
, (A.16)

where S =
(

0 1
−1 0

)
is one of the two generators of SL(2, Z). This is an allowed transformation 

if λ is the solution of the equation iλ + 1 = 0 mod pj1 . The equation admits one solution if and 

only if gcd(pj1, i) = 1. All the matrices of the form 
(

pj1+j2 0
i 1

)
are in the same orbit because they 

are related by a T-transformation:(
pj1+j2 0

i 1

)
· T =

(
pj1+j2 0
i + 1 1

)
, (A.17)

where T =
(

1 1
0 1

)
is the other generator of SL(2, Z). This gives us the first orbit, identified by the 

representative

O0 =
(

pj1+j2 0
0 1

)
=
(

pn 0
0 1

)
. (A.18)

Now we are left with all the matrices of the form 
(

pj1 0
i′p pj2

)
, where 1 ≤ j1, j2 ≤ n −1, j1 +j2 = n, 

0 ≤ i′ < pj1−1. These can be recast into the form p
(

pj1−1 0
i′ pj2−1

)
so that we can repeat the same 

reasoning to find a new orbit, with representative

O1 = p

(
pj1+j2−2 0

0 1

)
=
(

pj1+j2−1 0
0 p

)
=
(

pn−1 0
0 p

)
. (A.19)

Now we are left with the matrices of the form p
(

pj1−1 0
i′′p pj2−1

)
= p2

(
pj1−2 0

i′′ pj2−2

)
, where 2 ≤

j1, j2, ≤ n − 2, j1 + j2 = n, 0 ≤ i′′ < pj1−2 and the procedure can be repeated recursively until 
all �(pn) is exhausted. We obtain a set of orbits with representatives{(

pn−j 0
0 pj

)}n

j=0
. (A.20)

These orbits are not disjoint since an S-transformation links them in pairs S : Oj �→ On−j . It 
follows that there are precisely f̂ (pn) = �n

2 � + 1 orbits. �
From the expression f (pn) = �n

2 � + 1 we can immediately write the corresponding Dirichlet 
series:

F (s) =
∏
p

[
1 +

∞∑
n=1

f (pn)

pns

]
=
∏
p

∞∑
k=0

k + 1

p2k

(
1 + 1

p

)
=
∏
p

1

1 − p−s − p−2s + p−3s
.

(A.21)

Appendix B. Lie algebra and representations from the brane perspective

In this appendix we associate the representation theory for the su(N) algebra to a stack of N
parallel D3-branes in type IIB string theory.

The su(N) algebra is associated to the AN−1 series. The Cartan matrix in this case is
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Fig. 3. The blue lines connecting the D3-branes are associated to the F1-strings (or D1-branes) and are in 1-1 correspon-
dence with the roots of the algebra, the circles in the Dynkin diagram. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 4. D3/D1 configuration (a) and the corresponding Young tableau (b).

AAN−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
2 −1 0 . . . . . . . . . 0

−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎠ (B.1)

This case is simply laced and the roots are αi = ei − ei+1.
The rows of the Cartan matrix correspond to the Dynkin label of the simple roots in the weight 

space. The simple roots can also be represented by the Dynkin diagram

The brane realization of this system consists of a set of D1-branes ending on a stack of N
D3-branes. A D1 between the i-th and the i + 1-th D3 corresponds to the root αi , i.e. is a cir-
cle in the Dynkin diagram. This system is represented in Fig. 3. Any element in the adjoint 
class (a vector in the adjoint representation) is then in one-to-one correspondence with a set of 
D1-branes that have both ends on the stack of D3s. It is in fact possible to associate a D3/D1 
system to any vector in the algebra but in order to do this we will have to use D1-strings which 
are infinite in the direction x4.

Start with N parallel D3-branes in {x0, x1, x2, x3}. We number them from 1 to N from right 
to left. Now we add a set of D1-branes in {x0, x1} and extended in x4 from one of the D3s and to 
−∞. Let pi be the number of D1s going from −∞ to the i-th D3 (Fig. 4(a)). This configuration 
represents a monopole which is in correspondence with a vector v ∈ AN−1 with weight

w = (pN−1 − pN,pN−2 − pN−1, . . . , p1 − p2). (B.2)
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Fig. 5. Brane intersection. If pi > pi+1 the two stacks of D1-branes intersect. The intersection is solved by emitting 
(pi − pi+1) that decouple from the system.

If the weights are all positive (i.e. pi ≥ pi+1), this is the highest weight of a representation with 
a Young diagram of N − 1 rows (Fig. 4(b)):

Y = [p1 − pN,p1 − pN−1, . . . , p1 − p2]. (B.3)

If pi ≥ pi+1, using the conventions of [13], we have a configuration in which the i-th and 
the (i + 1)-st stack intersect in (pi − pi+1) points. If follows that (pi − pi+1) D1-branes can 
be created at the intersection and sent to infinity (monopole extraction) (Fig. 5). For each of 
these new D1-branes we obtain a new configuration where the i-th stack has one brane less 
and the (i + 1)-st one more. The weight of the corresponding vector v′ is w′ = w − αi , i.e.
v′ is a descendant of v. In the final configuration where pi − pi+1 D1-branes have decoupled, 
we find that the numerical values of pi and pi+1 are interchanged. Repeating the procedure 
we reach the lowest weight vector of the representation where now the number of branes are 
{p′

1, p
′
2, . . . , p

′
N } = {pN, pN−1, . . . , p1}. By construction, p′

i ≤ p′
i+1 and this is a configuration 

of non-intersecting branes. We find that the monopole extraction reproduces the theory of highest 
weight representation of the algebra AN−1.

Consider now a generic configuration of D1-branes ending on a stack of N D3s labeled by 
P = {p1, p2, . . . , pN }. To this we associate a vector v ∈ AN−1. In general, v belongs to an infinite 
number of representations. There is a natural way (from the point of view of branes) to select a 
special highest weight representation. Recall that if pi > pi+1 then the i-th and i + 1-st stack 
intersect pi − pi+1 times. We resolve the intersection by emitting pi − pi+1 D1-branes and 
passing to a new configuration where the numerical values of i and i + 1 are interchanged (this 
corresponds precisely to subtracting the root αN−i from v). Repeating this procedure one reaches 
a configuration P lw where the plw

i have the same numerical values but are ordered such that 
plw

i ≤ plw
i+1. P lw corresponds to the lowest weight of the representation identified by the highest 

weight corresponding to the configuration P hw where again the phw
i have the same numerical 

values but are ordered such that phw
i ≥ phw

i+1. This lowest weight state has no intersections at 
all. Now we can associate a Young diagram Y to the initial configuration P 0, namely the Young 
diagram corresponding to P hw:

Y = [phw
1 − phw

N ,phw
1 − phw

N−1, . . . , p
hw
1 − phw

2 ]. (B.4)

It is immediate to see that the number of boxes of Y is given by

|Y | = Nphw
1 −

N∑
phw

i . (B.5)

i=1
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In terms of the configuration P , this number is given by

|Y(P )| = N max{pi} −
N∑

i=1

pi = N max{pi} − m (B.6)

If the D3-branes in the stack are coincident, we can always add at zero cost any number of 
D1-branes between them. This operation will not change m but can change the value of p1: by 
creating/annihilating branes as above we can change p1 which can take values between 0 and N . 
It follows that any new configuration P ′ obtained in this way will have the number of boxes

|Y(P ′)| = Nl − m, (B.7)

where l is an integer l ∈ [0, . . . , N ]. It is always possible to set l = 0 so that the charge of the 
associated H-line is given by the total number of semi-infinite D1-branes. Finally we can choose 
a representative where all the D1s end on the N -th D3, thus picking the highest weight in the 
m-index symmetric representation.
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