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ANALYSIS OF THE ESSENTIAL SPECTRUM OF

SINGULAR MATRIX DIFFERENTIAL OPERATORS

O. O. IBROGIMOV, P. SIEGL, AND C. TRETTER

Dedicated to Professor Heinz Langer on the occasion of his 80th birthday

Abstract. A complete analysis of the essential spectrum of matrix-differential operators A of the form−
d

dt
p

d

dt
+ q −

d

dt
b∗+ c∗

b
d

dt
+ c D

 in L2((α, β))⊕
(
L2((α, β))

)n
(0.1)

singular at β ∈ R ∪ {∞} is given; the coefficient functions p, q are scalar real-valued with p > 0, b, c are

vector-valued, and D is Hermitian matrix-valued. The so-called “singular part of the essential spectrum”
σ s
ess(A) is investigated systematically. Our main results include an explicit description of σ s

ess(A), criteria for

its absence and presence; an analysis of its topological structure and of the essential spectral radius. Our key

tools are: the asymptotics of the leading coefficient π(·, λ) = p− b∗(D−λ)−1b of the first Schur complement
of (0.1), a scalar differential operator but non-linear in λ; the Nevanlinna behaviour in λ of certain limits

t↗ β of functions formed out of the coefficients in (0.1). The efficacy of our results is demonstrated by

several applications; in particular, we prove a conjecture on the essential spectrum of some symmetric stellar
equilibrium models.

1. Introduction

The interesting spectral phenomena of matrix differential operators have attracted a lot of attention in
recent years. In particular, the essential spectrum and the different mechanisms giving rise to it were studied
in many papers, see e.g. [7], [18], [16], [17], [15], [21]. Often the motivation for the particular examples studied
therein came from mathematical physics, in particular, magnetohydrodynamics, see [13]. The first paper
where the essential spectrum of general singular matrix differential operators of the form (0.1) with scalar
function D was analysed and described explicitly is the recent work [11]. Nevertheless, the results therein did
not provide the full solution for the essential spectrum of a problem in symmetric stellar equilibrium models;
for the essential spectrum due to the singularity at the boundary of the star only a conjecture was made.

Here we undertake a systematic analysis of the essential spectrum of matrix differential operators (0.1)
for the case of matrix-valued D. Under considerably weaker assumptions than in [11], we give an explicit
description of the part of the essential spectrum caused by the singularity at β which we call singular part
of the essential spectrum and which we denote by σ s

ess(A). Furthermore, we establish criteria that allow us
to give a complete classification and characterization of σ s

ess(A) and we investigate its topological structure.
Our explicit characterization allows to decide when the essential spectrum is bounded and, in this case, to
derive a formula for, or estimate, the essential spectral radius ress(A) := sup {|λ| : λ ∈ σess(A)}, cf. [20].
Results and particular assumptions in earlier papers on examples of operators (0.1) are shown to be special
cases of our abstract classification. Moreover, our weaker assumptions allow us to prove the conjecture in
[11] on the singular part of the essential spectrum for the symmetric stellar equilibrium model from [3].

The novelty of this paper is that it characterizes all parts and features of the essential spectrum of general
singular matrix differential operators (0.1) in terms of the coefficients of the associated first Schur complement
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2 O. O. IBROGIMOV, P. SIEGL, AND C. TRETTER

S(λ) which is a scalar differential operator defined for, and depending non-linearly on, λ /∈ σ(D):

S(λ) = − d

dt
p

d

dt
+q−λ−

(
− d

dt
b∗+c∗

)
(D − λ)−1

(
b

d

dt
+c

)
in L2((α, β)) (1.1)

=: − ∂

∂t
π(·, λ)

∂

∂t
+ i
(
r(·, λ)

∂

∂t
+
∂

∂t
r(·, λ)

)
+ κ(·, λ); (1.2)

see (2.5) for the precise form of the coefficient functions. It turns out that a particular role is played by the
leading coefficient π(t, λ) := p(t)−b(t)∗(D(t)−λ)−1b(t), t ∈ [α, β), of S(λ) and by its asymptotic properties:

1. The regular part σ r
ess(A) of the essential spectrum, defined as the closure of the union of the essential

spectra of the restrictions A[α,βr] of A to regular subintervals [α, βr] ⊂ [α, β), is identified with the points λ
for which π(·, λ) has a zero in [α, βr].

2. The singular part σ s
ess(A) of the essential spectrum, defined as the part that is not present for any

restriction A[α,βr] to a regular subinterval, is described in terms of limits t ↗ β of some functions formed
out of the coefficients of the Schur complement; e.g. if β =∞,

λ ∈ σ s
ess(A) ⇐⇒

(
lim
t↗β

r(t, λ)

π(t, λ)

)2

− lim
t↗β

κ(t, λ)

π(t, λ)
≥ 0 (1.3)

for points λ ∈ R \ (σ r
ess(A) ∪ Λβ(D)) where Λβ(D) ⊂ R is the set of (finite) accumulation points of the

eigenvalues of D(t) as t↗∞.
3. The absence resp. presence of the singular part σ s

ess(A) of the essential spectrum is fully characterized
in terms of the coefficients of the asymptotic expansion of π(·, λ) as t↗ β,

π(t, λ) = π0(λ) + π1(λ)(t− β) + R(t, λ), (1.4)

provided the latter exists and the remainder has certain asymptotic properties; more precisely,

π0(λ) 6= 0, π1(λ) 6= 0 =⇒ σ s
ess(A) \ Λβ(D) = ∅.

4. The topological structure of σ s
ess(A) is classified by means of certain coefficients, some of which naturally

arise from the canonical representation of Nevanlinna functions, obtained from the coefficients of the Schur
complement such as

gβ = lim
λ→∞

−π2(λ)

λ
, −π2(λ) = −1

2
lim
t↗β

∂2

∂t2
π(t, λ),

ψβ = lim
λ→∞

−κ0(λ)

λ
, −κ0(λ) = − lim

t↗β
κ(t, λ).

In particular, our classification allows to characterize all cases where the essential spectral radius is finite. If
e.g. gβ > 0 and gβ + 4ψβ 6= 0 and the eigenvalues of D(t) have limits of which j0 are proper, then the closure
of the solution set of the inequality in (1.3) consists of

– at most j0 + 1 compact intervals if gβ + 4ψβ > 0,
– at most j0 compact intervals and two unbounded intervals if gβ + 4ψβ < 0.

There are three crucial differences compared to earlier papers such as [7], [18], [16], [15], and [13], [3].
First we do not only consider special classes or examples of matrix differential operators (0.1); secondly we
do not only consider them under particular assumptions which rule out possibilities for the singular part
of the essential spectrum; and thirdly our methodology is based on the analysis of Schur complement. The
latter allows us to use results from the theory of scalar differential operators and distinguishes our paper
also from the recent paper [21] for the special case of scalar D. While [21] shows how to determine σess(A)
by a transformation to a Hamiltonian system and relies on a limit-point/circle classification, our method
provides an explicit formula for σess(A) in terms of the original coefficient functions and is not restricted to
the limit-circle case at β.

There are also essential differences to the earlier paper [11] in at least three respects. Firstly, we cover the
more general case of matrix-valued and not only scalar-valued coefficientsD. Secondly, and more importantly,
we prove all results under much weaker assumptions than in [11]; major improvements include that e.g.
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– the eigenvalues of D(t) are no longer assumed to have (proper or improper) limits as t↗ β,

– ‖(D − λ)−1b‖ and ‖(D − λ)−1c‖ no longer need to be bounded near β,

– π(·, λ),
1

π(·, λ) , r(·, λ), and κ(·, λ) no longer need to be bounded near β.

Thirdly, the weaker assumptions required the use of new techniques to prove e.g. the relation between the
essential spectra of the matrix operator (0.1) and its Schur complement. Fourthly, the weaker assumptions
enabled us to cope with the singularity at the boundary of the star in the symmetric stellar equilibrium
model for which only a conjecture was made in [11]. Finally, we give the first comprehensive and systematic
analysis for the singular part of the essential spectrum in terms of the asymptotic coefficients of the leading
coefficient π(·, λ) as t↗ β of the Schur complement.

The paper is organized as follows. Section 2 contains the operator theoretic framework for the singular
matrix differential operator (0.1) and its Schur complement (1.1). Section 3 is dedicated to the characteri-
zation of the regular and singular part or the essential spectrum in terms of the Schur complement. Section
4 provides criteria for σ s

ess(A) to be empty and, if it is not empty, an explicit description in terms of certain
limits of functions formed out of the coefficients of the Schur complement. Section 5 contains some useful
sufficient conditions for the assumptions in our main results and a more elegant formula for σ s

ess(A). Section
6 deals with the topological structure of σ s

ess(A). Section 7 shows that the problems considered in earlier
works concern special examples of our general operators (0.1) and special cases of our abstract classification
in terms of π0(λ), π1(λ). In Section 8, we prove the conjecture that the singular part of the essential spectrum
for the symmetric stellar equilibrium model is empty.

2. Singular matrix differential operators and associated Schur complement

In this section, we introduce the operator setting for matrix differential operators of the form (0.1) and
the associated Schur complement (1.1), together with some basic assumptions. To this end, let α ∈ R and
β ∈ R ∪ {∞} with α < β. On the interval [α, β), we introduce the scalar, vector, and matrix differential
expressions

τA := − d

dt
p

d

dt
+ q, τB := − d

dt
b∗ + c∗,

τ+
B := b

d

dt
+ c, τD := D,

with coefficient functions p, q : [α, β)→R, b=(bi)
n
i=1, c=(ci)

n
i=1 : [α, β)→Cn, and D=(dij)

n
i,j=1 : [α, β)→Cn×n

satisfying the following assumptions; here b∗ and c∗ denote the (pointwise) row vector adjoints of b and c.

Assumption (A). Let p ∈ C1([α, β),R) with p > 0, q ∈ C([α, β),R), b, c ∈ C1([α, β),Cn) and D ∈
C1([α, β),Cn×n) with D(t)∗ = D(t) for t ∈ [α, β).

The differential expressions τA, τB , τ+
B , and τD, respectively, induce operatorsA0 : L2((α, β))→ L2((α, β)),

B0 :
(
L2((α, β))

)n → L2((α, β)), C0 : L2((α, β)) →
(
L2((α, β))

)n
, and D0 :

(
L2((α, β))

)n → (
L2((α, β))

)n
on the domains

D(A0) := C2
0 ((α, β)), D(B0) :=

(
C1

0 ((α, β))
)n
, D(C0) := C1

0 ((α, β)), D(D0) :=
(
C0((α, β))

)n
,

where Ck0 ((α, β)), k ∈ N0, denotes the space of all functions f ∈ Ck((α, β)) with compact support in (α, β).

In the Hilbert space H := L2((α, β))⊕
(
L2((α, β))

)n
, we define the matrix differential operator

A0 :=

(
A0 B0

C0 D0

)
=



− d

dt
p

d

dt
+ q − d

dt
b1 + c1 . . . − d

dt
bn + cn

b1
d

dt
+ c1 d11 . . . d1n

...
...

. . .
...

bn
d

dt
+ cn dn1 . . . dnn


(2.1)

with domain D(A0) := D(A0)⊕D(B0) = C2
0 ((α, β))⊕

(
C1

0 ((α, β))
)n

.
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Proposition 2.1. The operator matrix A0 in (2.1) is symmetric in H with

D(A∗0)=

{(
y1

y2

)
∈ H : y1, py

′
1 + b∗y2 ∈ ACloc([α, β)),

−
(
py′1 + b∗y2

)′
+ qy1 + c∗y2 ∈ L2((α, β)), by′1 + cy1 +Dy2 ∈

(
L2((α, β))

)n}
,

A∗0

(
y1

y2

)
=

(
−
(
py′1 + b∗y2

)′
+ qy1 + c∗y2

by′1 + cy1 +Dy2

)
,

and dim ker(A∗0 − λ) ≤ 2 for λ ∈ C.

Proof. The proof is similar to the proof of [11, Proposition 2.3] in the case n = 1 where D is a scalar function,
and is thus left to the reader. �

For a densely defined closed linear operator T , we use the following definition of essential spectrum

σess(T ) := {λ ∈ C : T − λ is not Fredholm},
which is the set σe3(T ) in [6, Sections I.3 and IX.1]. Note that all definitions of the essential spectrum in [6,
Sections I.3 and IX.1] are equivalent for self-adjoint operators.

Throughout this paper, A denotes an arbitrary closed symmetric extension of A0. Since the deficiency
indices of A0 are finite, A is a finite-dimensional extension of A0 and hence (see e.g. [7, Section IX.4])

σess(A) = σess(A0) ⊂ R.

As in [11], we employ Glazman’s decomposition principle to determine σess(A) (see [8]). To this end, for an
open subinterval J ⊂ [α, β), we denote by AJ the closure of the symmetric operator A0,J in L2(J)⊕ (L2(J))n

generated by the restriction of A0 to C2
0 (J)⊕

(
C1

0 (J)
)n

, i.e.

AJ = A0,J = A0 � C2
0 (J)⊕

(
C1

0 (J)
)n
. (2.2)

Then, for arbitrary t0 ∈ (α, β), the operator A in L2((α, β))⊕ (L2((α, β)))n is a finite-dimensional extension
of the orthogonal sum A(α,t0) ⊕A(t0,β) and hence (see e.g. [6, Section IX.5.2])

σess(A) = σess(A(α,t0)) ∪ σess(A(t0,β)). (2.3)

The first Schur complement S0(λ) of the operator matrix A0 in (2.1) which is defined for all λ ∈ C\σ(D0)
and acts in the first space component L2((α, β)) (see [24, Section 2.2]) is induced by the scalar second order
differential expression

τS(λ) = τA − λ− τB(τD − λ)−1τ+
B = − d

dt
p

d

dt
+ q − λ−

(
− d

dt
b∗ + c∗

)
(D − λ)−1

(
b

d

dt
+ c

)
.

The differential expression τS(λ) can be rewritten in the standard symmetric form as

τS(λ) = − ∂

∂t
π(·, λ)

∂

∂t
+ i
(
r(·, λ)

∂

∂t
+
∂

∂t
r(·, λ)

)
+ κ(·, λ) (2.4)

where, for λ ∈ C \ σ(D0),

π(·, λ) := p− b∗(D − λ)−1b,

r(·, λ) := Im(b∗(D − λ)−1c),

κ(·, λ) := q − λ− c∗(D − λ)−1c+
∂

∂t
Re(b∗(D − λ)−1c).

(2.5)

Note that we use partial derivatives here and in the sequel since the coefficients now also depend on the
spectral parameter λ ∈ C.

For an open subinterval J ⊂ [α, β), let D0,J denote the multiplication operator by the matrix function D

in
(
L2(J)

)n
with domain D(D0,J) = (C0(J))n. Then, for λ ∈ R\σ(D0,J), the formally symmetric differential
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expression τS(λ) induces a symmetric operator S0,J(λ) in L2(J) with domain C2
0 (J); we denote the closure

of S0,J(λ) by SJ(λ),

D(S0,J(λ)) := C2
0 (J), S0,J(λ)u := τS(λ)u, SJ(λ) := S0,J(λ). (2.6)

To describe the resolvent sets of matrix multiplication operators such as D0, we introduce the following
notation. For a subinterval J ⊂ [α, β) and a matrix function M : [α, β)→ Cn×n, we have

ΛJ(M) := {λ ∈ C : ∃ t0 ∈ J, det(M(t0)− λ) = 0} =
⋃
t∈J

σ(M(t)) ; (2.7)

notice that ΛJ(M) = σ(M) if M is viewed as a matrix multiplication operator acting in (L2(J))n, see [10].
In the limiting case, we set

Λβ(M) := C \ {λ ∈ C : ∃ tλ∈(α, β) ∃Rλ>0 ∀ t∈(tλ, β) λ /∈σ(M(t)) ∧ ‖(M(t)− λ)−1‖ ≤ Rλ}; (2.8)

since Λβ(M) is the complement of the region of boundedness of the matrix family (M(t))t∈[α,β), it is closed
in C (see [14, Theorem VIII.1.1]). If the matrices M(t), t ∈ J , are Hermitian, then the property

‖(M(t)− λ)−1‖ =
1

dist(λ, σ(M(t)))
, t ∈ J, (2.9)

implies that

Λβ(M) = {λ ∈ R : lim inf
t↗β

dist(λ, σ(M(t))) = 0}.

Throughout this paper, for the Hermitian matrix-valued function D = (dij)
n
i,j=1 : [α, β) → Cn×n in the

operator matrix (2.1), we denote by λk(t) ∈ R, k = 1, 2, . . . , n, the eigenvalues of D(t) for t ∈ [α, β). Then

ΛJ(D) =
⋃
t∈J

{
λk(t) : k = 1, 2, . . . , n

}
⊂ R;

in Section 6, we will assume that the possibly improper limits λk,β := limt↗β λk(t) ∈ R ∪ {−∞,∞} exist,
see Assumption (T1), in which case we will have

Λβ(D) = {λ1,β , . . . , λn,β} ∩ R. (2.10)

3. Essential spectrum and Schur complement

The essential spectrum of singular matrix differential operators consists of two parts, one due to the
matrix structure which persists even when the operator is restricted to compact subintervals [α, βr] ⊂ [α, β)
and one due to the singularity at β. Our main tool to describe both the regular part and the singular part
of the essential spectrum of A is the first Schur complement S(λ) introduced in Section 2, and in particular
its leading coefficient π(·, λ), see (2.4).

3.1. The regular part of the essential spectrum. For points λ ∈ R \ Λ[α,β)(D) for which π(t, λ) = 0
for some t∈ [α, β), the leading coefficient of the differential expression τS(λ) vanishes. Below we show that
these points give rise to essential spectrum of a restriction A(α,t0) to some finite interval (α, t0) ⊂ (α, β)
with t0 < β.

To see this, we first relate the zeros of π(·, λ) to the spectrum of the Hermitian matrix-valued function
∆:[α, β)→Cn×n given by

∆(t) := D(t)− 1

p(t)
b(t)b(t)∗, t ∈ [α, β), (3.1)

which was used in [2] to characterize the essential spectrum of operator matrices such as A(α,t0).

Lemma 3.1. For every λ ∈ R \ Λ[α,β)(D),

π( · , λ) = p
det(∆− λ)

det(D − λ)
on [α, β). (3.2)
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Moreover, for every open subinterval J ⊂ [α, β) and every λ ∈ R \ (ΛJ(D) ∪ ΛJ(∆)),

1

π( · , λ)
b∗
(
D − λ

)−1
c =

1

p
b∗
(
∆− λ

)−1
c on J. (3.3)

Proof. Sylvester’s determinant theorem states that, for matrices M1 ∈ Ck×m and M2 ∈ Cm×k,

det(Ik −M1M2) = det(Im −M2M1);

here Ik ∈ Ck×k and Im ∈ Cm×m are the identity matrices. Applying this equality with k = 1, m = n,
M1 = p−1b∗ and M2 = (D − λ)−1b, we can rewrite π(·, λ) defined in (2.5) as

π( · , λ) = p det
(
1− p−1b∗(D − λ)−1b

)
= p det

(
In − (D − λ)−1bp−1b∗

)
= p det

(
(D − λ)−1(D − λ− bp−1b∗)

)
= p det

(
(D − λ)−1

)
det
(
D − λ− bp−1b∗

)
= p

det(∆− λ)

det(D − λ)
on J.

To prove the second claim, let λ∈R\(ΛJ(D)∪ΛJ(∆)). By the second resolvent identity and (3.1), we have

b∗(∆− λ)−1c = b∗(D − λ)−1c+
1

p
b∗(D − λ)−1bb∗(∆− λ)−1c on J.

Hence, by the definition of π(·, λ) in (2.5),

π(·, λ)
1

p
b∗(∆− λ)−1c = b∗(∆− λ)−1c− 1

p
b∗(D − λ)−1bb∗(∆− λ)−1c = b∗(D − λ)−1c on J. �

Remark 3.2. If Assumption (A) is satisfied, then, for every open subinterval J ⊂ [α, β) and every λ ∈
R \ (ΛJ(D) ∪ ΛJ(∆)), the differential expression τS(λ) satisfies the conditions [6, III.(10.3)], i.e.

(i) π(·, λ) 6= 0,
1

π(·, λ)
∈ L1

loc(J),

(ii)
2r(·, λ)

π(·, λ)
=

2 Im(b∗ (∆− λ)−1c)

p
∈ L1

loc(J), κ(·, λ) := κ(·, λ) + i
∂

∂t
r(t, λ) ∈ L1

loc(J).

Here the identity in (ii) follows from (3.3). Since, in addition, r(·, λ) ∈ ACloc(J), the symmetric operator
S0,J(λ) for λ ∈ R \ (ΛJ(D) ∪ ΛJ(∆)) also satisfies the conditions of [6, Theorem III.10.7] and hence the
deficiency numbers of S0,J(λ) are ≤ 2.

On compact intervals, the essential spectrum of top-dominant matrix differential operators was charac-
terized in [2]. As a consequence of this and Glazman’s decomposition principle (2.3), the closure ΛJ(∆) of
the range of eigenvalues of the matrix function ∆ on any open subinterval J ⊂ (α, β) belongs to the essential
spectrum of AJ . This part of the essential spectrum of AJ is called the regular part and denoted by σ r

ess(AJ).

Proposition 3.3. Let Assumption (A) be satisfied and let J be an open interval such that J ⊂ [α, β). If AJ
is the closed symmetric operator defined in (2.2), then

σess(AJ) = σ r
ess(AJ) = ΛJ(∆) = ΛJ(∆);

if J = (α, β) and A is any closed symmetric extension of the operator A0 defined in (2.1), then

σess(A) ⊃ σ r
ess(A) = Λ[α,β)(∆);

in particular, Λ[α,β)(∆) = R implies that σess(A) = R.

Proof. The reasoning is completely analogous to the proof of [11, Proposition 3.3] in the case n = 1; it uses
Glazman’s decomposition principle (2.3) and [2, Theorem 4.5]. �
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3.2. The singular part of the essential spectrum. While for intervals J such that J ⊂ [α, β) the
essential spectrum of AJ is exhausted by its regular part, the singular endpoint β may give rise to an
additional part of σess(A). This part of the essential spectrum of A is referred to as the singular part and
denoted by σ s

ess(A) (not to be confused with the singular continuous spectrum).
In the following, we characterize the essential spectrum of the restrictions A(t0,β) for suitably large t0 ∈

(α, β) in terms of the Schur complement. The following results generalize those in [11] not only to the more
general case n ≥ 1. More importantly, we develop a different proof that allows us to weaken the assumptions
on the coefficient functions in (2.5) considerably (cf. [11, Assumption (B)]).

The new Assumption (B) below contains a weight function η, which enables us to cover a larger set of
operators; particular weights have already been used in the method of [15]. The choice of a suitable η
depends on the behaviour of other coefficients in the Schur complement (see the proof of Theorem 5.1 for
examples).

Lemma 3.4. Let Assumption (A) be satisfied. Then, for every λ ∈ R \ (σ r
ess(A) ∪ Λβ(D)), there exists

t̂λ ∈ (α, β) such that

(i) λ /∈ Λ[t̂λ,β)(D) and supt∈[t̂λ,β) ‖(D(t)− λ)−1‖ <∞;

(ii) π( · , λ) 6= 0 on [t̂λ, β), hence either π( · , λ) > 0 or π( · , λ) < 0 on [t̂λ, β).

Proof. The existence of t̂λ for which (i) holds is immediate from the definition of Λβ(D), see (2.8). The

function π(·, λ) is non-zero on [t̂λ, β) since p > 0 on [α, β), λ ∈ R\ (Λ[α,β)(∆)∪Λβ(D)) and the relation (3.2)

holds. Because π(·, λ) is continuous on [t̂λ, β), it cannot change sign on [t̂λ, β). �

Assumption (B). For every λ ∈ R\
(
σ r

ess(A) ∪ Λβ(D)
)
, there is a tλ ∈ [t̂λ, β) with t̂λ as in Lemma 3.4

such that

(B1) there exists a constant k1 > 0 with

|π( · , λ)| > k1

∥∥(D − λ)−1b
∥∥2

Cn on [tλ, β); (3.4)

(B2) there exists a constant k2 > 0 and a positive-valued function η ∈ C2([tλ, β)) with

Vη(·, λ)− k2

∥∥∥∥(D − λ)−1
[(

i
r(·, λ)

π(·, λ)
+
η′

2η

)
b+ c

]∥∥∥∥2

Cn
bounded from below on [tλ, β) (3.5)

where

Vη(·, λ) := sπ

(
κ(·, λ)− r(·, λ)2

π(·, λ)
− 1

2
√
η

(
π(·, λ)

η′√
η

)′)
(3.6)

and

sπ := sgn(π(·, λ)� [tλ,β)) =

{
1 if π(·, λ) > 0 on [tλ, β),

−1 if π(·, λ) < 0 on [tλ, β).
(3.7)

Lemma 3.5. Let Assumptions (A), (B) be satisfied and suppose σ r
ess(A) 6= R. Let λ ∈ R\ (σ r

ess(A)∪Λβ(D))
and let tλ ∈ [α, β) be as in Assumption (B). Further, let S(tλ,β)(λ) be defined as in (2.6) with J := (tλ, β).
Then

λ ∈ σess(A(tλ,β)) ⇐⇒ 0 ∈ σess(S(tλ,β)(λ)); (3.8)

moreover,

λ ∈ σess(A) ⇐⇒ 0 ∈ σess(S(tλ,β)(λ)). (3.9)

Proof. We fix λ ∈ R \ (σ r
ess(A)∪Λβ(D)) and abbreviate J := (tλ, β), H1 := L2(J), and H2 :=

(
L2(J)

)n
. We

equip H2 = Hn
1 with the norm

‖f‖H2 :=
(
‖f1‖2H1

+ ‖f2‖2H1
+ . . .+ ‖fn‖2H1

) 1
2

, f = (f1, f2, . . . , fn)t ∈ H2 = Hn
1 .

By definitions (2.2) and (2.6), we have AJ = A0,J and SJ(λ) = S0,J(λ). Thus we have to prove that

λ ∈ σess(A0,J) ⇐⇒ 0 ∈ σess

(
S0,J(λ)

)
. (3.10)
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Note that, by Lemma 3.4, D(t)− λ is invertible for t∈ [tλ, β) and supt∈[tλ,β) ‖(D(t)− λ)−1‖<∞. Moreover,

since D ∈ C1([α, β),Cn×n) by Assumption (A), we have (D − λ)−1C1
0 ([α, β),Cn) ⊂ C1

0 ([α, β),Cn).
“⇐=” in (3.10): The proof of this implication is completely analogous to the corresponding part of the

proof of [11, Lemma 3.7].
“=⇒” in (3.10): In order to delete the first order derivative in S0,J , we apply the unitary transformation

U : L2(J)→ L2(J), (Uf)(t) = e−iω(t,λ)f(t), with ω(t, λ) :=

∫ t

tλ

r(s, λ)

π(s, λ)
ds; (3.11)

note that r(·,λ)
π(·,λ) ∈ C1(J). Then the transformed operator is again symmetric and has the form

T0(λ) = US0,J(λ)U−1 = − ∂

∂t
π(·, λ)

∂

∂t
+ κ(·, λ)− r(·, λ)2

π(·, λ)
, D(T0(λ)) = UD(S0,J(λ)).

It is not difficult to check that, with Vη defined as in (3.6),

T0(λ) = sπ

(
− 1√

η

∂

∂t
η|π(·, λ)| ∂

∂t

1√
η

+ Vη(·, λ)

)
. (3.12)

Since Vη is bounded from below by (3.5) in Assumption (B), there is a δ ≥ 0 such that Vη(·, λ) + δ ≥ 0 on
[tλ, β) and, for f ∈ D(T0(λ)),(

(T0(λ) + 2sπδ)f, f
)
H1

= sπ

(
−
( ∂
∂t

(
η|π(·, λ)| ∂

∂t

( 1√
η
f
))
,

1√
η
f
)
H1

+
(
Vηf, f

)
H1

+ 2δ‖f‖2H1

)
= sπ

(∥∥∥√η|π(·, λ)| ∂
∂t

( 1√
η
f
)∥∥∥2

H1

+ ‖
√
Vη + δf‖2H1

+ δ‖f‖2H1

)
.

Thus T0(λ)+2sπδ is uniformly positive if sπ = 1 and uniformly negative if sπ=−1 with sπ=sgn(π(·, λ)�[tλ,β)).
Hence the quadratic form generated by T0(λ) is closable. We denote its closure by tF (λ) and by TF (λ) the
self-adjoint operator associated with tF , i.e. the Friedrichs extension of T0(λ) (cf. [14, VI.§ 2]). Note that
the domain of tF (λ) is the closure of D(T0(λ)) with respect to the norm(∥∥∥√η|π(·, λ)| ∂

∂t

( 1√
η
·
)∥∥∥2

H1

+ ‖
√
Vη + δ · ‖2H1

+ ‖ · ‖2H1

) 1
2

.

Now we suppose that 0 /∈ σess

(
S0,J(λ)

)
. Since U is unitary and S0,J has finite deficiency indices, we have

0 /∈ σess

(
TF (λ)

)
. Let P0 be the spectral projection onto the eigenspace of TF (λ) corresponding to 0 which is

{0} if 0 is not an eigenvalue of TF (λ). Since 0 is not an eigenvalue of infinite multiplicity, P0 is of finite rank
and thus compact. Hence 0 /∈ σess

(
TF (λ)−P0

)
; note that 0 /∈ σp

(
TF (λ)−P0

)
by definition of P0. Then the

operator

K =

 K0 01×n

0n×1 0n×n

 , K0 := U−1P0U,

is compact. It is not difficult to check that λ ∈ σp(A0,J − K) implies that 0 ∈ σp

(
S0,J(λ) − K0

)
⊂

σp

(
TF (λ)− P0

)
, a contradiction to the choice of P0. Hence λ /∈ σp(A0,J −K).

The claim is proved if we show that (A0,J−K−λ)−1 is bounded on ran(A0,J−K−λ). In fact, we will show
that the latter implies that λ /∈ σp(AJ −K), and thus, by [11, Lemma 2.4], λ /∈ σess(AJ −K) = σess(AJ).

To see why the boundedness of (A0,J −K − λ)−1 on ran(A0,J −K − λ) implies λ /∈ σp(AJ −K), suppose
to the contrary that AJ − K − λ is not injective. Then there exists an x ∈ D(AJ), ‖x‖H1⊕H2

= 1, such

that (AJ −K − λ)x = 0. Since AJ = A0,J , there exists a sequence (xn)n∈N ⊂ D(A0,J) with xn → x and
(A0,J −K − λ)xn → 0, n→∞. Letting yn := (A0,J −K − λ)xn ∈ ran(A0,J −K − λ), we obtain

‖(A0,J −K − λ)−1yn‖H1⊕H2

‖yn‖H1⊕H2

=
‖xn‖H1⊕H2

‖(A0,J −K − λ)xn‖H1⊕H2

→∞, n→∞,

a contradiction to the boundedness of (A0,J −K − λ)−1 on ran(A0,J −K − λ).
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It remains to be shown that (A0,J − K − λ)−1 is bounded on ran(A0,J − K − λ). To this end, let
(f, g)t∈ran(A0,J −K − λ),

(A0 −K0 − λ)u+B0v = f, (3.13)

C0u+ (D0 − λ)v = g, (3.14)

with (u, v)t ∈ D(A0,J) = C2
0 (J)⊕

(
C1

0 (J)
)n

. Then Assumption (A) implies that (D0−λ)−1C0u ∈
(
C1

0 (J)
)n

,

and (3.14) shows that (D0 − λ)−1g = (D0 − λ)−1C0u + v ∈
(
C1

0 (J)
)n

. Solving (3.14) for v, we can thus

substitute v = −(D0 − λ)−1C0u+ (D0 − λ)−1g ∈
(
C1

0 (J)
)n

into (3.13) to obtain

(A0 −K0 − λ)u−B0(D0 − λ)−1C0u = f −B0(D0 − λ)−1g.

Since the left-hand side equals
(
S0,J(λ)−K0

)
u = U−1

(
TF (λ)−P0

)
Uu and U−1

(
TF (λ)−P0)U is boundedly

invertible, it follows that

u = U−1
(
TF (λ)− P0

)−1
Uf − U−1

(
TF (λ)− P0

)−1
UB0(D0 − λ)−1g.

Inserting this back into the above formula for v, we find that

v = −(D0−λ)−1C0U
−1
(
TF (λ)−P0

)−1
Uf+(D0−λ)−1g+(D0−λ)−1C0U

−1
(
TF (λ)−P0

)−1
UB0(D0−λ)−1g.

Now define the auxiliary operator

L := l1(·, λ)
√
η
∂

∂t

1√
η

+ l2(·, λ),

D(L) :=
{
f ∈ L2(J) :

( 1√
η
f
)′
∈L1

loc(J),
√
ηπ
( 1√

η
f
)′
∈L2(J),

√
Vη + δf ∈ L2(J)

}
where

l1(·, λ) = eiω(·,λ)(D − λ)−1b, l2(·, λ) = eiω(·,λ)(D − λ)−1
[(

iω′(·, λ) +
η′

2η

)
b+ c

]
,

and ω(·, λ) is defined as in (3.11). Further, we introduce the operators

F (λ) := L |TF (λ) + 2sπδ|−
1
2 , G(λ) := |TF (λ) + 2sπδ|

1
2

(
TF (λ) + P0

)−1|TF (λ) + 2sπδ|
1
2 .

Then F (λ) is an extension of (D0−λ)−1C0U
−1|TF (λ)+2sπδ|−

1
2 since L is an extension of (D0−λ)−1C0U

−1.
Moreover, it can be verified directly from the definition of the adjoint that L∗ ⊃ UB0(D0 − λ)−1. Thus

F (λ)∗ ⊃ |TF (λ) + 2sπδ|−
1
2UB0(D0 − λ)−1.

Hence the above relations for u and v show that
(
u
v

)
= (A0,J −K − λ)−1

(
f
g

)
is given byu

v

=

 U−1
(
TF (λ)−P0

)−1
U −U−1

(
TF (λ)−P0

)−1|TF (λ)+2sπδ|
1
2 F (λ)∗

−F (λ)|TF (λ)+2sπδ|
1
2

(
TF (λ)−P0

)−1
U (D0−λ)−1+F (λ)G(λ)F (λ)∗

f
g

.
The operator

(
TF (λ)− P0

)−1|TF (λ) + 2sπδ|
1
2 has a bounded extension to H1. If we show that G(λ) has

a bounded extension on H1 and F (λ) is bounded on H2, then all entries in the above operator matrix are
bounded and hence (A0,J −K − λ)−1 is bounded on ran(A0,J −K − λ).

Since G(λ) can be written as an orthogonal sum of bounded operators

G(λ) = sπ

[(
I + 2δ(I − P0)

(
(I − P0)TF (λ)(I − P0)

)−1
)
⊕ 2δP0

]
,

the existence of a bounded extension of G(λ) follows.
Next we prove the boundedness of F (λ). It can be shown that D(tF (λ)) is contained in D(L). Thus F (λ)

is everywhere defined. For arbitrary f ∈ H1 and g := |TF (λ) + 2sπδ|−1/2f ∈ D(tF (λ)), we obtain

‖F (λ)f‖2H2

‖f‖2H1

=
‖Lg‖2H2

‖|TF (λ) + 2sπδ|1/2g‖2H1

.
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Hence the second representation theorem [14, Theorem VI.2.23] yields

‖F (λ)f‖2H2

‖f‖2H1

=
‖Lg‖2H2

sπ(tF [g] + 2sπδ‖g‖2H1
)
≤

2
∥∥‖η 1

2 l1(·, λ)‖Cn
(
η−

1
2 g
)′∥∥2

H1
+ 2
∥∥‖l2(·, λ)‖Cng

∥∥2

H1

‖
√
η|π(·, λ)|∂tη− 1

2 g‖2H1
+ ‖
√
Vη + δg‖2H1

+ δ‖g‖2H1

. (3.15)

Now (3.5) in Assumption (B) implies the boundedness of F (λ) on H1 which completes the proof of (3.10)
and hence of (3.8).

In order to prove (3.9), we use that by Glazman’s decomposition principle (2.3)

λ ∈ σess(A) ⇐⇒ λ ∈
(
σess(A(α,tλ)) ∪ σess(A(tλ,β))

)
.

By Proposition 3.3, σess(A(α,tλ)) = Λ[α,tλ) ⊂ Λ[α,β) = σ r
ess(A). Since λ /∈ σ r

ess(A) by assumption, it follows
that λ /∈ σess(A(α,tλ)). Now (3.9) follows from (3.8). �

4. Singular part of essential spectrum

In this section, we analyse the singular part σ s
ess(A) = σess(A) \ σ r

ess(A) of the essential spectrum. To-
gether with Proposition 3.3 describing the regular part of the essential spectrum, we thus obtain a full
characterization of σess(A) up to the exceptional set Λβ(D).

First we provide conditions for σ s
ess(A) \ Λβ(D) = ∅. If σ s

ess(A) \ Λβ(D) 6= ∅, we establish an analytic
description of this set in terms of the coefficients of the given operator matrix A0 in (2.1).

4.1. Criteria for σ s
ess(A)\Λβ(D) = ∅. By Lemma 3.5, we know that σ s

ess(A)\Λβ(D)=∅ if σess(S(tλ,β)(λ))=∅
for all λ ∈ R \

(
σ r

ess(A) ∪ Λβ(D)
)
. The latter holds for instance if S(tλ,β)(λ) is in limit-circle case at β, see

[25, Theorem 10.12.1(2)]. The possibility of employing the limit-point/circle classification was mentioned
in [15] and used (for a Hamiltonian system) in [21]. While this provides only an implicit characteriza-
tion, our conditions on the coefficient functions are explicit and not restricted to the limit-circle case at β.
Moreover, we refute the suspicion raised in [15, p. 137] that limit-point case is crucial for σ s

ess(A) 6= ∅ (see
Example 4.2 below).

Assumption (C). Suppose that, for every λ ∈ R \
(
σ r

ess(A) ∪Λβ(D)
)
, there exists t̃λ∈ [tλ, β) with tλ as in

Assumption (B) such that one of the following holds.

(C1) η h(·, λ)2 ∈ L1((t̃λ, β)) with

h(t, λ) :=



(∫ β

t

ds

η(s)|π(s, λ)|

) 1
2

if
1

ηπ(·, λ)
∈ L1((t̃λ, β)),

(∫ t

t̃λ

ds

η(s)|π(s, λ)|

) 1
2

otherwise;

(4.1)

(C2) (a) π( · , λ),
1

π( · , λ)
are bounded on (t̃λ, β);

(b) sπ

(
κ(·, λ)− r(·, λ)2

π(·, λ)

)
is bounded from below on (t̃λ, β);

moreover, if β =∞, for all d > 0,

lim
c→∞

∫ c+d

c−d
sπ

(
κ(t, λ)− r(t, λ)2

π(t, λ)

)
dt =∞. (4.2)

The next theorem shows that if one of the conditions (C1) or (C2) in Assumption (C) above is satisfied,
the singular part of the essential spectrum of A outside of Λβ(D) is empty.

Theorem 4.1. Let Assumptions (A), (B), and (C) be satisfied. Then, for every closed symmetric extension
A of A0 defined in (2.1), σ s

ess(A) \ Λβ(D) = ∅, i.e.

σess(A) \ Λβ(D) = σ r
ess(A) \ Λβ(D). (4.3)
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Proof. Let t̃λ ∈ [tλ, β) be as in Assumption (C). The claim in (4.3) follows from Lemma 3.5 if we verify that
σess(S(t̃λ,β)(λ)) = ∅. Let TF (λ) be the Friedrichs extension of T0(λ) as in the proof of Lemma 3.5. Since TF (λ)

is a finite dimensional extension of US(t̃λ,β)(λ)U−1 and U is unitary, we have σess(TF (λ)) = σess(S(t̃λ,β)(λ)).

First consider the case when Assumption (C1) holds. Since the operator

Uη : L2((t̃λ, β))→ L2((t̃λ, β), η), Uηf :=
1√
η
f

is unitary, we have σess(TF (λ)) = σess(UηTF (λ)U−1
η ). Hence it suffices to show that

σess(UηTF (λ)U−1
η ) = ∅. (4.4)

With δ as in the proof of the Lemma 3.5, it is not hard to see that the operator

UηTF (λ)U−1
η + sπδ =

sπ
η

(
− ∂

∂t
η|π(·, λ)| ∂

∂t
+ η
(
Vη + δ

))
, (4.5)

acting in the weighted Hilbert space L2((t̃λ, β), η), coincides with the operator T (up to the inessential overall
sign sπ ∈ {−1, 1}) in [23] with m = η, p0 = η

(
Vη + δ

)
, and p1 = η|π(·, λ)|. By Assumptions (B) and (C), the

differential operator in (4.5) satisfies all conditions of Theorem in [23], and therefore, has compact resolvent,
i.e. (4.4) holds (cf. [6, Theorem IX.3.1]).

Now consider the case when Assumption (C2) holds. If β <∞, then the form domain D(tF (λ)) of TF (λ)

with η = 1 is a subset of W 1,2((t̃λ, β)) which is compactly embedded in L2((t̃λ, β)) (cf. [1, Theorem 6.3]).
Hence σess(TF (λ)) = ∅ by [22, Theorem XIII.64].

If β = ∞, then Assumption (C2) guarantees that the assumptions of Molcanov’s criterion are satisfied
(cf. [6, Theorem VIII.4.2]) and the latter yields σess(TF (λ)) = ∅. �

Example 4.2. One of the main results of [15] implies that, for the operator A0 considered in (7.1), see
Example A below, σ s

ess(A) 6= ∅ if the Schur complement is in limit-point case at β = 0, see [15, Theorem 6.1].
The suspicion raised in [15, p. 137] that this may be true in general is disproved by the following simple
example.

Consider (2.1) on L2((1,∞)) with n = 1 and coefficient functions p ≡ c ≡ 1, b ≡ 0, q(t) = t2, D(t) = 1
t ,

t ∈ [1,∞). Then ∆(t) = 1
t , t ∈ [1,∞), Λβ(D) = {0} and the Schur complement is given by

S(λ) = − d2

dt2
+ V (t, λ), V (t, λ) := t2 − λ− t

1− λt , λ /∈ [0, 1].

It is easy to see that Assumptions (A), (B), and (C2) are satisfied. In particular, there is a tλ > 1 such that
V (·, λ) is bounded from below on [tλ,∞). Consequently, Theorem 4.1 applies and yields

σ s
ess(A) = ∅, σess(A) = σ r

ess(A) = [0, 1].

However, since tλ is a regular endpoint and V (·, λ) is bounded from below on [tλ,∞), S(λ) is in limit-point
case at ∞, see [4, Proposition 4.8.9], but σ s

ess(A) = ∅.

4.2. Description of σ s
ess(A)\Λβ(D) 6= ∅. The following result characterizes the singular part of the essential

spectrum in terms of the limits of some functions formed out of the coefficients of the original operator matrix
A0 at the singular endpoint β. For the proof, we need the following assumptions.

Assumption (D). Suppose that

(D1) p ∈ C2([α, β),R), b ∈ C2([α, β),Cn) and D ∈ C2([α, β),Cn×n);

(D2) for every λ ∈ R \
(
σ r

ess(A)∪Λβ(D)
)
, there exists t̃λ∈ [tλ, β) with tλ as in Assumption (B), such that

π̃( · , λ),
1

π̃( · , λ)
are bounded on (t̃λ, β), (4.6)
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where

π̃(t, λ) :=


π(t, λ)

(β − t)2
if β <∞,

π(t, λ) if β =∞;
(4.7)

(D3) for every λ ∈ R \
(
σ r

ess(A) ∪ Λβ(D)
)
, the limits

r̃β(λ) := lim
t↗β

r̃(t, λ), κ̃β(λ) := lim
t↗β

κ̃(t, λ)

exist and are finite where

r̃(t, λ) :=


(β − t) r(t, λ)

π(t, λ)
if β <∞,

r(t, λ)

π(t, λ)
if β =∞,

κ̃(t, λ) :=


(β − t)2κ(t, λ)

π(t, λ)
if β <∞,

κ(t, λ)

π(t, λ)
if β =∞;

moreover, assume that the functions

Φ1(t, λ) :=


(β − t)

∂
∂tπ(t, λ)

π(t, λ)
if β <∞,

∂
∂tπ(t, λ)

π(t, λ)
if β =∞,

Φ2(t, λ) :=


(β − t)2

∂
∂tr(t, λ)

π(t, λ)
if β <∞,

∂
∂tr(t, λ)

π(t, λ)
if β =∞,

have finite limits as t↗ β.

Assumption (D) has the following important consequence. The proof of the following lemma, which is
based on Gronwall’s inequality, is analogous to the proof of [11, Lemma 4.2] and thus omitted.

Lemma 4.3. Let Assumption (D) be satisfied. Then, for every λ ∈ R \
(
σ r

ess(A) ∪ Λβ(D)
)
, we have

lim
t↗β

Φ1(t, λ) =

{
−2 if β <∞,
0 if β =∞, lim

t↗β
Φ2(t, λ) =

{
−r̃β(λ) if β <∞

0 if β =∞.

The following theorem does not only generalize [11, Theorem 4.3] to the matrix case n ≥ 1, but it requires
considerably weaker assumptions.

Theorem 4.4. Let Assumptions (A), (B), and (D) be satisfied. Then, for every closed symmetric extension
A of A0 defined in (2.1),

σess(A) \ Λβ(D) =
(
σ r

ess(A) ∪ σ s
ess(A)

)
\ Λβ(D)

and

σ s
ess(A) \ Λβ(D) =

{
λ ∈ R \

(
σ r

ess(A) ∪ Λβ(D)
)

: Dβ(λ) ≥ 0
}

where

Dβ(λ) :=

r̃β(λ)2 − κ̃β(λ)− 1

4
if β <∞,

r̃β(λ)2 − κ̃β(λ) if β =∞.
(4.8)

Proof. The differential expression τS(λ) in (2.4) can be rewritten as

τS(λ) = −π(·, λ)
d2

dt2
+ ρ(·, λ) i

d

dt
+ κ(·, λ) (4.9)

where

κ(·, λ) := κ(·, λ) + i
∂

∂t
r(·, λ), ρ(·, λ) := 2r(·, λ) + i

∂

∂t
π(·, λ). (4.10)

Let t̃λ ∈ [tλ, β) be as in Assumption (D). By Lemma 3.5,

λ ∈ σess(A) \ (σ r
ess(A) ∪ Λβ(D)) ⇐⇒ 0 ∈ σess(S(t̃λ,β)(λ)). (4.11)
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To analyse when 0 ∈ σess(S(t̃λ,β)(λ)), we use [6, Corollary IX.9.4]. We distinguish the cases β < ∞ and

β =∞. If β <∞, we consider the unitary transformation

U : L2((α, β))→ L2((α,∞)), (Uf)(x) := ψ(x)f(ε(x)),

with

ε(x) := (α− β)e−(x−α) + β, ψ(x) :=
√
β − α e−

1
2 (x−α), x ∈ [α,∞).

Then ε maps [α,∞) bijectively onto [α, β) and

U
d

dx
U−1 =

1

β − ε(·)
d

dx
+

1

2

1

β − ε(·) .

Now it is not difficult to check that Assumption (D) and Lemma 4.3 ensure that, for fixed λ,

(β − ε(·))2

π(ε(·), λ)
US(t̃λ,β)(λ)U−1

satisfies the assumptions of [6, Corollary IX.9.4]1 with m = 2, a2 = −1, a1 = 2r̃β(λ), and a0 = κ̃β(λ) + 1
4 .

Hence [6, (9.19)] with k = 3 applies and yields

0 ∈ σess(S(t̃λ,β)(λ)) = σess

(
(β − ε(·))2

π(ε(·), λ)
US(t̃λ,β)(λ)U−1

)
⇐⇒ ∃ ξ ∈ R : ξ2 + 2r̃β(λ)ξ + κ̃β(λ) +

1

4
= 0,

which is, in turn, equivalent to 4Dβ(λ) = 4r̃β(λ)2−4κ̃β(λ)−1 ≥ 0. The claim now follows from Lemma 3.5.
If β = ∞, no unitary transform is needed. Our assumptions ensure that S(t̃λ,∞)(λ) itself satisfies the

assumptions of [6, Corollary IX.9.4]. The proof can be finished in the same way as above. �

5. Sufficient conditions for Assumptions (A) to (D)

In this section, we derive sufficient conditions for the assumptions of Lemma 3.5, Theorem 4.1, and
Theorem 4.4 that are easier to verify in applications. We restrict ourselves to the case when the singular
endpoint is finite, β <∞, since the case β =∞ can be easily transformed to the finite interval case.

To this end, in Assumption (S) below, we will assume that, near the singular endpoint β, the function
π(·, λ) has the asymptotic expansion

π(t, λ) = π0(λ) + π1(λ)(t− β) + R(t, λ) with R(t, λ) = o(β − t), t↗ β. (5.1)

Since π(·, λ) ∈ C1([α, β),R) by Assumption (A), we have

π0(λ) = lim
t↗β

π(t, λ), π1(λ) = lim
t↗β

∂

∂t
π(t, λ).

To describe the singular part of the essential spectrum, we distinguish the following possible cases.

Case (I) : π0(λ) 6= 0;

Case (II) : π0(λ) = 0, π1(λ) 6= 0; (5.2)

Case (III) : π0(λ) = 0, π1(λ) = 0.

Assumption (S). Suppose that, for every λ ∈ R \
(
σ r

ess(A) ∪ Λβ(D)
)

and t↗ β,

R(t, λ) =


o(β − t) in Case (I),

o

(
β − t

| log(β − t)|

)
in Case (II),

O((β − t)2) in Case (III),

(5.3)

1Note that it is enough to require a′1 ∈ L∞loc(I) in [6, p. 445, (iii)] for [6, Corollary IX.9.4], cf. [11, p. 437 top].
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‖(D(t)−λ)−1b(t)‖2Cn =


O(1) in Case (I),

o(β − t) in Case (II),

O((β−t)2) in Case (III),

r(t, λ)=


o

(
1

β − t

)
in Case (I),

o

(
1

| log(β−t)|

)
in Case (II),

O(β − t) in Case (III),

(5.4)

and, with sπ = sgn(π(·, λ)� [tλ,β)) defined as in (3.7) and f− := (f − |f |)/2 denoting the negative part of a
real-valued function f ,

∃ ε > 0 :
(
sπκ(t, λ)− ε‖(D(t)− λ)−1c(t)‖2Cn

)
−

=


o

(
1

(β − t)−2

)
in Case (I),

o

(
1

(β − t) log(β − t)2

)
in Case (II),

O(1) in Case (III).

(5.5)

Theorem 5.1. Suppose that β <∞ and Assumptions (A), (S) are satisfied. Then the following hold.

(i) In Cases (I) and (II), Assumptions (B) and (C) are satisfied. Hence, for every closed symmetric
extension A of A0 defined in (2.1),

σ s
ess(A) \ Λβ(D) = ∅, i.e. σess(A) \ Λβ(D) = σ r

ess(A) \ Λβ(D). (5.6)

(ii) In Case (III), if additionally Assumption (D1) holds and, for every λ ∈ R \
(
σ r

ess(A) ∪ Λβ(D)
)
, the

following limits exist and satisfy

π2(λ) :=
1

2
lim
t↗β

∂2

∂t2
π(t, λ) ∈ R\{0}, r1(λ) := lim

t↗β

∂

∂t
r(t, λ) ∈ R, κ0(λ) := lim

t↗β
κ(t, λ) ∈ R, (5.7)

then Assumptions (B), (D2)–(D3) are satisfied. Hence, for every closed symmetric extension A of A0

defined in (2.1),
σess(A) \ Λβ(D) =

(
σ r

ess(A) ∪ σ s
ess(A)

)
\ Λβ(D)

where

σ s
ess(A) \ Λβ(D) =

{
λ ∈ R \

(
σ r

ess(A) ∪ Λβ(D)
)

: r1(λ)2 − κ0(λ)π2(λ) ≥ 1

4
π2(λ)2

}
. (5.8)

Proof. (i) The asymptotic behaviour of ‖(D − λ)−1b‖2Cn , see (5.4), implies that (3.4) holds with some
constant k1 > 0, i.e. Assumption (B1) is satisfied.

Below, we verify that Assumption (B2) is satisfied. To this end, let η ∈ C2([tλ, β)) be positive. The
triangle inequality, condition (3.4), and the Cauchy-Schwartz inequality yield∥∥∥∥(D−λ)−1

[(
i
r(·, λ)

π(·, λ)
+
η′

2η

)
b+ c

]∥∥∥∥2

Cn
≤
[(∣∣∣ r(·, λ)

π(·, λ)

∣∣∣+∣∣∣ η′
2η

∣∣∣)‖(D−λ)−1b‖Cn+‖(D−λ)−1c‖Cn
]2

≤
[(∣∣∣ r(·, λ)

π(·, λ)

∣∣∣+
∣∣∣ η′
2η

∣∣∣)
√
|π(·, λ)|
k1

+ ‖(D − λ)−1c‖Cn
]2

≤ 3

k1

r(·, λ)2

|π(·, λ)| +
3

k1

( η′
2η

)2

|π(·, λ)|+ 3‖(D − λ)−1c‖2Cn .

(5.9)

Using the definition of Vη in (3.6) and the estimate (5.9) above, we obtain

Vη(·, λ)− k2

∥∥∥∥(D − λ)−1
[(

i
r(·, λ)

π(·, λ)
+
η′

2η

)
b+ c

]∥∥∥∥2

Cn

≥ sπ
(
κ(·, λ)− k3

r(·, λ)2

π(·, λ)
+

(
k4

(
η′

2η

)2

− η′′

2η

)
π(·, λ)− η′

2η

∂

∂t
π(·, λ)− 3k2

sπ
‖(D − λ)−1c‖2Cn

) (5.10)

where k3 := 1 +
3k2

k1
, k4 := 1− 3k2

k1
and we choose k2 > 0 such that k2 < min

{ε
3
,
k1

3

}
.
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In Case (I), we choose η(t) := β − t, t ∈ [α, β). Then the right-hand side of (5.10) becomes

sπ

(
κ(t, λ)+

1

2(β − t)
∂

∂t
π(t, λ)−k3

r(t, λ)2

π(t, λ)
+

k4

4(β − t)2
π(t, λ)− 3k2

sπ
‖(D(t)− λ)−1c(t)‖2Cn

)
≥ |π0(λ)|

(β − t)2

(
k4

4

π(t, λ)

π0(λ)
+

β − t
2π0(λ)

∂

∂t
π(t, λ)− k3

r(t, λ)2(β − t)2

|π(t, λ)||π0(λ)|

+
(β − t)2

|π0(λ)|
(
sπκ(t, λ)− ε‖(D(t)− λ)−1c(t)‖2Cn

))
.

(5.11)

Now Assumption (S), i.e. the asymptotic conditions (5.3)–(5.5), yield that

Vη(·, λ)− k2

∥∥∥∥(D − λ)−1
[(

i
r(·, λ)

π(·, λ)
+
η′

2η

)
b+ c

]∥∥∥∥2

Cn
≥ k4

4

|π0(λ)|
(β − t)2

(1 + o(1)) , t↗ β, (5.12)

thus Assumption (B2) is satisfied.
In Case (II), we choose η(t) := − log(C(β − t)), t ∈ [α, β), with C−1 := 2(β − α) so that η is positive on

[α, β). Then the right-hand side of (5.10) becomes

sπ

(
k4

4

π(t, λ)

(β − t)2 log2(C(β − t))

(
1 +

2

k4

(π(t, λ) + (β − t) ∂∂tπ(t, λ)) log(C(β − t))
π(t, λ)

)

− k3
r(t, λ)2

π(t, λ)
+ κ(t, λ)− 3k2

sπ
‖(D(t)− λ)−1c(t)‖2Cn

)

≥ |π1(λ)|
(β − t) log2(C(β − t))

(
k4

4

π(t, λ)

π1(λ)(t− β)

(
1 +

2

k4

(π(t, λ) + (β − t) ∂∂tπ(t, λ)) log(C(β − t))
π(t, λ)

)

− k3
r(t, λ)2(β − t) log2(C(β − t))

|π(t, λ)||π1(λ)|

+
(β − t) log2(C(β − t))

|π1(λ)|
(
sπκ(t, λ)− ε‖(D(t)− λ)−1c(t)‖2Cn

))
.

(5.13)

Now Assumption (S), i.e. the asymptotic conditions (5.3)–(5.5), yield that

Vη(·, λ)− k2

∥∥∥∥(D − λ)−1
[(

i
r(·, λ)

π(·, λ)
+
η′

2η

)
b+ c

]∥∥∥∥2

Cn
≥ k4

4

|π1(λ)|
(β − t) log2(C(β − t))

(1 + o(1)) , t↗ β, (5.14)

thus Assumption (B2) is satisfied.
It remains to verify Assumption (C), i.e. that either (C1) or (C2) hold. Note that the choices η(t) := β−t,

t ∈ [α, β), in Cases (I) and η(t) := − log(C(β − t)), t ∈ [α, β), in Case (II), respectively, lead to

η(t)π(t, λ) =

{
π0(λ)(β − t)(1 + o(1)) in Case (I),

π1(λ)(β − t) log(C(β − t))(1 + o(1)) in Case (II),
t↗ β. (5.15)

Hence 1
ηπ(·,λ) /∈ L1((tλ, β)) in both Case (I) and (II). Then we are in the second case of (4.1). It is not

difficult to see that η(t)h(t, λ2 = o((β − t)−δ) for arbitrary δ > 0 as t ↗ β, thus ηh(·, λ)2 ∈ L1((tλ, β)) and
hence (C1) holds.

(ii) In Case (III), we first note that Assumption (D1) implies π(·, λ) ∈ C2([α, β),R). As π0(λ) = π1(λ) = 0
and r(t, λ) = O(β− t), t↗ β, the existence of the limits in (5.7) and L’Hôpital’s rule yield that the following
limits exist and satisfy

lim
t↗β

π(t, λ)

(β − t)2
=

1

2
lim
t↗β

∂2

∂t2
π(t, λ) = π2(λ), lim

t↗β
(β − t)

∂
∂tπ(t, λ)

π(t, λ)
=

1

π2(λ)
lim
t↗β

∂
∂tπ(t, λ)

β − t = −1,

lim
t↗β

r(t, λ)

t− β = lim
t↗β

∂

∂t
r(t, λ) = r1(λ).
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Since π2(λ) 6= 0 by assumption (5.7), Assumptions (D2)–(D3) in the case β < ∞ considered here are
satisfied. Moreover, due to the asymptotic behaviour of ‖(D− λ)−1b‖2Cn , see (5.4), and π2(λ) 6= 0, it follows
that Assumption (B1) is satisfied as well.

To verify Assumption (B2), we proceed as in (5.9)–(5.10) choosing η(t) := 1, t ∈ [α, β). The asymptotic
conditions (5.3)–(5.5) and π2(λ) 6= 0 yield that

Vη(·, λ)− k2

∥∥∥∥(D − λ)−1
[
i
r(·, λ)

π(·, λ)
b+ c

]∥∥∥∥2

Cn
(5.16)

is bounded from below on some left-neighbourhood of β. Using the relations (5.7), we obtain

r̃β(λ) = lim
t↗β

(β − t) r(t, λ)

π(t, λ)
= − lim

t↗β

r(t, λ)

t− β lim
t↗β

(β − t)2

π(t, λ)
= − r1(λ)

π2(λ)
,

κ̃(λ) = lim
t↗β

(β − t)2κ(t, λ)

π(t, λ)
= lim
t↗β

κ(t, λ) lim
t↗β

(β − t)2

π(t, λ)
=

κ0(λ)

π2(λ)
.

Therefore, by definition (4.8),

Dβ(λ) =

(
r1(λ)

π2(λ)

)2

− κ0(λ)

π2(λ)
− 1

4

Multiplying the inequality Dβ(λ) ≥ 0 by π2(λ)2 > 0, Theorem 4.4 yields the desired description of σ s
ess(A) \

Λβ(D) in (5.8). �

Remark 5.2. In Case (II), the claim of Theorem 5.1 (i) continues to hold if, instead of the asymptotic
conditions in Assumption (S), the asymptotic conditions in the following Assumption (S’) hold.

Assumption (S’). Suppose that, in Case (II), for every λ ∈ R \
(
σ r

ess(A) ∪ Λβ(D)
)

and t↗ β,

R(t, λ) = o(β − t), (5.17)

‖(D(t)− λ)−1b(t)‖2Cn = O(β − t), (5.18)

r(t, λ) = O((β − t)1/2), (5.19)

∃ ε > 0 :
(
sπκ(t, λ)− ε‖(D(t)− λ)−1c(t)‖2Cn

)
− = O(1); (5.20)

here, again, sπ = sgn(π(·, λ)� [tλ,β)) is as in (3.7) and f− := (f − |f |)/2 is the negative part of a real-valued
function f .

Proof. The assumption on the behaviour of ‖(D−λ)−1b‖2Cn is the same as in Assumption (S), thus Assump-
tion (B1) is satisfied with some constant k1 > 0, see the proof of Theorem 5.1.

Choosing η(t) := 1 and using (5.17)–(5.20), we obtain from (5.10) that

Vη(·, λ)− k2

∥∥∥∥(D − λ)−1
[
i
r(·, λ)

π(·, λ)
b+ c

]∥∥∥∥2

Cn

is bounded from below on some left-neighbourhood of β and thus Assumption (B2) is satisfied.
Moreover, η(t)π(t, λ) = −π1(λ)(β − t)(1 + o(1)), t ↗ β, so Assumption (C1) is satisfied by the same

arguments as in the proof of Theorem 5.1. �

6. The structure of the singular part of the essential spectrum

In this section, we analyse the topological structure of the essential spectrum. We start with a simple
observation on the regular part of the essential spectrum.

Proposition 6.1. The regular part σ r
ess(A) = Λ[α,β)(∆) of the essential spectrum is the union of at most

n closed intervals in R which are the closures of the ranges of the eigenvalues of the matrix function ∆ =
D − 1

pbb
∗ in (3.1). Moreover,

inf σ r
ess(A) ≤ inf Λβ(D). (6.1)



ESSENTIAL SPECTRUM OF MATRIX DIFFERENTIAL OPERATORS 17

Proof. The first claim is obvious from the definition of the regular part of the essential spectrum since ∆ is
a Hermitian matrix-valued function which is continuous on [α, β). To prove the second claim, note that, for
every t ∈ [α, β), we have ∆(t) = (D − 1

pbb
∗)(t) ≤ D(t) in the sense of partial operator ordering since p > 0

and hence

minσp(∆(t)) = min
‖x‖Cn=1

(
∆(t)x, x

)
Cn = min

‖x‖Cn=1

((
D(t)x, x

)
Cn −

1

p(t)
‖b(t)∗x‖2Cn

)
≤ min
‖x‖Cn=1

(
D(t)x, x

)
Cn = minσp(D(t)).

Hence, by (2.7), we obtain

inf σ r
ess(A) = inf Λ[α,β)(∆) = inf

t∈[α,β)

(
minσp(∆(t))

)
≤ inf
t∈[α,β)

(
minσp(D(t))

)
= inf Λ[α,β)(D) ≤ inf Λβ(D)

where we have used Λβ(D) ⊂ ⋃t∈[α,β) σp(D(t)) in the last step. �

In the sequel, we continue with the analysis of the singular part of the essential spectrum. Here we use
that the leading coefficient of the first Schur complement has the property that λ 7→ −π(t, λ) is a Nevanlinna
function of λ ∈ C for all sufficiently large t.

The class of Nevanlinna functions consist of those complex functions that are analytic on the open upper
half-plane and have nonnegative imaginary part therein (cf. [12]). It is well-known that a function f is a
Nevanlinna function if and only if it admits a canonical integral representation of the form (cf. [12])

f(ζ) = ω1 + ω2ζ +

∫
R

( 1

ν − ζ −
ν

ν2 + 1

)
dσ(ν), ζ ∈ C \ suppσ, (6.2)

with ω1, ω2 ∈ R, ω1 ≥ 0, and a positive Borel measure σ on R such that∫
R

dσ(ν)

1 + ν2
<∞;

moreover, this representation is unique. If f is a rational Nevanlinna function, then the corresponding
measure σ is concentrated at the real poles {νj}mj=1 of f and thus the integral representation (6.2) takes the
form

f(ζ) = ω1ζ + ω2 +

m∑
j=1

σj
νj − ζ

, ζ ∈ C \ {νj}mj=1, (6.3)

with σj > 0, j = 1, 2, . . . ,m.

The following property of the leading coefficient π(·, λ) of the Schur complement plays a crucial role in
the description of the structure of the singular part of the essential spectrum.

Lemma 6.2. For every t ∈ [α, β), the function ζ 7→ −π(t, ζ) is a Nevanlinna function of the complex
variable ζ.

Proof. Let t ≥ 0 be fixed and denote by C+ := {z ∈ C : Im(z) > 0} the open upper half-plane in C. Since
D(t) ∈ Cn×n is Hermitian, it has finitely many eigenvalues that are all real. Thus it is clear from the
representation (3.2) that the function ζ 7→ −π(t, ζ) is rational with poles exactly at the eigenvalues of D(t),
and therefore holomorphic on C+.

It remains to be shown that ζ 7→ −π(t, ζ) maps C+ into itself. Denoting b̂(ζ) :=
(
D(t)−ζ

)−1
b(t), ζ ∈ C+,

we obtain

b(t)∗
(
D(t)− ζ

)−1
b(t) =

((
D(t)− ζ

)
b̂(ζ)

)∗
b̂(ζ) = b̂(ζ)∗D(t) b̂(ζ)− ζ ‖b̂(ζ)‖22.

Since p is real-valued and D(t) is Hermitian, (2.5) implies that

Im(−π(t, ζ)) = − Im
(
p(t)− b(t)∗

(
D(t)− ζ

)−1
b(t)
)

= Im(ζ) ‖b̂(ζ)‖22 ≥ 0, ζ ∈ C+. �



18 O. O. IBROGIMOV, P. SIEGL, AND C. TRETTER

Since, for every t ∈ [tλ, β), the eigenvalues of D(t) denoted by λ1(t), λ2(t), . . . , λn(t) ∈ R coincide with
the poles of the rational function λ 7→ −π(t, λ), Lemma 6.2 and (6.3) yield that

−π(t, λ) = −p(t) +

n∑
j=1

σj(t)

λj(t)− λ
, λ ∈ C \ {λj(t)}mj=1, (6.4)

where σj , j = 1, 2, . . . , n, are positive functions of t ∈ [tλ, β).

Lemma 6.3. Let bj ∈ C1([α, β)), j = 1, 2, . . . , n, be the coefficients of A0 in (2.1). Then the functions σj,
j = 1, 2, . . . , n, in (6.4) satisfy

n∑
j=1

σj(t) =

n∑
j=1

|bj(t)|2, t ∈ [tλ, β).

Proof. In the sequel, we work with functions and omit the dependence on t∈ [tλ, β). By (2.5), (6.4),
n∑
j=1

σj
λj − λ

= b∗(D − λ)−1b. (6.5)

On the other hand,
n∑
j=1

σj
λj − λ

=
P (λ)

det(D − λ)
, (6.6)

where P is a polynomial of degree n− 1 in λ with leading coefficient

(−1)n−1(σ1 + . . .+ σn). (6.7)

Cramer’s rule implies that

(D − λ)−1 =
1

det(D − λ)
(M(·, λ))t, (6.8)

where M(t, λ) is the matrix of cofactors for D(t) − λ, t ∈ [tλ, β). Here, the diagonal entries of M(·, λ) are
polynomials of degree n−1 in λ, while the off-diagonal entries are polynomials of degree at most n−2 in λ.
Hence multiplying (6.8) by b from the right and by b∗ from the left, we obtain a rational function whose
denominator is det(D−λ) and whose nominator is a polynomial Q of degree n−1 in λ with leading coefficient

(−1)n−1(|b1|2 + . . .+ |bn|2). (6.9)

Now (6.5), (6.6) imply that P and Q coincide, and hence so do the leading coefficients (6.7), (6.9). �

Under the following assumptions on the eigenvalues of D(t) and the coefficients κ(·, λ), r(·, λ) of the Schur
complement, we give a description of the topological structure of the singular part of the essential spectrum
in Theorem 6.5 below.

Assumption (T). The eigenvalues λj(t), j = 1, 2, . . . , n, of D(t) and the coefficients κ(·, λ), r(·, λ) of the
Schur complement defined in (2.5) have the following properties.

(T1) The possibly improper limits λj,β := limt↗β λj(t) ∈ R ∪ {−∞,∞} exist and, for some j0 ∈
{0, 1, . . . , n},

lim
t↗β

λj(t) =

{
λj,β ∈ R, j = 1, 2, . . . , j0,

−∞ or ∞, j = j0 + 1, . . . , n;
(6.10)

moreover, there exist m ∈ N and K ∈ R such that

n
max
j=j0+1

|λj(t)|2 ≤ K
n

min
j=j0+1

|λj(t)|m, t ∈ [tλ, β). (6.11)

(T2) There are real constants φβ , ψβ , and µj,β , j = 1, 2, . . . , j0, such that

−κ0(λ) = − lim
t↗β

κ(t, λ) = φβ + ψβλ+

j0∑
j=1

µj,β
λj,β − λ

. (6.12)
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(T3) There exists hβ ∈ R such that

r1(λ) = lim
t↗β

∂

∂t
r(t, λ) = hβ . (6.13)

Notice that (6.12) resembles the representation of Nevanlinna functions (6.3), however, φβ and µj,β ,
j = 1, 2, . . . , j0, are assumed to be only real. Indeed, −κ0 may not be a Nevanlinna function as it can be
seen, for instance, in Example B where µ1,1 = − 1

4σ1,1 ≤ 0.
The following proposition describes the form of the limit function π2(λ) in terms of the j0 proper limits

in Assumption (T1) in Case (III) where π0(λ) = π1(λ) = 0.

Proposition 6.4. Suppose that the assumptions of Theorem 5.1 (ii) are satisfied, i.e. Assumptions (A), (S),
(D1) hold, Case (III) π0(λ) = π1(λ) = 0 prevails and the limits in (5.7) exist. If σj, j = 1, 2, . . . , n, are the
positive function in (6.4) and Assumption (T1) is satisfied with j0 ∈ {1, 2, . . . , n}, then λ 7→ −π2(λ) is a
Nevanlinna function, i.e. for λ ∈ R \

(
σ r

ess(A) ∪ Λβ(D)
)
,

−π2(λ) = −1

2
lim
t↗β

∂2

∂t2
π(·, λ) = fβ + gβλ+

j0∑
j=1

σj,β
λj,β − λ

(6.14)

with fβ ∈ R, gβ ≥ 0, and σj,β ≥ 0, j = 1, 2, . . . , j0. Moreover, the following limits exist and satisfy

lim
t↗β

σj(t)

(β − t)2
= σj,β ≥ 0, j = 1, 2, . . . , j0, lim

t↗β

1

(β − t)2

(
− p(t) +

n∑
j=j0+1

σj(t)

λj(t)

)
= fβ ∈ R, (6.15)

lim
t↗β

1

(β − t)2

n∑
j=j0+1

σj(t)

λj(t)2
= gβ ≥ 0, lim

t↗β

1

(β − t)2

n∑
j=j0+1

σj(t)

λj(t)k
= 0, k = 3, 4, . . . . (6.16)

Proof. Let σ r
ess(A) 6= R, j ∈ {j0 + 1, . . . , n} be arbitrary, and λ ∈ R \

(
σ r

ess(A) ∪ Λβ(D)
)
. We may assume

that tλ is chosen so large that ∣∣∣∣ λ

λk(t)

∣∣∣∣ ≤ 1

2
, t ∈ [tλ, β), k = j0 + 1, . . . , n. (6.17)

Then, because σj(t) ≤ ‖b(t)‖2Cn , t ∈ [tλ, β), by Lemma 6.3 and λk,β ∈ {−∞,∞} for k = j0 + 1, . . . , n, we
obtain, for t ∈ [tλ, β),

σj(t)

|λj(t)|m
≤ 1

|λj(t)|m
‖D(t)− λ‖2Cn‖(D(t)− λ)−1b(t)‖2Cn ≤

1

|λj(t)|m
n

max
k=j0+1

|λk(t)− λ|2‖(D(t)− λ)−1b(t)‖2Cn

≤ K1

n
max
k=j0+1

|λk(t)|2

n
min

k=j0+1
|λk(t)|m

‖(D(t)− λ)−1b(t)‖2Cn ,

where K1 > 1 is a constant. Therefore, (6.11) and (5.4) in Case (III) imply

1

(β − t)2

σj(t)

|λj(t)|m
= O(1), t↗ β. (6.18)

Thus, due to (6.17), we can expand

1

(β − t)2

σj(t)

λj(t)− λ
=

1

(β − t)2

σj(t)

λj(t)

1

1− λ
λj(t)

=
1

(β − t)2

σj(t)

λj(t)

∞∑
k=0

( λ

λj(t)

)k
=

m−1∑
k=0

1

(β − t)2

σj(t)

λj(t)k+1
λk +

λm

λj(t)

1

(β − t)2

σj(t)

λj(t)m

∞∑
`=0

(
λ

λj(t)

)`
︸ ︷︷ ︸

=o(1), t↗β

;

note that it follows from (6.10), (6.18), and (6.17) that the last term is o(1). Using this in (6.4), we find
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− π(t, λ)

(β − t)2
=− p(t)

(β − t)2
+

j0∑
j=1

1

(β − t)2

σj(t)

λj(t)− λ
+

n∑
j=j0+1

1

(β − t)2

σj(t)

λj(t)− λ

=− p(t)

(β − t)2
+

j0∑
j=1

1

(β − t)2

σj(t)

λj(t)− λ
+

n∑
j=j0+1

1

(β − t)2

σj(t)

λj(t)

+ λ

n∑
j=j0+1

1

(β − t)2

σj(t)

λj(t)2
+

n∑
j=j0+1

m−1∑
k=2

1

(β − t)2

σj(t)

λj(t)k+1
λk + o(1) (6.19)

=
1

(β − t)2

(
− p(t) +

n∑
j=j0+1

σj(t)

λj(t)

)
+ λ

1

(β − t)2

n∑
j=j0+1

σj(t)

λj(t)2

+

j0∑
j=1

σj(t)

(β − t)2

1

λj(t)− λ
+

m−1∑
k=2

λk
(

1

(β − t)2

n∑
j=j0+1

σj(t)

λj(t)k+1

)
+ o(1), t↗ β.

By Theorem 5.1 (ii), π(t,λ)
(β−t)2 has a limit as t ↗ β which coincides with the limit π2(λ) in (5.7). Since

σ r
ess(A) 6= R is closed, (6.19) holds for infinitely many λ∈R\

(
σ r

ess(A) ∪ Λβ(D)
)

and so the existence of the
limits (6.15), (6.16) follows from (6.10) and (6.19). Since σj(t) > 0, t ∈ [α, β), the properties of the limits in
(6.15), (6.16) are obvious except for the second one in (6.16); the latter follows from (6.10) and the existence
of the first limit in (6.16) as∣∣∣∣ 1

(β − t)2

n∑
j=j0+1

σj(t)

λj(t)k+1

∣∣∣∣ ≤ 1

minnj=j0+1 |λj(t)|k−1

n∑
j=j0+1

1

(β − t)2

σj(t)

λj(t)2
→ 0, t↗ β, k = 2, 3, . . . ,m− 1.

Hence −π2(λ) satisfies (6.14) and it is a Nevanlinna function since gβ , σj,β ≥ 0, j = 1, 2, . . . , j0. �

Theorem 5.1 (ii) and Proposition 6.4 together yield the following result on the topological structure of
the singular part of the essential spectrum outside of the limiting set Λβ(D) = {λ1,β , λ2,β , . . . , λj0,β}.

Although the existence of the limits π2(λ), κ0(λ), and r1(λ) is guaranteed by our assumptions only for
λ ∈ R \

(
σ r

ess(A) ∪ Λβ(D)
)
, the rational functions representing these limits in (6.14), (6.12), and (6.13) are

defined for all λ ∈ R \ Λβ(D); this observation is used in the following theorem.

Theorem 6.5. Let β <∞. Assume that the assumptions of Theorem 5.1 (ii) are satisfied, i.e. Assumptions
(A), (S), (D1) hold, Case (III) π0(λ) = π1(λ) = 0 prevails and the limits in (5.7) exist. Further, suppose
that Assumption (T) holds and the coefficients fβ, gβ, σj,β in (6.14), ψβ in (6.12), and hβ in (6.13) satisfy

gβ + 4ψβ 6= 0 and h2
β + ψβ

∑j0
j=1 σj,β 6= 0. If we extend the functions π2, κ0, and r1 by means of (6.14),

(6.12), and (6.13), respectively, to R \ Λβ(D) and define the set

Σ :=
{
λ ∈ R \ Λβ(D) : r1(λ)2 − κ0(λ)π2(λ) ≥ 1

4
π2(λ)2

}
,

then Σ ⊂ σess(A) and
σ s

ess(A) \ Λβ(D) = Σ \
(
σ r

ess(A) ∪ Λβ(D)
)
. (6.20)

Moreover, the set Σ has the following structure in terms of the coefficient functions in (6.12)–(6.14).

(a) If gβ > 0, Σ consists of

- the union of at most j0 + 1 compact intervals if gβ + 4ψβ > 0;

- the union of (−∞, s1], at most j0 compact intervals and [s2,∞) if gβ + 4ψβ < 0.

(b) If gβ = 0 and fβ 6= 0, Σ consists of

- the union of (−∞, s] and at most j0 compact intervals if fβψβ > 0;

- the union of at most j0 compact intervals and [s,∞) if fβψβ < 0.

(c) If gβ = fβ = 0, Σ consists of

- the union of at most j0 compact intervals if h2
β + ψβ

∑j0
j=1 σj,β < 0;

- the union of (−∞, s1], at most j0−1 compact intervals and [s2,∞) if h2
β+ ψβ

∑j0
j=1 σj,β > 0.
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Proof. By the definition of Σ and (5.8), we have
Σ \ σ r

ess(A) = σ s
ess(A) \ Λβ(D), (6.21)

and hence

Σ ⊂ (Σ \ σ r
ess(A)) ∪ σ r

ess(A) ⊂ σ s
ess(A) ∪ σ r

ess(A) = σess(A).

Since the essential spectrum is closed, it follows that Σ ⊂ σess(A).
To prove (6.20), we first note that there are polynomials Pσ, Pµ of degree at most j0 − 2 in λ such that

−π2(λ) = fβ + gβλ+
Kσλ

j0−1 + Pσ(λ)∏j0
j=1(λj,β − λ)

, −κ0(λ) = φβ + ψβλ+
Kµλ

j0−1 + Pµ(λ)∏j0
j=1(λj,β − λ)

,

with Kσ = (−1)j0−1
∑j0
j=1 σj,β , Kµ = (−1)j0−1

∑j0
j=1 µj,β . Hence Σ is the union of a finite number of

intervals and the endpoints of these intervals that are not in Σ belong to Λβ(D), i.e.

Σ \ Σ ⊂ Λβ(D). (6.22)

This implies that

Σ \
(
σ r

ess(A) ∪ Λβ(D)
)

= Σ \
(
σ r

ess(A) ∪ Λβ(D)
)

= Σ \ σ r
ess(A). (6.23)

Now (6.20) follows from (6.21) and (6.23).
To prove the claims in (a), (b), (c), observe that there are polynomials P3, P4, P5 with degP3 ≤ 2j0 + 1,

degP4 ≤ 2j0, degP5 ≤ 2j0 − 1, respectively, such that

Σ =
{
λ ∈ R \ Λβ(D) : gβ(gβ + 4ψβ)λ2j0+2 + P3(λ) ≤ 0

}
if gβ > 0, (6.24)

Σ =
{
λ ∈ R \ Λβ(D) : fβψβλ

2j0+1 + P4(λ) ≤ 0
}

if gβ = 0, fβ 6= 0, (6.25)

Σ =
{
λ ∈ R \ Λβ(D) :

(
h2
β + ψβ

j0∑
j=1

σj,β

)
λ2j0 + P5(λ) ≥ 0

}
if gβ = 0, fβ = 0. (6.26)

Now the claims follow from (6.25) by elementary sign considerations using the various assumptions on gβ ,
ψβ , hβ , and σj,β in (a), (b), and (c). �

Figure 1 shows a possible location of the sets in Proposition 6.1 and Theorem 6.5 with n ≥ 4, j0 = 4 in
the second case of (a) or (c).

λ4,β

σ r
ess(A):

Σ:

σess(A) ∪ {λ4,β}:

Λβ(D):

σ r
ess(A)

σ s
ess(A) σ s

ess(A)

λ1,β λ3,β λ4,β

σ r
ess(A) σ r

ess(A)

λ2,β−∞

−∞

−∞

−∞

∞

∞

∞

∞
σ s
ess(A)

Figure 1. Illustration of a possible structure of the essential spectrum of A.

Note that the regular part or the singular part of the essential spectrum may contain some points of the
exceptional set Λβ(D), see Example B. In Figure 1, nothing can be said about the point λ4,β while the
closedness of the essential spectrum yields that λi,β ∈ σess(A) for i = 1, 2, 3.

Remark 6.6. We define the essential spectral radius, introduced in [20] for bounded linear operators, of A as

ress(A) := sup{|λ| : λ ∈ σess(A)} ∈ [0,∞].

Then Theorem 6.5 shows that ress(A) <∞ if and only if the regular part of the essential spectrum is bounded
and for the singular part the first case of either (a) or (c) prevails. Moreover, a bound for ress(A) can be
given by estimating the roots with largest absolute value of the polynomials in (6.24), (6.26). In particular,
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if D is scalar i.e. n = 1 and j0 = 0, then ress(A) < ∞ only if we are in the first case of (a); in this case
Σ = [λ−, λ+] and thus

ress(A) = max
{

sup
t∈[α,β)

|∆(t)|, |λ+|, |λ−|
}

where

λ± :=
−N ±

√
N2−MK

M
, M := gβ(gβ + 4ψβ), N := fβ(gβ + 2ψβ) + 2gβφβ , K := fβ(fβ + 4φβ)− 4h2

β .

7. Systematic analysis of typical examples

In this section, we apply our results to two different typical examples of which one arises in linear magne-
tohydrodynamic stability analysis. We identify the particular assumptions under which these examples were
treated in earlier papers with special cases of our general classification, i.e. Cases (I), (II), (III) in Section 5,
and, using our abstract results, we provide a complete analysis of the essential spectrum of these examples
in all cases.

In Example A, we show that the so-called quasi-regularity conditions in [16] and [21] mean that Case
(III) prevails, the singular part of the essential spectrum is non-empty and can be computed by our abstract
results (see our earlier work [11]). The paper [15] where the quasi-regularity conditions are not satisfied is
an example for Cases (I) or (II); here our abstract Theorem 5.1 yields that the singular part of the essential
spectrum is always empty.

Example B is a more general model of an operator arising in linearised magnetohydrodynamics (MHD)
which describes the oscillations of plasma in an equilibrium configuration in a cylindrical domain and whose
essential spectrum was first calculated by Kako [13]. The quasi-regularity conditions assumed in the papers
[9], [18], and [7] amount to Case (III) and we compute the singular part of the essential spectrum by means
of our abstract result Theorem 4.4. We mention that [7] also contains results for the non-symmetric case. It
seems that [19] is the only paper where Case (III) does not prevail; its assumptions correspond to the first
case of Case (I). Here we discuss all possible cases, in particular, the second case of Case (I) and Case (II)
not covered by any earlier work.

In both examples, we adopt to the following strategy: if necessary, we transform the singularity to the
right endpoint of the interval by means of a unitary transformation. Next, we determine the exceptional
set Λβ(D). Then we show that Assumption (S) in Cases (I), (III) and Assumption (S’) in Case (II) are
satisfied. Finally, we verify all requirements of Theorem 4.4 or of Theorem 5.1 resp. Remark 5.2 and use
them to describe the essential spectrum.

Example A. Let %̃, m̃ ∈ C1([0, 1],R), ψ̃ ∈ C1([0, 1],C), φ̃ ∈ C([0, 1],R). Assume %̃ > 0 on [0, 1] and
m̃(0) 6= 0. Consider the operator matrix

Ã0 =


− d

dx
%̃

d

dx
+ φ̃

d

dx

ψ̃

x

− ψ̃
x

d

dx

m̃

x2

 (7.1)

with domain D(Ã0) = C2
0 ((0, 1)) ⊕ C1

0 ((0, 1)) in the Hilbert space L2((0, 1)) ⊕ L2((0, 1)) and let Ã be an

arbitrary closed symmetric extension of Ã0.

Transformation to the form (2.1) and verification of Assumption (A). If we introduce the unitary trans-
formations

U : L2((0, 1))→ L2((0, 1)), (Uu)(x) := u(1− x),

and U := diag(U,U), then A0 := UÃ0U
−1 has the form (2.1) with n = 1 and coefficients

p(t) := %(t), q(t) := φ(t), b(t) :=
ψ(t)

1− t , c(t) := 0, D(t) :=
m(t)

(1− t)2
,

for t ∈ [0, 1) where %(t) := %̃(1 − t), ψ(t) := ψ̃(1 − t), m(t) := m̃(1 − t) and φ(t) := φ̃(1 − t). By the

smoothness assumptions on the coefficients of Ã0, the coefficients of A0 satisfy Assumption (A).
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The set Λβ(D). Since m̃(0) 6=0, we have lim
t↗1

D(t)= lim
t↗1

m(t)

(1− t)2
∈{−∞,∞}, hence, by (2.10),

Λβ(D)=∅.

Verification of Assumption (S) resp. (S’). Elementary calculations show that the coefficients in the asymp-
totic expansion of π(t, λ) in (5.1) are given by

π0(λ) =
(%m− |ψ|2)(1)

m(1)
, π1(λ) = −m

′(1)

m(1)
π0(λ) +

(%m− |ψ|2)′(1)

m(1)
.

Therefore, in terms of the original coefficients in (7.1), the three cases in (5.2) can be classified as

Case (I) : (%̃m̃− |ψ̃|2)(0) 6= 0;

Case (II) : (%̃m̃− |ψ̃|2)(0) = 0, (%̃m̃− |ψ̃|2)′(0) 6= 0;

Case (III) : (%̃m̃− |ψ̃|2)(0) = 0, (%̃m̃− |ψ̃|2)′(0) = 0.

To verify Assumption (S), note that c ≡ 0, r ≡ 0, κ(·, λ) = φ− λ ∈ C1([0, 1]), and

lim
t↗1

1

1− t
b(t)

D(t)− λ =
ψ̃(0)

m̃(0)
.

Hence all conditions (5.3)–(5.5) in Assumption (S) for Case (I), and all conditions (5.17)–(5.20) in Assumption
(S’) for Case (II) are satisfied (cf. Remark 5.2).

Essential spectrum in Cases (I) and (II). By what was shown above, we can apply Theorem 5.1 (i) which
yields that, in Cases (I) and (II),

σ s
ess

(
Ã
)

= σ s
ess(A) = ∅.

Therefore it follows from Theorem 4.1 that

σess(Ã) = σess(A) = σ r
ess(A) = ∆([0, 1)) = ∆̃((0, 1]),

where

∆(t) = ∆̃(1− t), t ∈ [0, 1), ∆̃(t) =
1

t2

(
m̃(t)− |ψ̃(t)|2

%̃(t)

)
, t ∈ (0, 1].

Essential spectrum in Case (III). This case was already treated in [11, Example 7.2] since it satisfied the

stronger assumptions therein, and we just include the result for completeness. Here σ s
ess(Ã) 6= ∅ and

σess(Ã) = σ r
ess(Ã) ∪ σ s

ess(Ã) = ∆̃((0, 1]) ∪ conv
{

∆̃0,
4m̃(0)φ̃(0) + ρ̃(0)∆̃0

4m̃(0) + ρ̃(0)

}
(7.2)

where conv denotes the convex hull and ∆̃0 := limt↘0 ∆̃(t).

Essential spectral radius. In Cases (I) and (II), we have ress(Ã) = ∞ as ∆̃ is not bounded. In Case (III),

ress(Ã) <∞ and we conclude from (7.2), observing ∆̃0 ∈ ∆̃((0, 1]),

ress(Ã) = max

{
sup
t∈(0,1]

∣∣∆̃(t)
∣∣∣, ∣∣∣4m̃(0)φ̃(0) + ρ̃(0)∆̃0

4m̃(0) + ρ̃(0)

∣∣∣}.
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Example B. Let ϑ̃, δ̃11, δ̃22, β̃1, β̃2 ∈ C1([0, 1],R), γ̃, δ̃12 ∈ C1([0, 1],C), φ̃ ∈ C([0, 1],R) and assume that

ϑ̃(x) 6= 0, x ∈ [0, 1], and δ̃11(0) 6= 0. We consider the operator matrix

Ã0 =


− d

dx

ϑ̃

x

d

dx
x+ φ̃ i

d

dx

β̃1

x
+ γ̃ i

d

dx
β̃2

β̃1

x2
i

d

dx
x+ γ̃

δ̃11

x2

δ̃12

x

β̃2

x
i

d

dx
x

δ̃12

x
δ̃22


(7.3)

with domain D(Ã0) = C2
0 (0, 1) ⊕ (C1

0 (0, 1))2 in the direct sum L2((0, 1), x) ⊕ (L2((0, 1), x))2 of weighted
L2-spaces.

Transformation to the form (2.1) and verification of Assumption (A). If we introduce the unitary trans-
formations

U : L2((0, 1), x)→ L2((0, 1)), (Uu)(x) :=
√

1− xu(1− x),

and U := diag(U,U), then A0 := UÃ0U
−1 has the form (2.1) with n = 2 and coefficients

p(t) :=ϑ(t), q(t) :=φ(t)+
1

2

∂

∂t

ϑ(t)

1− t+
1

4

ϑ(t)

(1− t)2
,

b(t) :=−i

(
β1(t)

1− t , β2(t)

)t
, c(t) :=− b(t)

2(1− t) +

(
γ(t)

0

)
,

D(t) :=


δ11(t)

(1− t)2

δ12(t)

1− t
δ12(t)

1− t δ22(t)

, (7.4)

for t∈ [0, 1) with ϑ(t) := ϑ̃(1−t), φ(t) := φ̃(1−t), γ(t) := γ̃(1−t), βi(t) := β̃i(1−t), and δij(t) := δ̃ij(1−t), i, j=1, 2.

By the smoothness assumptions on the coefficients of Ã0, the coefficients of A0 satisfy Assumption (A).
The following functions related to the Hermitian matrix-valued function ∆ given by

∆(t)=∆̃(1− t), t∈ [0, 1), ∆̃(t)=


1

t2

(
δ̃11 −

β̃2
1

ϑ̃

)
(t)

1

t

(
δ̃12 −

β̃1β̃2

ϑ̃

)
(t)

1

t

(
δ̃12 −

β̃1β̃2

ϑ̃

)
(t)

(
δ̃22 −

β̃2
2

ϑ̃

)
(t)

 , t∈(0, 1], (7.5)

play an important role in the sequel:

Ψ(t) :=(1− t)2ϑ(t) tr(∆(t)) = (ϑδ11 − β2
1)(t) + (1− t)2(ϑδ22 − β2

2)(t), t ∈ [0, 1], (7.6)

Φ(t) :=(1− t)2ϑ(t) det(∆(t)) =
1

ϑ(t)

[
(ϑδ11 − β2

1)(t)(ϑδ22 − β2
2)(t)− |(ϑδ12 − β1β2)(t)|2

]
, t ∈ [0, 1]. (7.7)

The set Λβ(D) and Assumption (T1). It is not difficult to check that the two eigenvalues λ1(t) and λ2(t) of
D(t), t ∈ [0, 1), can be numbered such that λ1(t) has a finite limit and |λ2(t)| tends to ∞ for t ↗ 1; hence
Assumption (T1) holds with j0 = 1. Further, λ2(t) has the asymptotic behaviour

λ2(t) =
δ11(1)

(1− t)2
+ o
( 1

(1− t)2

)
, t↗ 1. (7.8)

Since δ11(1)= δ̃11(0) 6= 0, we have lim
t↗1

λ2(t)∈{−∞,∞}, while for λ1(t) the limit is finite,

λ1,1 = lim
t↗1

λ1(t) = lim
t↗1

detD(t)

λ1(t)
= δ̃22(0)− |δ̃12(0)|2

δ̃11(0)
. (7.9)

Hence, according to (2.10), we obtain

Λβ(D) = {λ1,1}.
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Verification of Assumption (S) resp. (S’). In the following proposition, we compute the first two coefficients
π0(λ) and π1(λ) of the asymptotic expansion of π(t, λ) in (5.1) and characterize the possible cases in (5.2).

Proposition 7.1. Let λ ∈ R\ (σ r
ess(A)∪Λβ(D)). Then π(t, λ) = π0(λ) +π1(λ)(t−1) + o(1− t), t↗ 1, with

π0(λ) =
Φ(1)−Ψ(1)λ(

δ11δ22 − |δ12|2 − λδ11

)
(1)

, (7.10)

π1(λ) =
Φ′(1)−Ψ′(1)λ− π0(λ)

(
δ11δ22 − |δ12|2 − λδ11

)′
(1)(

δ11δ22 − |δ12|2 − λδ11

)
(1)

, (7.11)

where functions Φ and Ψ are defined in (7.6) and (7.7), respectively. Moreover, in terms of the original
coefficients in (7.3), the three cases in (5.2) can be classified as

Case (I) : (ϑ̃ δ̃11 − β̃2
1)(0) 6= 0 or (7.12)

(ϑ̃ δ̃11 − β̃2
1)(0) = 0 and (ϑ̃ δ̃12 − β̃1β̃2)(0) 6= 0;

Case (II) : (ϑ̃ δ̃11 − β̃2
1)(0) = 0, (ϑ̃ δ̃12 − β̃1β̃2)(0) = 0 and (ϑ̃ δ̃11 − β̃2

1)′(0) 6= 0; (7.13)

Case (III) : (ϑ̃ δ̃11 − β̃2
1)(0) = 0, (ϑ̃ δ̃12 − β̃1β̃2)(0) = 0 and (ϑ̃ δ̃11 − β̃2

1)′(0) = 0. (7.14)

Proof. Let λ /∈ σ r
ess(A) ∪ Λβ(D) = Λ[0,1)(∆) ∪ Λβ(D), where ∆ is as in (7.5). First we note that Lemma 3.1

implies that, for t ∈ [0, 1),

π(t, λ) =
Θ(t, λ)

Ξ(t, λ)
, (7.15)

where

Θ(t, λ) :=(1− t)2ϑ(t) det(∆(t)− λ) = ϑ(t)(1− t)2λ2 −Ψ(t)λ+ Φ(t), (7.16)

Ξ(t, λ) :=(1− t)2 det(D(t)− λ) = δ11(t)δ22(t)− |δ12(t)|2 − λ
(
δ11(t) + (1− t)2δ22(t)

)
+ λ2(1− t)2. (7.17)

It is not difficult to see that, as t↗ 1, the functions Θ(·, λ) and Ξ(·, λ) have the asymptotic expansions

Θ(t, λ) = Φ(1)−Ψ(1)λ+
(
Φ′(1)−Ψ′(1)λ

)
(t− 1) + o(1− t), (7.18)

Ξ(t, λ) =
(
δ11δ22 − |δ12|2 − λδ11

)
(1) +

(
δ11δ22 − |δ12|2 − λδ11

)′
(1)(t− 1) + o(1− t). (7.19)

Now comparing coefficients for the powers (1− t)k, k ∈ N0, yields that the coefficients of π(t, λ) in (5.1) are
given by (7.10), (7.11); note that

(
δ11δ22 − |δ12|2 − λδ11

)
(1) 6= 0 since λ /∈ Λβ(D). In order to prove the

characterization of Cases (I), (II), (III), by (7.10), (7.11), and (7.6), (7.7), it suffices to show that

π0(λ) = 0 ⇐⇒ Ψ(1) = 0, Φ(1) = 0 (7.20)

and, if π0(λ) = 0,

π1(λ) = 0 ⇐⇒ Ψ′(1) = 0. (7.21)

To this end, we first observe that, by (7.16),

det(∆(t)− λ) =
1

ϑ(λ)

1

(1− t)2
Θ(t, λ) = λ2 − Ψ(t)

ϑ(t)

1

(1− t)2
λ+

Φ(t)

ϑ(t)

1

(1− t)2
, t ∈ [0, 1),

and thus the eigenvalues λ±(∆(t)) of ∆(t) are given by

λ±(∆(t)) =
Ψ(t)±

√
Ψ(t)2 − 4ϑ(t)Φ(t)(1− t)2

2ϑ(t)(1− t)2
, t ∈ [0, 1). (7.22)

It follows from (7.10) that π0(λ) = 0 if and only if either Ψ(1) = Φ(1) = 0 or Ψ(1) 6= 0 and λ = Φ(1)
Ψ(1) .

However, the second case does not occur since we will show that Φ(1)
Ψ(1) ∈ Λ[0,1)(∆) which contradicts the

assumption that λ /∈ Λ[0,1)(∆). Indeed, it is not difficult to see that λ+(∆(t)) has the asymptotic behaviour

λ+(∆(t)) =
Ψ(1)

ϑ(1)

1

(1− t)2
+ o
( 1

(1− t)2

)
, t↗ 1,
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and thus, for the other eigenvalue,

λ−(∆(t)) =
det(∆(t))

λ+(∆(t))
=

1

λ+(∆(t))

Φ(t)

ϑ(t)

1

(1− t)2
=

Φ(1)

Ψ(1)
+ o(1), t↗ 1,

which yields that
Φ(1)

Ψ(1)
∈ {λ−(∆(t)) : t ∈ [0, 1)} ⊂ Λ[0,1)(∆).

This completes the proof of (7.20).
Now suppose that π0(λ) = 0, i.e. Ψ(1) = 0, Φ(1) = 0. Then it follows from (7.11) that π1(λ) = 0 if and

only if either Ψ′(1) = Φ′(1) = 0 or Ψ′(1) 6= 0 and λ = Φ′(1)
Ψ′(1) . The latter cannot occur since we will show that

Φ′(1)
Ψ′(1) ∈ Λ[0,1)(∆) which contradicts the assumption that λ /∈ Λ[0,1)(∆). Indeed, it is not difficult to see that,

if Ψ(1) = 0, Φ(1) = 0, then λ+(∆(t)) has the asymptotic behaviour

λ+(∆(t)) = −Ψ′(1)

ϑ(1)

1

1− t + o
( 1

1− t
)
, t↗ 1,

and thus, for the other eigenvalue,

λ−(∆(t)) =
1

λ+(∆(t))

Φ(t)

ϑ(t)

1

(1− t)2
=

Φ′(1)

Ψ′(1)
+ o(1), t↗ 1,

which yields that
Φ′(1)

Ψ′(1)
∈ {λ−(∆(t)) : t ∈ [0, 1)} ⊂ Λ[0,1)(∆).

It remains to be noted that

Ψ(1) = Φ(1) = Ψ′(1) = 0 =⇒ Φ′(1) = 0 (7.23)

by the definition of Φ in (7.7) since the three conditions on the left-hand side are equivalent to (ϑδ11−β2
1)(1)=

(ϑδ12−β1β2)(1)=(ϑδ11−β2
1)′(1)=0. This completes the proof of (7.21) and hence of Proposition 7.1. �

Now we are ready to verify Assumption (S) resp. (S’). The conditions on R(·, λ) in (5.3) for Case (I) and
in (5.17) for Case (II) are satisfied because π(·, λ) ∈ C1([0, 1]) and hence Taylor’s theorem can be applied.
In Case (III), we require the additional smoothness assumptions

ϑ̃, δ̃11, δ̃22, β̃1, β̃2 ∈ C2([0, 1],R), (7.24)

which ensure that π(·, λ) ∈ C2([0, 1]) so R(·, λ) satisfies (5.3) again by Taylor’s theorem.
Straightforward calculations yield

(D(t)− λ)−1b(t) =
−i

Ξ(t, λ)

(
(1− t)

(
(β1δ22 − β2δ12)(t)− λβ1(t)

)
(β2δ11 − β1δ12)(t)− λ(1− t)2β2(t)

)
, t ∈ [0, 1), (7.25)

and, because the condition π0(λ) = 0 in (7.13), (7.14) implies that (β2δ11 − β1δ12)(1) = 0, for t↗ 1,

‖(D(t)− λ)−1b(t)‖2Cn =

{
O(1) in Case (I),

O((1− t)2) in Cases (II), (III).
(7.26)

Hence the conditions for ‖(D(t)− λ)−1b(t)‖2Cn in (5.4) and (5.18) are satisfied.
To verify the conditions for r(·, λ) in (5.4) and (5.19), observe that the relation between b and c, see (7.4),

and D = D∗ imply

r(·, λ) = Im(b∗(D − λ)−1c) = Im
(
b∗(D − λ)−1(γ, 0)∗

)
= − Im

(
(γ, 0)(D − λ)−1b

)
,

and thus, by (7.26),

r(t, λ) =
1− t

Ξ(t, λ)
Re
(
γ(t)

(
(β1δ22 − β2δ12)(t)− λβ1(t)

))
= O(1− t), t↗ 1. (7.27)

confirming (5.4) for Cases (I), (III) and (5.19) for Case (II).
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Finally, elementary calculations yield

κ(t, λ) = φ(t)− λ+
1

2(1− t)
∂

∂t
π(t, λ) +

3

4

π(t, λ)

(1− t)2
− |γ(t)|2(δ22(t)− λ)

Ξ(t, λ)
(1− t)2 − (1− t) ∂

∂t
Γ(t, λ) (7.28)

for t ∈ [0, 1) where

Γ(t, λ) :=
1

Ξ(t, λ)
Im
(
γ(t)

(
(β1(δ22 − λ)− β2δ12)(t)

))
. (7.29)

Once again we use that λ /∈ Λβ(D) implies that
(
δ11δ22 − |δ12|2 − λδ11

)
(1) 6= 0 and hence

1

Ξ(t, λ)
= O(1),

t↗ 1. Therefore,

κ(t, λ) =
3

4

π(t, λ)

(1− t)2
+

1

2

1

1− t
∂

∂t
π(t, λ) + O(1), t↗ 1,

and thus

sπκ(t, λ) =


3

4

|π0(λ)|
(1− t)2

(1 + o(1)) + O(1) in Case (I),

1

4

|π1(λ)|
1− t (1 + o(1)) + O(1) in Case (II),

O(1) in Case (III).

Hence using (7.26), the relation between b and c, see (7.4), and∥∥∥∥(D(t)− λ)−1

(
γ(t)

0

)∥∥∥∥2

Cn
= O(1), t↗ 1, (7.30)

we obtain that (5.5) is satisfied in Cases (I), (III) and (5.20) is satisfied in Case (II).

Essential spectrum in Cases (I) and (II). By what was shown above, we can apply Theorem 5.1 (i) which
yields that, in Cases (I) and (II),

σ s
ess(A) \ Λβ(D) = ∅,

and hence, by Theorem 4.1,

σess(Ã) \ Λβ(D) = σess(A) \ Λβ(D) = σ r
ess(A) \ Λβ(D) = Λ[0,1)(∆) \ Λβ(D) = Λ(0,1](∆̃) \ Λβ(D),

where ∆̃ is given by (7.5).

Essential spectrum in Case (III). In this case, we first note that the additional smoothness assumptions
(7.24) ensure that Assumption (D1) is satisfied. Next, we analyse the limits in Theorem 5.1 (ii).

Lemma 7.2. Let λ ∈ R \ (σ r
ess(A) ∪ Λβ(D)). Then, in Case (III), the limits in (5.7) exist and, using

λ1,1 = δ22(1)− |δ12(1)|2
δ11(1)

given in (7.9),

π2(λ) =
2ϑ(1)2λ2 − ϑ(1)Ψ′′(1)λ+

(
ϑΦ
)′′

(1)

2β1(1)2(λ1,1 − λ)
∈ R \ {0}, (7.31)

r1(λ) = − β1(1)

δ11(1)
Re γ(1) ∈ R, (7.32)

κ0(λ) = φ(1)− λ− 1

4
π2(λ) ∈ R. (7.33)

Proof. Let λ /∈ σ r
ess(A) ∪ Λβ(D) = Λ[0,1)(∆) ∪ Λβ(D), where ∆ is as in (7.5). Throughout this proof we use

that in Case (III) we have Ψ(1) = Ψ′(1) = Φ(1) = 0 and hence Φ′(1) = 0, see (7.23); note that this implies
Θ(1, λ) = 0, Θ′(1, λ) = 0, see (7.16).

Due to the additional smoothness assumptions (7.24), the function Θ(·, λ) defined in (7.16) belongs to
C2([0, 1],R). Using (7.16) and Φ(1) = Φ′(1) = 0, we find that the following limit exists and satisfies

lim
t↗1

∂2

∂t2
Θ(t, λ) = 2ϑ(1)λ2 −Ψ′′(1)λ+ Φ′′(1) = 2ϑ(1)λ2 −Ψ′′(1)λ+

(
ϑΦ
)′′

(1)

ϑ(1)
∈ R.
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Since Θ(1, λ) = 0, Θ′(1, λ) = 0 and Ξ(1, λ) 6= 0 because λ /∈ Λβ(D), it is not difficult to see that also the
following limit exists and satisfies

lim
t↗1

∂2

∂t2
π(t, λ) = lim

t↗1

∂2

∂t2
Θ(t, λ)

Ξ(t, λ)
= lim
t↗1

1

Ξ(t, λ)

∂2

∂t2
Θ(t, λ) =

2ϑ(1)2λ2 − ϑ(1)Ψ′′(1)λ+
(
ϑΦ
)′′

(1)

β1(1)2(λ1,1 − λ)
∈ R.

(7.34)

Moreover, L’Hôpital’s rule yields

lim
t↗1

π(t, λ)

(1− t)2
=

1

2
lim
t↗1

∂2

∂t2
π(t, λ) = π2(λ) (7.35)

and thus Lemma 3.1, together with (7.8), implies that

lim
t↗1

det(∆(t)− λ) = ϑ(1) lim
t↗1

π(t, λ)

(1− t)2
lim
t↗1

(
(1− t)2 det(D(t)− λ)

)
= π2(λ)ϑ(1)δ11(1)(λ1,1 − λ).

Hence π2(λ) 6= 0, for otherwise limt↗1 det(∆(t)−λ) = 0, i.e. λ ∈ Λ[0,1)(∆), a contradiction to our assumption
on λ. Since Ξ(1, λ) 6= 0, it is easy to see from (7.27) that the following limit exists and satisfies

lim
t↗1

∂

∂t
r(t, λ) = −Re

{
lim
t↗1

γ(t)
(
β1(δ22 − λ)− β2δ12

)
(t)

Ξ(t, λ)

}
= − β1(1)

δ11(1)
Re γ(1) ∈ R;

here, for the second equality, we used the relation(
β1δ22 − β2δ12 − λβ1

)
(1) =

β1(1)

δ11(1)
Ξ(1, λ), (7.36)

which is a simple consequence of the first two conditions of Case (III).
The existence of the limit κ0(λ) = limt↗1 κ(t, λ) and the claimed formula for κ0(λ) follow from (7.28),

(7.29), the fact that Γ(·, λ) ∈ C1([0, 1]), Ξ(1, λ) 6= 0, and (7.35). �

Lemma 7.2 guarantees that we can apply Theorem 5.1 (ii) to calculate the singular part of the essential

spectrum of any closed symmetric extension A of the operator A0. For λ /∈ Λ[0,1)(∆) ∪ Λβ(D),

λ ∈ σ s
ess(A) ⇐⇒ r1(λ)2 − κ0(λ)π2(λ) ≥ 1

4
π2(λ)2 ⇐⇒ (λ1,1 − λ)P (λ) ≥ 0, (7.37)

where

P (λ) :=(λ− φ(1))

(
λ2 − 1

2

Ψ′′(1)

ϑ(1)
λ+

1

2

(ϑΦ)′′(1)

ϑ(1)2

)
−
(
Re γ(1)

)2
(λ− λ1,1)

=(λ− φ̃(0))(λ2 −K1λ+K2)−
(
Re γ̃(0)

)2
(λ− λ1,1)

(7.38)

with

K1 :=
1

2ϑ̃(0)
(ϑ̃δ̃11 − β̃2

1)′′(0) +
1

ϑ̃(0)
(ϑ̃δ̃22 − β̃2

2)(0),

K2 :=
1

2ϑ̃(0)2
(ϑ̃δ̃11 − β̃2

1)′′(0)(ϑ̃δ̃22 − β̃2
2)(0)− 1

ϑ̃(0)2
|(ϑ̃δ̃12 − β̃1β̃2)′(0)|2.

(7.39)

Here we have used that ϑ̃(0)δ̃11(0) = β̃1(0)2 by the first condition in Case (III).
Next we show that Λβ(D) = {λ1,1} ∈ σess(A). To this end, we consider the following possible cases:

Case 1: Either λ1,1 = φ̃(0), or λ1,1 6= φ̃(0) and λ2
1,1−K1λ1,1 +K2 6= 0. We show that λ1,1 is a limit point

of the solution set Σ of the inequality (7.37) and thus λ1,1 ∈ Σ ⊂ σess(A), see Theorem 6.5. First assume

λ1,1 = φ̃(0). Then, since λ /∈ Λβ(D) = {λ1,1}, the last inequality in (7.37) takes the form

λ2 −K1λ+K2 ≤
(
Re γ̃(0)

)2
. (7.40)

On the other hand, the first two conditions in Case (III) imply

ϑ̃(0) =
β̃1(0)β̃2(0)

δ̃12(0)
,

β̃1(0)

β̃2(0)
=
δ̃12(0)

δ̃11(0)
, λ1,1 = δ̃22(0)− β̃2(0)2

ϑ̃(0)
. (7.41)
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Hence it follows that

ϑ̃(0)2(λ2
1,1 −K1λ1,1 +K2) = −|(ϑ̃δ̃12 − β̃1β̃2)′(0)|2 ≤ 0 ≤

(
Re γ̃(0)

)2
, (7.42)

which shows that λ1,1 satisfies (7.40) and so λ1,1 ∈ Σ ⊂ σess(A). Secondly, assume that λ1,1 6= φ̃(0) and
λ2

1,1 −K1λ1,1 +K2 6= 0. Since λ2
1,1 −K1λ1,1 +K2 < 0 by (7.42), we find

lim
λ↗λ1,1

(λ1,1 − λ)P (λ) =∞ if λ1,1 < φ̃(0), lim
λ↘λ1,1

(λ1,1 − λ)P (λ) =∞ if λ1,1 > φ̃(0).

Therefore, in both cases, λ1,1 ∈ Σ ⊂ σess(A).

Case 2: λ1,1 6= φ̃(0) and λ2
1,1 −K1λ1,1 + K2 = 0. By (7.42), the latter yields that (ϑ̃δ̃12 − β̃1β̃2)′(0) = 0.

Thus it follows from L’Hôpital’s rule that the matrix function ∆̃ given by (7.5) has a finite (componentwise)

limit as t↘ 0. Using the formula for ∆̃ in (7.5), the definition of K1 in (7.39), and (7.42), we find

lim
t↘0

∆̃(t) =

(
K1 − λ1,1 0

0 λ1,1

)
.

Hence λ1,1 ∈ Λ(0,1](∆̃) = σ r
ess(A) ⊂ σess(A).

Altogether, we have now shown that

σess(Ã) = σess(A) = Λ(0,1](∆̃) ∪ {λ ∈ R : (λ1,1 − λ)P (λ) ≥ 0}, λ1,1 = δ̃22(0)− |δ̃12(0)|2
δ̃11(0)

, (7.43)

where P is the cubic polynomial given by (7.38).

The structure of σ s
ess(A) in Case (III). In order to analyse the structure of the singular part of the essential

spectrum, we use our abstract Theorem 6.5. To this end, we need to verify Assumption (T) and compute
some of the coefficients therein and in Proposition 6.4.

By what was shown above, the first part of Assumption (T1) holds with j0 = 1; further, the estimate
(6.11) holds trivially since j0 = 1 and n = 2. By Lemma 7.2, Assumptions (T2), (T3) are satisfied and hence
Proposition 6.4 applies. Now the formulas (7.31) for π2(λ) and (7.33) for κ0(λ) in Lemma 7.2 yield that

gβ = lim
λ→∞

−π2(λ)

λ
=

ϑ(1)2

β1(1)2
> 0, ψβ = 1− 1

4
gβ , gβ + 4ψβ = 4 > 0.

This means we are in the first case of Theorem 6.5 (a) and hence the set Σ consists of the union of at most
two compact intervals.

Since ∆̃ ∈ C1((0, 1],C2×2) has a limit as t ↘ 0, the closure of the range of its eigenvalues Λ[0,1)(∆)⊂R
has at most two components; hence also the regular part of the essential spectrum is the union of at most
two compact intervals.

Moreover, it is not difficult to see that, in Case (III), the eigenvalues λ±(∆̃(t)) of ∆̃(t) have the asymptotic
expansions

λ+(∆̃(t)) =
K1

2
+

√
K2

1

4
−K2 + o(1), λ−(∆̃(t)) =

2K2

K1 +
√
K2

1 − 4K2

+ o(1), t↘ 0. (7.44)

Hence both limits limt↘0 λ±(∆̃(t)) satisfy the inequality (λ1,1 − λ)P (λ) ≥ 0 and thus belong to σ r
ess(A)

and Σ. Altogether, we conclude that σess(Ã) is union of at most two compact intervals.

Essential spectral radius. In Cases (I) and (II), the functions λ±(∆(·)) in (7.22) are not bounded and hence

ress(Ã)=∞. In Case (III), ress(Ã)<∞ since we have shown that σess(Ã) is the union of at most two compact

intervals. An explicit formula for ress(Ã) may be given by finding the root with largest absolute value of the
cubic polynomial P in (7.38), e.g. by means of Cardano’s formula; we refrain from displaying the elementary,
but too lengthy, formulas here.

Remark 7.3. Our abstract results give a new proof for the results of the paper of [18] and of the observation
noted therein that the regular and singular part of the essential spectrum are adjoined to each other.
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8. Application to a spectral problem for symmetric stellar equilibrium models

In this section, we investigate a matrix differential operator arising in the stability analysis of spherically
symmetric stellar equilibrium models, see [3, Section 4.1] and [11]. This operator represents the unperturbed
part of the reduced spheroidal operator in the radial variable t ∈ (0, R), where R > 1 is the radius of the
star, for polytropic equilibrium models with constant adiabatic index near the centre (t = 0) and near the
boundary (t = R) of the star.

Since the coefficient functions have singularities at both end-points t = 0 and t = R, Glazman’s decompo-
sition principle was used in [11] to split the essential spectrum into the essential spectra of the corresponding
operators A(0,1] and A[1,R) restricted to the intervals (0, 1] and [1, R). It was proved in [11] that, for both
operators, the regular part of the essential spectrum is only the single point {0} and that the singular part
of the essential spectrum of the operator on (0, 1] is empty,

σ r
ess(A(0,1]) = σ r

ess(A[1,R)) = {0}, σ s
ess(A(0,1]) = ∅.

However, the method of [11] could not be used to determine the singular part of the essential spectrum
of the operator on [1, R). The reason for this is that the first derivative of the Lane-Emden function θ = θn
entering the coefficient functions, see (8.2), (8.3) below, does not vanish at R and hence the coefficients of
the Schur complement are not bounded at R. It was conjectured in [11] that, nevertheless, the singular part
of the essential spectrum on [1, R) is empty as well.

We prove this conjecture and thus show that the essential spectrum of every self-adjoint extension of the
operator on the full interval (0, R) consists only of the single point {0}.

Example from astrophysics. In the Hilbert space L2((1, R))⊕L2((1, R)) we consider the operator matrix

A0 =

−
d

dt
p1

d

dt
+ q1

d

dt
p2 + q2

−p2
d

dt
+ q2 p3

 (8.1)

with domain D(A0) = C2
0 ((1, R)) ⊕ C1

0 ((1, R)). Using the notation of [3], the coefficient functions p1, p2,
p3, q2 ∈ C1([1, R],R), and q1 ∈ C([1, R],R) are given by

p1 :=
Γ1p

%
, p2 := cl

Γ1p

t%
, p3 := c2l

Γ1p

t2%
,

q1 :=
1

t%

(
(4− 3Γ1)p

)′
+

1

t2
√
%

(Γ1p

%
(t2
√
%)′
)′
, q2 :=

=p2︷ ︸︸ ︷
cl

Γ1p

t%

(%′
%
− p′

Γ1p
− 1

2

(t2%)′

t2%

)
,

(8.2)

where the constant cl =
√
l(l + 1), l ∈ N, appears after the reduction of the problem in R3 to the radial

part and the coefficient functions Γ1, p, and ρ represent the following physical quantities. The function
Γ1 ∈C2([1, R],R) is the adiabatic index which is positive on [1, R] and satisfies Γ′1(R) = 0. The functions
p ∈ C2([1, R],R) and % ∈ C3([1, R],R) are the pressure and mass density, respectively. They are both
positive on [1, R] and are supposed to have the forms

p(t) = pcθn(t)n+1, %(t) = %cθn(t)n, t ∈ [1, R], (8.3)

where pc, %c > 0 are the constant central pressure and central density, respectively, of the unperturbed star
and n ∈ (0, 5) is the polytropic index; here the physically most interesting case is n ∈ [1, 5), see [3, Section 5,
p. 47]. The function θn ∈ C2([1, R],R) is the Lane-Emden function of index n which is uniformly positive
on [1, R) and satisfies the non-linear differential equation

θ′′n(t) +
2

t
θ′n(t) = − 1

α2
n

(θn(t))n, t ∈ (0,∞), (8.4)

where αn ∈ (0,∞) is the Lane–Emden unit length and R = Rn > 1 is the first zero of θn, see [3, 5].

Transformation to the form (2.1) and verification of Assumption (A). Note that (8.1) is already of the form
(2.1) with α = 1, β = R, n = 1, p = p1, q = q1, b = −p2, c = q2, and D = p3. Assumption (A) is clearly
satisfied due to the smoothness assumptions on the coefficient functions p1, p2, p3, and q1, q2.
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The set Λβ(D). Since R is the first zero of θn, (8.3) yields

lim
t↗R

D(t) = lim
t↗R

p3(t) =
c2l
R2

pc
%c

Γ1(R) lim
t↗R

θn(t) = 0

and thus Λβ(D) = {0}. Note that, since p1p3 ≡ p2
2 on [1, R], we have ∆(t) = 0, t ∈ [1, R), and hence

σ r
ess(A) = {0} = Λβ(D) for every closed symmetric extension A of A0 in L2((1, R))⊕ L2((1, R)).

Verification of Assumption (S) resp. (S’). Elementary calculations show that π(·, λ) has an asymptotic
expansion (5.1) as t↗ R with

π0(λ) = 0, π1(λ) =
pc
%c

Γ1(R)θ′(R), λ ∈ R \ {0}.

Lemma 8.1. The Lane-Emden function θn satisfies

lim
t↗R

(t−R)
θ′n(t)

θn(t)
= 1. (8.5)

Proof. First of all, note that θ′n(R) 6= 0, for otherwise, since θn(R) = 0, the theorem on the uniqueness
of solution of ODEs with continuous coefficients on closed intervals would imply that θn(t) ≡ 0 on [1, R],
contradicting to uniform positivity of θn on [1, R). Taylor’s formula with remainder term of Lagrange form
yields, for some γ ∈ (0, 1),

θn(t) = θn(R) + (t−R)θ′n(R) +
(t−R)2

2
θ′′n(R+ γ(t−R)).

Since θn(R) = 0, we obtain (8.5). �

Note that, since θn is uniformly positive, the above lemma implies θ′n(R) < 0 and thus π1(λ) < 0. So we
are in Case (II) and it suffices to verify Assumption (S’), i.e. conditions (5.17)–(5.20), see Remark 5.2.

Since π(·, λ) ∈ C1([1, R]), the condition for R(·, λ) in (5.17) is satisfied by Taylor’s theorem. Moreover,
r(·, λ) = − Im(p2q2/(p3−λ)) ≡ 0 as all coefficients functions are real-valued and so (5.19) is trivially satisfied.

Elementary calculations, together with Lemma 8.1, yield

‖(D(t)− λ)−1b(t)‖2 =
∣∣∣ p2(t)

p3(t)− λ
∣∣∣2 =

c2l
λ2

p2
c

%2
c

Γ1(R)2

R2
θ′n(R)2(R− t)2 + o((R− t)2), t↗ R,

and also
q2(t)

p2(t)
=
(n

2
− n+ 1

Γ1(R)

) 1

t−R + o
( 1

t−R
)
, t↗ R.

Hence

‖(D(t)− λ)−1c(t)‖2 =
∣∣∣ q2(t)

p2(t)

∣∣∣2‖(D(t)− λ)−1b(t)‖2 = O(1), t↗ R.

Moreover,

κ(t, λ) =
n2

4

pc
%c

(θ′(t))2

θ(t)
Γ1(t) + O(1), t↗ R.

Since sπ = 1, Γ1(t) > 0, θn(t) > 0, t ∈ [1, R) we have (sπκ(·, λ))− = O(1) so condition (5.20) is satisfied, too.

Essential spectrum. By what was shown above, Theorem 5.1 (ii) applies and, together with σ r
ess(A[1,R))={0}

= Λβ(D), we obtain

σ s
ess(A[1,R)) = ∅, σess(A[1,R)) = σ r

ess(A[1,R)) = {0}.
for every closed symmetric extension A[1,R) of A0 in L2((1, R)) ⊕ L2((1, R)). This proves the conjecture in
[11] and yields, finally, that

σess(A) = σ r
ess(A) = {0}

for every closed symmetric extension A of A0 in L2((0, R))⊕ L2((0, R)).

Essential spectral radius. Having proved the conjecture above, we can now conclude that ress(Ã) = 0.
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