
Abstract

A complete analysis of the essential spectrum of matrix-differential operators \mathcal{A} of the form $$
\left(\begin{array}{cc} -\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} b^{*}+c^{*} \tag{1}\\ b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & D \end{array}\right) \quad \text { in } \quad L^{2}((\alpha, \beta)) \oplus\left(L^{2}((\alpha, \beta))\right)^{n}
$$

singular at $\beta \in \mathbb{R} \cup\{\infty\}$ is given; the coefficient functions p, q are scalar real-valued with $p>0, b, c$ are vector-valued, and D is Hermitian matrixvalued. The so-called "singular part of the essential spectrum" $\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A})$ is investigated systematically. Our main results include an explicit description of $\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A})$, criteria for its absence and presence; an analysis of its topological structure and of the essential spectral radius. Our key tools are: the asymptotics of the leading coefficient $\pi(\cdot, \lambda)=p-b^{*}(D-\lambda)^{-1} b$ of the first Schur complement of (1), a scalar differential operator but non-linear in λ; the Nevanlinna behaviour in λ of certain limits $t \nearrow \beta$ of functions formed out of the coefficients in (1). The efficacy of our results is demonstrated by several applications; in particular, we prove a conjecture on the essential spectrum of some symmetric stellar equilibrium models.

