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Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of 

changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to 

movement of the subject can cause movement artifacts (MAs) in the recorded signals. 

Several methods have been developed so far that facilitate the detection and reduction of 

MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of 

these methods are perfectly suitable for long-term (i.e., hours) recordings or were not  

time-effective when applied to large datasets. We aimed to overcome these limitations by 

automation, i.e., data adaptive thresholding specifically designed for long-term 

measurements, and by introducing a stable long-term signal reconstruction. Our new 

technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based 

on combining two methods: the “movement artifact reduction algorithm” (MARA, 
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Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion 

artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We 

describe AMARA in detail and report about successful validation of the algorithm using 

empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In 

addition, we compared the performance of AMARA to that of MARA and ABAMAR 

based on validation data. 

Keywords: movement artifact reduction algorithm (MARA); acceleration-based motion 

artifact removal (ABAMAR); acceleration-based movement artifact reduction algorithm 

(AMARA); motion artifacts; movement artifacts; near-infrared spectroscopy (NIRS); 

functional-near infrared spectroscopy (fNIRS) 

 

1. Introduction 

By shining light with specific wavelengths in the near-infrared range (approx. 650–950 nm) into 

tissue and measuring the diffusely back-reflected light, near-infrared spectroscopy (NIRS) is able to 

determine concentration changes of oxy- and deoxyhemoglobin ([O2Hb], [HHb]), which are related to 

changes in tissue hemodynamics and oxygenation [1–4]. For example, brain activity has been assessed 

using NIRS in adults [3,5–11], infants and neonates [12–15], or animals [16–18]. During long-lasting 

NIRS recordings in particular, for example during sleep [19–25], artifacts in the NIRS data due to 

movements of the subjects are a common problem. 

Several NIRS signal-processing methods have been developed so far to detect and remove 

movement artifacts (MAs). In general, these methods can be classified into (i) univariate methods,  

(ii) multivariate methods of type 1, and (iii) multivariate methods of type 2 [2]. 

Univariate methods rely only on the NIRS signal itself. These methods remove MAs by examining 

the characteristics of the signal [26–33]. One of these methods was developed by our group, the 

“movement artifact reduction algorithm” (MARA) [34]. It utilizes the moving standard deviation (MSD) 

to detect the MAs and subsequently remove them by spline interpolation. MARA has been successfully 

applied in several NIRS studies so far [5–9,12,13,16,35–39]. Its performance was recently evaluated 

positively in a study comparing different MA correction techniques for NIRS [40]. However, the 

limitations of MARA were highlighted in a comparison of five different MA reduction algorithms [41]. 

MARA uses a global threshold value, and two other parameters have to be selected manually. Due to the 

global threshold (i.e., a threshold value that is fixed for the entire time series) an adaption to changes in 

signal quality or conditions is not possible.  

Multivariate methods of type 1 rely on multiple NIRS signals, commonly acquired at different  

source-detector distances. Examples are the spatially resolved spectroscopy approach [42,43], the  

self-calibrating algorithm [44], or a variety of other approaches [45–62]. Type 1 methods were in 

general developed to remove the influence of the superficial layer (skin and skull) from the measured 

signals but help also to reduce MAs, as demonstrated recently by Scholkmann et al. [11]. 

Multivariate methods of type 2 rely on external signals in addition to the NIRS signal. Two methods 

have been published so far that used signals from acceleration sensors for MA removal [27,63]. The 
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method presented by Izzetoglu et al. [27] is based on a linear least square adaptive filter with an 

acceleration signal as a reference input signal. Virtanen et al. [63] published a method  

(“accelerometer-based motion artifact removal”, ABAMAR) where the acceleration changes  

(i.e., movements) were detected based on a threshold. MAs were defined only on changes in 

acceleration. In addition, baseline shifts were corrected by subtracting the difference between the 

signal mean of a window of 15 s before and after the MA. But the baseline was only corrected if the 

difference exceeded 2.6 × the standard deviation (SD) of the signal of the 15 s window preceding the 

MA. Although the method improved the signal quality of real NIRS signals considerably, a drawback 

is the applied global threshold.  

The aims of the present paper are (i) to present a newly developed method for MA detection and 

removal, termed “acceleration-based movement artifact reduction algorithm” (AMARA), which 

combines the advantages of ABAMAR and MARA, in particular by introducing an adaptive threshold 

and extensions in the reconstruction of the filtered signal to obtain stable long-term recordings;  

and (ii) to validate AMARA with long-term recordings of NIRS data. 

2. Materials and Methods 

2.1. Algorithm 

AMARA assumes that artifacts are always related to movements. Hence, it only accepts artifacts 

within movement periods of the subject, detected in the first step “movement detection”.  The subsequent 

steps, i.e., artifact detection, segmentation, and artifact removal, were adapted from MARA [34] and 

were improved. The reconstruction of the signal was specifically developed for long-term recordings 

(8−10 h) including a criterion adapted from ABAMAR [63]. The algorithm was developed for 

application in sleep studies, thus the parameters given (summarized in Table 1) are optimized for such 

long-term recordings. 

Table 1. List of parameters used in the AMARA algorithm. With the parameter values 

provided, the algorithm worked optimally in case of our recordings. However, the values 

depend on the specific characteristics of the input NIRS signals, e.g., number of MAs, 

frequency of occurrence of the MAs, amplitude of the MAs within the data, or the noise 

level. These parameters were chosen empirically to give the best result for the data sets 

comprising long-term NIRS measurements as reported by Metz et al. [21,22]. 

Parameter Value Description 

q 2 s Defines the MSD window length 2q + 1 

wsize 15 min Moving window length for the Zack triangle algorithm 

wstep 5 min Step size for the Zack triangle algorithm 

Tarea 0.005 Noise criteria 

Tareanorm 0.2 Normalized noise criteria 

Lmin 2 s Minimum allowed artifact size or gap between artifacts 

“condition free” no default Defines the fixed segments for the reconstruction (no artifacts) 
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Table 1. Cont. 

Parameter Value Description 

p 1 s 
Window length for the FIR filter, Savitzky-Golay filter and 

MSD within the artifact removal procedure 

fc,FIR 0.5 Hz 
Cut-off frequency of the FIR filter within the artifact removal 

procedure 

 

Figure 1. Flow charts of the whole algorithm (a) and detailed flow charts of specific steps 

(b−d). The algorithm detects movements and artifacts separately and only removes 

artifacts that coincide with a movement. The reconstruction is based on so-called trusted 

parts of the signal which are determined based on the acceleration signal. (a) AMARA 

flow chart. acc(t): time dependent acceleration signal with a x-, y- and z-component. ( ): unfiltered acceleration signal. ξacc(t): output of the movement detection; every 

movement is marked by “1” at the corresponding sampling points. x(t): original signal 

(e.g., O2Hb or HHb) containing MAs. ̅( ): unfiltered input signal. ξx(t): output of the 

artifact detection; every MA is marked by “1” at the corresponding sampling points. xok: 

container for only “ok” epochs (containing no MAs). xMA: container for only artifact 

epochs (containing MAs). x’MA: container, artifact epochs after MA removal, high 

frequency information is preserved. y(t): output signal of AMARA; of the same size as x(t), 

but with MAs removed and the reconstructed trend; (b) Movement detection flow chart. 

ai(t): x-, y- or z-component of acc(t). ξacc,i(t) as in (a) but for a single component of acc(t). 

The final output vector is obtained by combining the three components (Equation (3), see 

text below). MSD: moving standard deviation. MZ: moving Zack triangle algorithm [64]. 

Tacc,i(t): vector containing the determined threshold for the acceleration signal; (c) Artifact 

detection flow chart for a signal x. The subscript x relates the variable to the signal x 

instead of the acceleration acc; (d) Reconstruction flow chart. xFW,ok(t): “ok” epochs 

reconstructed in forward direction. xBW,ok(t): “ok” epochs reconstructed in backward 

direction. xadj,ok(t): “ok” epochs of forward and backward correction averaged. 
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In Figure 1a the signal processing steps are shown as a flow chart. Note that the “Filter” blocks 

should equalize the acceleration signal acc and the hemoglobin signal x in terms of the noise levels 

(i.e., standard deviation of the signals should be comparable). The same automated threshold detection 

was applied to both signals and the detection criteria depended on the noise level. The algorithm was 

implemented in Matlab® (Version 2008b, The MathWorks®, Natick, MA, USA). 

2.1.1. Movement Detection 

Figure 1b depicts the four necessary steps to detect movements in the acceleration signal acc(t), 

which is the vector of the x-, y- and z-acceleration components (i.e., acc(t) = [ax(t), ay(t), az(t)]). The 

final output of the movement detection is a vector ξacc(t) which contains “1” whenever a movement 

was found and zero otherwise. This vector is calculated by the following steps: 

Step 1: First, the moving standard deviation (MSD) of acc(t) is calculated: 

, ( ) = 12 + 1 ( + ) − 12 + 1 ( + )  (1)

where the MSD window length is given by 2q + 1 samples and i represents the components x, y, or z. 

The value of q used here is twice the number of samples per second of the signal, i.e., representing two 

seconds for the NIRS data used in the present study. Thus, q = 2 s × fs (i.e., two seconds times the 

sampling frequency fs in Hz = 2 s of data), whereas fs has to be an integer. 

Step 2: The threshold Tacc(t) for the detection of movements is determined automatically using the 

moving Zack triangle algorithm [64]. This method finds Tacc(t) based on the quantile distribution D 

(equal to the inverse cumulative distribution) of the data within a certain window of length wsize (see 

Figure 2). A line L is drawn from the smallest to the largest quantile within D (Figure 2e,f) and the 

normal (black line marked with a 90° angle in Figure 2f) to L is moved to find the maximum length 

between L and D [64]. The threshold Tacc corresponds to the y-value of the intersection of the normal 

with D. Now a threshold is defined for the first wsize seconds of MSDacc,i(t). To find the threshold Tacc(t) 

for the rest of the signal, a window of the length wsize is moved forward by the step size wstep and the 

algorithm is applied again. The values used for wsize and wstep were 15 × 60 s × fs and 5 × 60 s × fs, 

respectively. This represents 15 and 5 min of data. Since the step size wstep is smaller than the window 

size wsize, the calculated thresholds overlap. To avoid overlapping of the thresholds, the threshold is 

only set for the center wstep data points within the window of size wsize. Hence, Tacc[t − wstep/2 ,…, t + 

wstep/2] = MZA([MSDacc,i[t − wsize/2 ,…, t + wsize/2]). MZA represents the application of the moving 

Zack triangle algorithm and t is the time point in the center of the window of size wsize.  

The Zack triangle algorithm is not able to distinguish a noisy, but valid, biological signal (= “Noise” 

in Figure 2) from an artifact. Hence, two conditions had to be applied to identify noise afterwards: the 

area between L and D, and the normalized area between L and D (Figure 2e,f). The normalized area 

was obtained from the normalized quantile distribution, defined as D/max(D). If one of these values 

was smaller than the thresholds Tarea (typically 0.005) or Tareanorm (typically 0.2), respectively, the data 

in the window were considered to be noise and the threshold Tacc was set to infinity. For example, if 

normally distributed noise dominates the signal, the absolute and normalized area between L and D 
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approach zero. If there is a (small) peak within normally distributed noise, the normalized threshold 

will be large, but the absolute area will be small. In case of non-normally distributed noise or when 

different noise levels are present in the data, the absolute area might be large, but the normalized area 

will still be small. The Tareanorm condition corresponds to a peak that exceeds approximately three times 

the SD of the examined part of the MSD (of the length wsize). 

 

Figure 2. Example of noise detection (left column: a,c,e) and artifact detection  

(right column: b,d,f) in [O2Hb] data (sampling rate: 35 Hz). Top row (a,b): original 

signal. Middle row (c,d): moving standard deviation (MSD) of the input signal. Bottom 

row: quantiles from 0 to 1 in steps of 0.01 of the corresponding MSD values. “A” is the 

area between the quantile distribution (D) and the straight line (L) connecting the first and 

the last quantile. Anorm is A normalized, i.e., the distribution was divided by its maximum 

value. On the bottom right (f), the Zack triangle method is displayed which leads to a 

threshold of approximately 0.4 μM. For a detailed description, please refer to the text. 

Small inserts in the top (b) and middle right (d) panel depict the artifact on a magnified 

time scale (~14.3 s). 

Step 3: For each sample point (t) a value of “0” or “1” is assigned to a vector ξacc(t), depending on 

the SD and the thresholds. To obtain only one vector from the three acceleration components, the 

individual ξacc,i(t) are combined by a logic OR operation (Equation (3)): 

, ( ) = 1,	if	 , ( ) > , ( )0,	if	 , ( ) ≤ , ( ), for = , ,  (2)( ) = , ( ) ⋁ , ( ) ⋁ , ( ) (3)
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Step 4: If the length of a movement segment is shorter than Lmin, ξacc is set to “0” again at the 

corresponding time points. Correspondingly, if the gap between two movement segments is shorter 

than Lmin, this gap is also set to be a movement. This reduces false positive detections due to the Zack 

triangle algorithm, which often sets the threshold very conservatively, i.e., slightly higher than the 

noise level. It is statistically possible that the MSD of the noise also exceeds the threshold but then 

only for a very short period. This behavior can be controlled by adjusting Lmin. The value of Lmin used 

was 2 s × fs. The final output of the movement detection process is the vector ξacc(t) which contains 

values of “1” at samples assigned to be a MA. 

2.1.2. Artifact Detection 

In Figure 1c, the basic flow chart for the detection of artifacts within the signal x(t) is illustrated. 

These four steps are similar to the movement detection, as is the output vector ξx(t), which contains “1” 

at time points found to be an artifact and “0” otherwise. 

Step 1: MSDx(t) of the signal x(t) is calculated as described in Step 1 of Section 2.1.1  

Movement detection.  

Step 2: The threshold Tx(t) for the artifact detection is obtained automatically using the moving 

Zack triangle algorithm, as in Step 2 of Section 2.1.1 Movement detection.  

Step 3: All values of the signal MSDx(t) greater than Tx(t) are marked as “1”, as in Step 3 of  

Section 2.1.1 Movement detection: ( ) = 1 if ( ) > ( )0 if ( ) ≤ ( ) (4)

Step 4: Finally the information from the accelerometer ξacc(t) is used to verify that the artifact is 

caused by a movement. For each artifact, the corresponding movement containing vector ξacc(t) is 

checked. If this contains no movement (thus only “0”) for the time points of interest, ξx(t) will be set to 

“0” for the corresponding time points. Mathematically, this corresponds to a logic AND operation: ( ) = ( ) ∧ ( ) (5)

Furthermore, the algorithm rejects all artifacts shorter than Lmin. This was done for the same reason 

as in Step 4 of Section 2.1.1 Movement detection. 

2.1.3. Segmentation 

The data were segmented as in the MARA algorithm. The segmentation vector contains N entries. 

There are two kinds of segments: segments containing MAs (“MA” segments) and segments 

containing no artifacts (“ok” segments). The beginning and end of each segment is identified based on 

the change of values in the vector ξx(t). A change from “0” to “1” determines the beginning of an 

artifact (and end of an “ok” segment) and a change from “1” to “0” its end (and start of a new “ok” 

segment). The segmentation container tSeg,k contains the time points  (vector addressing all time 

points for the segment) for each segment k and can be expressed as: 

, = , , , , , , , , ⋯ , , , , , for = 1,… , 	 (6)= , , for = 1,… ,  (7)
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= 	 , , for = 1,… ,  (8)

Furthermore, we define the MA segments to be 

, = 	 , , for = 1,… , ( − 1)/2  (9), = 	 , , for = 1,… , ( − 1)/2  (10)

The variable m is another index variable needed to address all even segments. The “ok” segments 

are defined in a similar way for the odd entries in acc and x. A classification condition Ck is defined 

based on the x-, y- and z-components of the acceleration signal acc(t): = 1,	if	 , ∈ condition free0,	if	 ( , ) ∈ condition not free , for = 1,… ,  (11)

whereas CMA,m and COk,n (n = {1,…,(N−1)/2+1}) can be defined in a similar way as above. The terms 

“condition free” and “condition not free” refer to ranges for the acceleration values of the x-, y- and  

z-axes. This classification gives trustworthy baseline regions. For example, during sleep, baseline 

shifts of the signal were observed whenever the subject lied on the NIRS sensor (pressure on the 

sensor: “condition not free”) compared to when the sensor is free (not jammed between bed and 

subject: “condition free”). Thresholds for the determination of the two states were determined after 

examining the entire dataset manually. Video recordings were inspected to determine “not free” 

positions and to derive the corresponding acceleration thresholds. Since the sensor was always in a 

specific position during the position “condition not free”, simple thresholds could be applied to the 

acceleration signals to determine the “condition not free” position. Furthermore, this information was 

used for the reconstruction of the signal.  

2.1.4. Artifact Removal 

The artifact removal is similar to MARA but was extended in order to preserve physiological 

information. MARA includes the interpolation of the MA segment with a spline function and the 

subtraction of the interpolated segment from the original segment to preserve the high frequency 

information of the signal. In the current implementation we used an nth-order Savitzky-Golay filter [65] 

since this allowed to model sharp rises in the signal (i.e., an artifact) while being computationally 

inexpensive. However, during an “ok” period of the signal, it will also exclude true physiological 

information. To overcome this caveat, the Savitzky-Golay filtered signal xk,SG was weighted according to 

MSDk, the MSD of xk, but with the window length p (substitute q with p in Equation (1)) and thus 

different from MSDx. MSDk was further normalized to a range [0, 1] by MSDk/max(MSDk). xk,SG was 

complemented with a finite infinite response (FIR) low-pass filtered signal xk,FIR. xk,FIR is weighted 

complementary with 1 − (MSDk/max(MSDk)). The complete signal is recovered by adding xk,FIR and the 

xk,SG. Put simply, the Savitzky-Golay filter was applied to abrupt signal changes (i.e., the artifacts) and 

the FIR filter during the stable parts of the signal. The window lengths (parameter p) of the FIR filter, the 

Savitzky-Golay and the MSD were set to p = fs × 1 s samples (Table 1). Furthermore, the order of the 

Savitzky-Golay filter was set to 3 and the low-pass cutoff frequency fc,FIR of the FIR filter to 0.5 Hz if the 

heart beat (approximately 1 Hz) was of interest (preservation of the desired physiological information). 

This filtered signal was subtracted from the original signal and the following vector was obtained: 
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′ , = , , for = 1,… , ( − 1)/2  (12)

The dash and the operator AR (artefact removal) indicate that the procedure outlined above was 

applied. The mean of the high-pass filtered segment is zero and will be adapted to the “ok” segments 

of baseline during the following reconstruction. 

2.1.5. Reconstruction 

In contrast to the reconstruction performed by MARA, where the segments are baseline corrected 

one by one, AMARA reconstruction is based on “ok” segments only (as with ABAMAR) and 

AMARA reconstructs the signal by including additional information from the acceleration sensor. 

MARA includes the (artifact removed) MA segments in the reconstruction. AMARA assumes that the 

length of the MA is small compared to the adjacent “ok” segments. The signal changes are expected to 

be within the magnitude of the standard deviations of the signal in adjacent segments. Based on the 

value of Ck, AMARA assumes that the segments labeled with “condition free” (Ck = 1) represent 

“trustworthy” values. Those labeled as “condition not free” (Ck = 0) are not trusted and the 

corresponding signal may deviate from the original baseline. The baseline was defined as the mean of 

last or first part (of length Lbase, e.g., 20 s) of a segment. Between trustworthy segments (“condition 

free”) a baseline shift may also be present. In such a case, the longest of all connected trustworthy 

segments will be used and the others will be adjusted to this level. The reconstruction comprises the 

following steps (see Figure 1d): 

Step 1: Find and adjust all the baselines of connected trustworthy segments. “Connected” is defined 

to be a group of segments with Cok,k = 1, which are not separated by any other “ok” segment with  

Cok,k = 0. MA segments are disregarded at this point. For each group, starting with the longest segment 

m, all following segments (m + 1, m + 2, etc.) are adjusted to the former segment’s baseline. Similarly 

the baseline of the previous segments (m − 1, m − 2, etc.) are adjusted. The baseline of the earlier 
segment (in time) is the last part of length Lbase (e.g., 20 s) and has the average ̅ ,  and the SD σok,m. 

The later segment’s baseline is defined to be the first part of length Lbase with the average ̅ ,  and 

the SD σok,m+1. The later segment is only “adjusted” if the difference between the baselines is larger 

than 2.6 times the SD, a criterion adapted from ABAMAR. The factor 2.6 corresponds to the 99th 

percentile of normally distributed data. 

, , = , − ̅ , − ̅ , , , if ̅ , − ̅ , ≥ 2.6	 ,, − ̅ , − ̅ , , , if ̅ , − ̅ , < 2.6	 ,  (13)

The previous segments’ baseline is adjusted similarly to the later segments’ baseline: 

, , = , − ̅ , − ̅ , , , if ̅ , − ̅ , ≥ 2.6	 ,, − ̅ , − ̅ , , , if ̅ , − ̅ , < 2.6	 ,  (14)

Step 2: Adjust the baseline of all not trusted (“condition not free”) segments in a forward loop. 

Starting with the first segment with Ck = 0 after the first trustworthy segment, the baseline of the 

segments with Ck = 0 is adapted to the former segments baseline. The baseline is shifted as in  

Equation (13). The resulting segments are saved in the vector xFW,ok,m. 
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Step 3: Adjust the baseline of all not trusted (“condition not free”) segments in a backward loop. 

Starting at the first segment with Ck = 0 before the last trustworthy segment, the baseline of the 

segments with Ck = 0 are adapted to the later segments’ baseline. The baseline is shifted similarly as in 

Equation (14). The resulting segments are saved in the vector xBW,ok,m. 

Step 4: Interpolate the forward and backward adjusted baselines of all not trusted (“condition not 

free”) segments. For every segment with Ck = 0 between two trustworthy segments the final 

reconstruction is calculated as: 

, , = ′ − + 1′ + 1 , , + ′ + 1 , , , if = 0 (15)

Here L' is the number of segments between the two closest trustworthy segments and j is relative 

position of the segment within this group. Hereby j = 1 would be assigned to the temporally earliest 

segment and j = L' is assigned to the temporally latest segment. All not trustworthy segments before 

the first trustworthy segment are equal to the backward adjusted segments xBW,ok,m. At the back of the 

signal, all not trusted segments after the last trustworthy segment are equal to the forward adjusted 

segments xFW,ok,m. 

Step 5: Adjust the baseline of all MA segments. The baseline of the artifact segments is adapted to 

the “ok” segments: 

, , = ′ , + ̅ , , + ̅ , , /2, for = 1,… , /2  (16)

As described in Step 1 of Section 2.1.5 Reconstruction, ̅ , , is the average value of the last Lbase 

seconds of the previous “ok” segment and ̅ , , is the average value of the first Lbase seconds of 

the following “ok” segment. 

After this step, the reconstructed signal y(t) is given by: ( ) = , , , , , , ⋯ , , ,( )/ , , ,( )/ , , ,( )/  (17)

2.2. Validation 

2.2.1. Measurements 

We used overnight NIRS measurements of cerebral (prefrontal) [O2Hb] and [HHb] to validate the 

algorithm. Twelve healthy adolescent males (age 10–16 years) slept on two separate nights in the sleep 

laboratory of the University Children’s Hospital Zurich, Switzerland. The mean sleep time was 8.5 h. The 

detailed protocol is described in Metz et al. [21,22]. The study was approved by the ethical committee of 

the Canton of Zurich and informed consent was signed by the legal representatives of the adolescents.  

2.2.2. NIRS Instrumentation 

Measurements of cerebral hemodynamics and oxygenation were performed by the OxyPrem NIRS 

device. It is a three wavelength (760, 805 and 870 nm) continuous wave NIR spectroscope developed 

in-house which is electronically similar to a previously described device [66]. The NIRS optode 

employs four sources and two detectors at two different source-detector separations (1.5 and 2.5 cm). 

Detectors and sources are connected by a flexible printed circuit board, i.e., relative movements were 
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possible to some extent. The data were recorded at a sampling frequency of 35 Hz. [O2Hb] and [HHb] 

were calculated by the self-calibrating algorithm [44] for two different regions including two sources 

and two detectors each. A schematic drawing of the sensor can be found in Figure 6a of reference [2]. 

The self-calibrating algorithm cancels long-term drifts, e.g., drift from light sources [44]. OxyPrem is 

embedded into soft medical grade black-colored silicone to ensure comfort of the subjects. It 

additionally featured an accelerometer (ADXL330, Analog Devices, Norwood, MA, USA; sensitivity:  

0.3 V/g, resolution 8 bit, i.e., 26 analog to digital converter units per g) to monitor the subject’s 

movements. The accelerometer was soldered directly next to one of the two detectors within the silicon 

mold. The accelerometer data were sampled synchronically with the NIRS data at 35 Hz. The NIRS 

optode was placed at the subject’s left forehead, approximately above the left prefrontal cortex. 

2.2.3. Validation of AMARA against Human Scorers, MARA and ABAMAR 

The new algorithm (AMARA) was validated against (i) manual artifact scoring by experts with 

experience in NIRS data processing; (ii) MARA; and (iii) ABAMAR. Four expert human scorers  

(S1–S4) identified manually the artifacts in the 24 recordings. These experts had a minimum of two years of 

experience in post-processing of large NIRS data sets, however with different applications. For MARA, the 

same MSD parameters were used as for AMARA. ABAMAR was implemented adopting the parameters 

given in [63] except for the motion detection threshold, which was set to 0.2–0.55 g/s in order to be better 

adapted to our measured data (g: earth’s gravity). AMARA was applied to [O2Hb] and [HHb] time series. 

[O2Hb] and [HHb] time series of the long light path (source-detector separation: 2.5 cm) was used. 

The [O2Hb] and [HHb] time series were segmented into 30 min time periods and presented to the 

scorer (S1 to S4) one after the other. The subsequent presentation of 30 min time periods helped to 

increase the accuracy of the scoring. In addition to the NIRS data, the corresponding acceleration signals 

for the x-, y- and z-axis were presented simultaneously to the scorer (plot not shown). Four signals  

(2 × HHb and 2 × O2Hb) were evaluated in each night, because the sensor measured two brain regions. 

This led to a total of 96 signals with a mean duration of 8.5 h. A binary artifact signal was obtained from 

each scorer containing “1” for every time point scored as an artifact. An artifact was considered as a 

“real” artifact when at least three human scorers marked it as artifact. The following measures were 

calculated to compare the different algorithms: (i) the total number of artifacts (NMethod) identified in all 

recordings identified by each method; (ii) the total number of “real” artifacts (Nreal); (iii) the average 

number of artifacts per signal calculated as the total amount of artefacts divided by the 24 measurements 

and the four signals per measurement ( 	 = NMethod/24/4); (iv) the mean length of an artifact (L); (v) the 

number of not identified “real” artifacts (NI); (vi) the sensitivity of the method S = (Nreal – NI)/Nreal;  

(vi) the mean number of artifacts within a “real” artifact ( ), and (vii) the number of false positives 

(FP), defined as the number of detected artifacts not occurring within a “real” artifact. To compare 

AMARA with MARA, all artifacts found by MARA were set to “true” and FP, NI, S and 	 were 

compared. To compare specifically the movement detection between AMARA and ABAMAR, only the 

ABAMAR artifacts were set to “true” and again FP, NI, S and  were compared. In addition to the 

artifacts found by AMARA, artifacts found only by the movement detection of AMARA were also taken 

into account (denoted by AMARAacc in Tables 2 and 3).  
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Table 2. Performance of artifact detection of AMARA, MARA, ABAMAR and the human 

scorers S1 – S4. In total, each scorer analyzed 96 signals. NMethod: number of total artifacts 

found. : average number of artifacts scored per signal ± SD. L: average length of the 

artifacts in s ± SD. NI: not identified artifacts; as percentage of “real” artifacts Nreal in 

parenthesis. S: sensitivity S = (NI – Nreal)/Nreal. : average number of artifacts detected 

within a “real” artifact ± SD. “Real” artifacts are those identified by at least 3 of the 4 

human scorers. The total number of “real” artifacts was 6228. FP: number of false positive 

detections; as percentage of the total number NMethod of artifacts in parenthesis. 

 S1 S2 S3 S4 AMARA MARA ABAMAR AMARAacc 

NMethod 5553 5011 6998 7526 14,695 12,732 8478 11,334 

 58 ± 24 52 ± 22 73 ± 30 78 ± 28 153 ± 42 133 ± 60 88 ± 29 118 ± 35 

L [s] 101 ± 42 74 ± 29 43 ± 18 87 ± 42 7 ± 2 3 ± 1 24 ± 10 26 ± 5 

NI 
306  

(4.9%) 

866  

(13.9%) 

269  

(4.3%) 

768  

(12.3%) 

823  

(13.2%) 

1427  

(22.9%) 

487  

(7.8%) 

362  

(5.8%) 

S 95.1% 86.1% 95.7% 87.7% 86.8% 77.1% 92.2% 94.2% 

 1 ± 0.08 1 ± 0.12 1 ± 0.08 1.1 ± 0.61 2.3 ± 1.9 2.3 ± 2.4 1.2 ± 0.6 1.4 ± 1.1 

FP 280 (5.0%) 144 (2.9%) 1301 (18.6%) 
674  

(9.0%) 

2374  

(16.2%) 

1779  

(14.0%) 

1889  

(22.3%) 

3088  

(27.2%) 

Table 3. Left part: Detection performance comparing artifacts identified by AMARA, 

AMARAacc and ABAMAR with MARA. The MARA artifacts (12,732 in total) were 

considered as the true ones, i.e., MARA was the reference for comparison with the other 

algorithms. Thus, MARA has a sensitivity of 100%, no false positives and no missed ones. 

Right part: Comparison of the movement detection process; the ABAMAR (where the 

artifact detection only relies on the acceleration signals) artifacts (8478 total) have been set 

as true. Please refer to Table 2 for the description of the variables. AMARAacc: Movement 

detection part (Section 2.1.1) of the AMARA algorithm. Thus, only artifacts identified 

with accelerometer data were considered as artifacts. 

 
Artifacts Identified Movements Detected 

MARA AMARA AMARAacc ABAMAR ABAMAR AMARAacc 

NI 0 
(0%) 

2739 
(21.5%) 

2271 
(17.8%) 

2410 
(18.9%) 

0  
(0%) 

686  
(8.1%) 

S 100% 78.5% 82.2% 81.1% 100% 91.9% 

 1 ± 0.00 1 ± 0.07 1 ± 0.05 1 ± 0.00 1 ± 0.00 1.2 ± 0.78 

FP 0 
(0%) 

6793 
(46.2%) 

5116 
(45.1%) 

3195 
(37.7%) 

0  
(0%) 

1969  
(17.4%) 

3. Results 

3.1. Validation against the Human Scorers 

In total, 6228 “real” artifacts were identified (i.e., at least three out of four human scorers agreed). 

An overview of the validation results can be found in Table 2 and Figure 3. The sensitivity to “real” 
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artifacts of AMARA was S = 86.8%. The human scorers reached a sensitivity of S = 86%−96%, 

ABAMAR 92.2% and MARA 77.1%. AMARA had a higher sensitivity when only the movement 

detection was taken into account (taking place before the MA detection; S = 94.2%, AMARAacc in 

Table 2). This was higher than ABAMAR’s sensitivity, which relies on its detection only on the 

accelerometer signal and is directly comparable. It was also close to the sensitivity of the human 

scorers S1 and S3. This means that AMARA’s sensitivity is reduced due to rejection of MAs within 

identified movement epochs. One explanation might be that small (in terms of amplitude) artifacts 

close to large artifacts were not detected. The large artifacts possibly elevated the detection threshold 

above the amplitude of small artifacts. Subtle movements accounted most likely for the remainder of 

the undetected artifacts of AMARA (461 of 823, NI = 44%). Slow movements below the detection 

level may have caused this problem; it may also have been possible that some artifacts were not related 

to movements.  

 

 

Figure 3. Summary of the validation results. (a) Number of total artifacts (NMethod), 

subdivided into false positives (FP, black) and true positives within 'real' artifacts (grey) 

and not identified (NI, white). The total number of artifacts found by each algorithm/human 

scorer is represented by the sum of 'within "real" artifact' + FP. The horizontal line 

represents Nreal = 6228; (b) The mean number of artifacts detected within one “real” 

artifact ( ); (c) The mean length (L) of identified artifact segments; (d) The average 

number ( ) of artifacts identified per recorded signal ([O2Hb] or [HHb]). S1–S4: human 

scorers no. 1–4. Error bars always represent the standard deviation. 
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Figure 4. (a) Comparison of the performance in artifact identification of the different 

methods and human scorers in case of the occurrence of two successive artifacts. x(t): time 

course (8 min) of [O2Hb] of an overnight recording in one subject. Black bars below the 

tracings mark identified artifacts. MARA, ABAMAR, AMARA: The reconstructed signals 

were based on the different methods. MARA identified five artifacts and always corrected 

the baseline to the baseline of the previous segment. ABAMAR identified two artifacts; the 

artifact was replaced by a constant value and the baselines were corrected to the value 

before the occurrence of the artifacts. AMARA identified three artifacts (indicated by the 

three black bars on top of the two longer ones below the tracing) occurring within two 

movement periods. The baselines before and after an artifact do not have to be at the same 

level due to the applied reconstruction. S1–S4: reconstructed signal based on the artifacts 

identified by human scorers S1–S4. The human scorers identified one artifact or two 

artifacts, which might have canceled out physiological information (i.e., signal trends just 

before, after and between the artifacts). ax, ay and az represent the x-, y- and z-axis of the 

acceleration sensor data; (b) Time course (ca. 8.5 h) of cerebral [O2Hb] (sensor placed 

approximately above left prefrontal cortex) in a whole-night recording of a subject 

(different subject than the one illustrated in Figure 4a). x: uncorrected signal; a number of 

obvious movement related artifacts are visible. The AMARA reconstruction retained the 

increasing trend of the signal across the night, which was visible in the original signal. 

ABAMAR and MARA however, changed the trend of the original signal. An obvious 

artifact after approximately 4 h was not recognized by ABAMAR, because the motion 

change was only slightly above the noise level in the acceleration signal and thus below the 

detection threshold. However, also without this jump, a decreasing trend remains in the 

ABAMAR signal. Reconstruction of AMARA was applied to reconstruct the signal based 

on the artifacts identified by S1–S4. Acceleration signals as described in Figure 4a. 
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The total number of artifacts detected was much higher for AMARA (14,695) than for the human 

scorers (~5000–7500), ABAMAR (8478) and MARA (12,732, see Figure 3a). The mean length of the 

artifacts was consequently much shorter for AMARA (~7 s) than for S1 to S4 (40–100 s) and 

ABAMAR (24 s). Only MARA detected shorter artifacts (3.4 s) than AMARA (Figure 3c). The 

number of artifacts within a “real” artifact is on average higher for AMARA and MARA (~2.3 for 

both), the human scorers mostly found one; ABAMAR 1.2 and AMARAacc 1.4 artifacts. This 

indicates that the human scorers may have combined multiple artifacts close to each other into a single 

one (an example is illustrated in Figure 4a). Congruently with a larger , AMARA found also 

more false positives (FP; 16.2%) than S1, S2 and S4 (~3%–9%) and MARA (14%). ABAMAR (22.3%) 

and S3 (18.6%) identified a higher percentage of FP than AMARA. FP were highest for AMARAacc. 

Thus, the additional inspection of the NIRS signal using the MSD method reduced FP by 714. 

Compared to the increase in artifacts not identified (NI) of 461, overall the additional analysis of the 

NIRS signal was beneficial. 

3.2. Comparison of AMARA against MARA 

When all MARA artifacts were considered “true”, the total number was 12,732 (Table 2, Nmethod). 

Results of the comparison of AMARA with MARA are depicted in Table 3. With AMARA 21.5% of 

the MARA artifacts were not detected, but on the other side, AMARA identified 6793 additional 

artifacts (46.2% of all AMARA artifacts). ABAMAR and AMARAacc detected only the motion itself 

and 18.9% and 17.8% of motions, respectively, were not identified. This means that approximately 

18% of the artifacts detected by MARA were not related to movements. This amount was three times 

larger than the one of human scorers, who classified on average 6.8% of all “real” artifacts as not 

related to a movement.  

3.3. Validation of the Movement Detection  

ABAMAR detects artifacts only based on the change in the acceleration signal and thus can be used 

to validate the movement detection itself. The movement detection of AMARA (AMARAacc, Table 3) 

missed 8.1% of the ABAMAR movements and ABAMAR missed 17.4% of the movements identified 

with AMARA.  

3.4. Reconstruction  

Reconstruction of the signal by the different algorithms is illustrated in Figure 4. The same 

reconstruction as implemented in the AMARA algorithm (Section 2.1.5) was applied to artifacts 

marked by human scorers S1–S4. This type of reconstruction maintained the global increasing trend of 

the raw signal across the night. ABAMAR did not identify one major artifact (Figure 4b), which was 

detected with all other methods. This resulted in a signal jump at approximately 4 h. However, even if 

this jump were neglected, the global trend would still be a decreasing one. A decreasing trend was also 

resulting with the MARA reconstruction. A resulting opposite trend was observed for most 

reconstructions with MARA and ABAMAR (data not shown). 
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4. Discussion 

4.1. Algorithm 

We introduced an automated accelerometer-based movement reduction algorithm (AMARA) that 

combines MARA, developed by our group [34], and integrated ideas from Virtanen et al. [63]. 

Furthermore, AMARA adds new features to the artifact detection and reconstruction process. MAs 

were detected by the MSD, as in MARA. In addition, movements within the accelerometer signal were 

detected in a similar way. This method of movement detection is different to the one used by  

Virtanen et al. [63], which determined whether the acceleration change exceeds 1.3 g/s (implemented 

here as 0.2–0.55 g/s). This definition assumes that artifacts in the NIRS signal are only related to 

relatively fast movements. Artifacts due to slow movements were neglected, e.g., when the subject 

slowly rotated the head and then was lying on the sensor. This induced changes in light coupling due to 

a different pressure on different parts of the sensor or due to movement of the whole sensor. By 

calculating the MSD of the acceleration signal, any kind of movement could be detected, if it exceeded 

the noise level (see Step 2, Section 2.1.1 Movement detection). A threshold for the acceleration change 

was not needed. Instead, automated threshold determination was achieved by the Zack triangle  

algorithm [64]. This dramatically reduced the time effort to find the optimal threshold values and 

enabled automatic adaptation of the threshold throughout a recording. The automated threshold 

detection was particularly practical for long-term recordings such as our sleep measurements, where 

the noise level of the signal (and hence the MSD) varied during the recording. For example, we often 

observed that the respiration component of the NIRS signals depended on the position of the subject. 

In one position, the sensor may be freely attached to the subjects’ head while, in another one, the 

sensor may be trapped between the subjects’ head and the bed. In the latter case, the amplitude of the 

respiration signal was larger. Consequently, the noise floor in the MSD was increased. Therefore, it 

was not possible to set an optimal constant threshold for an entire recording. Either smaller MAs were 

missed or the number of false positives increased when the threshold was set too low. On the other 

hand, AMARA may have missed small MAs close to large MAs, depending on the parameters applied 

(MSD window length (2q + 1,) moving Zack triangle window length (wsize) and step size (wstep)). The 

reason is that the threshold was calculated for 5 min windows and large MAs in the MSD would raise 

the threshold and therefore mask smaller MAs. This could be corrected by applying smaller windows, 

which would, however, lead to problems with the detection of large artifacts. 

4.2. Validation  

The validation revealed that AMARA identified more MAs than the other two algorithms, while 

conserving more of the physiological information (trend). 

As depicted in Figure 4, for example, the human scorers identified longer artifact periods, which 

incorporated a certain amount of non-artifact data. AMARA identified shorter artifact periods  

(see Table 2 and Figure 3) and it conserved better the physiological trend in the data. It was assumed 

that this physiological trend was related to MAs.  

A human classifier is able to detect short MAs (in the order of minutes), whereas the algorithms 

cannot achieve this without additional information about the signal. Human scorers are highly adaptive 
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and combine multiple artifacts close to each other into one artifact, if the artifact-free periods in 

between are very short. How well the human scorer detects the MAs depends on the length of data 

presented at a time. This interval was 30 min for our validation; the shortest possible artifact marked 

by a human scorer was approximately 3 s. This means the human scorers were not able to detect very 

short MAs. On average the MA duration was >30 s (Figure 4a), thus, two MAs close to each other 

were easily distinguishable (as e.g., also was for S3 and S4 in Figure 4a). The length and number of 

artifacts identified may depend on the motivation of the human scorer and may decrease with the 

amount of data to process. Thus, it is evident that an automated tool is of great value. The parameters 

of the algorithm need to be adapted somewhat for a new study. However, throughout studies, all 

recordings can be processed with the same set of parameters.  

The sensitivity of AMARA was comparable to sensitivity of S2 and S4 and was higher than for 

MARA. S1 and S3 did identify most of the artifacts. It should be noted that a large number of missed 

artifacts were presumably not related to movements or the movements were too small to be detected by 

either the ABAMAR or the AMARA movement detection algorithm. AMARA suffers less from FP 

than ABAMAR but resulted in more FP than the human scorers, except for S3. Comparing the number 

of FP between AMARAacc and AMARA showed that the MARA-type of identification of artifacts in 

the signal reduced the number of FP by ~10%. The relative number of FP was smaller for AMARA 

and MARA compared to ABAMAR, despite the higher value of , i.e., with AMARA and MARA 

multiple artifacts were identified within one “real” artifact. 

When comparing exclusively with MARA, the new automated and accelerometer-based AMARA 

was able to detect more artifacts, which were all specifically related to movements. This is favorable 

when artifacts are related to movements. If artifacts were not related to movements, MARA would be 

the better choice. However, MARA identified many more artifacts not related to movements than the 

human scorers did, which suggests that a large portion of those may be false positives.  

It is interesting that the mean length of the artifacts was double in length with AMARA than with 

MARA, although both methods rely on the same MSD detection and thresholds. Compared to MARA, 

more parameters need to be defined for AMARA (Table 1), but for each parameter, a default value is 

provided. The most important parameter for the reconstruction is “condition free”, which should be 

visually identified before applying AMARA to the data, e.g., by inspecting video recordings of the 

subjects. Note, however, that it is possible to determine the “condition free” parameter without video 

recordings, because the position of the sensor on the subject is known. Still, video recordings simplify 

this task.  

In our data set, AMARA identified more movement periods compared to ABAMAR and the periods 

were of similar length. However, since there is no possibility to determine real movements, the 

conclusion derived from our application cannot be generalized. ABAMAR could perform better than 

AMARA. As for MARA, the threshold for ABAMAR has to be chosen for every type of signal 

individually while AMARA finds the threshold automatically with the predefined set of parameters 

provided in Table 1. Since the same parameters can be used throughout an entire study, this increases 

processing speed and is in particular helpful for studies including a large number of recordings. 
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4.3. Reconstruction 

The reconstruction process was adapted to the needs of long measurements. It fixes specific trustworthy 

regions based on the accelerometer data and minimizes the baseline differences in between these 

trustworthy parts. ABAMAR (as AMARA) does not necessarily correct the baseline at every detected MA, 

because it determines if the baselines difference exceeds 2.6 × SD (Equations (13) and (14)). MARA and 

ABAMAR are based on a forward reconstruction, which adjusts the baseline of the next segment to the 

previous one (Figure 4a). This is practical for functional brain activation studies, where the total 

measurement time is less than 30 min and the absolute time course is not of interest. However, as 

shown in Figure 4b, for measurements of longer duration (hours) this method tends to drift 

continuously and leads to unrealistic values, e.g., the [O2Hb] and [HHb] showed a decreasing instead 

of an increasing trend. This may be related to a very slow hemodynamic response after a MA: often a 

drift occurs for several minutes before returning to baseline levels [63]. Such a drift was not visible 

after every artifact and was non-linear. Thus, the true baseline cannot be determined and it is difficult 

to detect such movement-induced slow artifacts. They may be caused by a physiological reaction, e.g., 

due to a change in head position [67]. Although the light coupling is canceled by the employed  

self-calibrating algorithm [44], under certain circumstances, light coupling changes still have a small 

influence on [O2Hb] and [HHb]. On the other hand, such drifts may also reflect real changes in the 

brain oxygenation, for example caused by transient changes in breathing and/or arterial  

CO2 [39,68,69], but it is most likely a combination of all these factors. AMARA could have been 

implemented in a way to eliminate any drifts occurring during a few minutes (e.g., 2 min) after an 

artifact—but also real signal changes would have been suppressed. In Figure 4b, it is obvious that parts 

of the signal were missing. Due to saturated detector channels, parts of the signal were lost and were 

not displayed. These missing data, however, have no influence on the reconstruction, whenever the 

length of the missing data is either short or the missing data are surrounded by “condition free” 

segments (both is the case in Figure 4b). In the former case, a small signal change can be assumed for 

the missing data. In the latter case “true” fixation points exist and the data still can be adjusted 

properly. If both conditions are not fulfilled, e.g. the missing data length is longer than for the longest 

“condition free” segment and there is no “condition free” segment on one side of the missing data, the 

reconstruction could get instable and signals drifts to unrealistic values.  

4.4. Limitations of the Proposed AMARA Approach and the Validation 

Apart from the positive evaluation of AMARA the following limitations of AMARA and our 

approach to validate AMARA must be considered. (1) AMARA also relies (as MARA and ABAMAR) 

on a choice of specific parameter values that have to be chosen manually. Although we minimized this 

need, AMARA uses nine parameter values, which, however, can all be set for a whole study instead of 

having to be set then for each measurement individually. This limits the adaptive nature of the 

algorithm to data of a specific set-up. The parameters have to be modified if measurements with a 

different experimental setup are processed. (2) For the validation of AMARA, we used the information 

on artifacts based on four humans scoring the artifacts manually. A better solution would be to use a 

non-subjective gold standard; however, such a gold standard does not yet exist. A solution could be to 
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simulate artifacts. Then the true values would be known, but this requires making several assumptions 

about MAs, which may not apply to real data. 

5. Conclusions 

We developed a new automated artifact removal algorithm (AMARA) based on MARA and 

integrated the beneficial features of ABAMAR. The aim was to achieve long-term stability in the 

reconstruction. It relies on the fixed artifact free signal parts predefined by an accelerometer. The main 

advantages are the automated nature, the adaptive threshold, and the reproducibility of the results. In 

our validation, AMARA identified artifacts comparable to human scorers. Compared to MARA, 

AMARA detected more of the artifacts, which were specific to movements but more parameters had to 

be predefined. However, the same parameters can be used for several recordings and processing speed 

per measurement is much higher than with MARA. Compared to the movement detection of 

ABAMAR, AMARA detected more movements based on the accelerometer data. In summary, 

AMARA outperformed MARA in terms of sensitivity, false positive detections, and could  

time-effectively be applied to a large amount of long-term NIRS data. 

For future work concerning the presented algorithm and the approach to use accelerometer data in order 

to improve the NIRS signal quality, we suggest three steps: (1) sensitivity and specificity analysis should be 

conducted for all three algorithms (MARA, AMARA, ABAMAR), (2) further work should be directed to 

make AMARA more data-adaptive, i.e., methods should be identified and selected that determine the 

optimal parameter values based on optimization routines. These optimized parameter values should then be 

tested with independent data sets, (3) and finally, finding novel strategies to include acceleration data into 

the NIRS post-processing routines would be advantageous in order to improve the NIRS data quality. 

Improving the NIRS signal quality is an important aspect to promote the usage of NIRS devices in 

biomedical applications, like intensive-care units or experimental brain research. 
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