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Fully automatic GBM 
segmentation in the TCGA-GBM 
dataset: Prognosis and correlation 
with VASARI features
Emmanuel Rios Velazquez1, Raphael Meier4, William D Dunn Jr5, Brian Alexander1, 
Roland Wiest6, Stefan Bauer4,6, David A. Gutman5, Mauricio Reyes4 & Hugo J.W.L. Aerts1,2,3

Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully 
automatic MR-based segmentation method by comparing it to manually defined sub-volumes by 
experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association 
with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging 
archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor 
Image Analysis (BraTumIA). Spearman’s correlation was used to evaluate the agreement with VASARI 
features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes 
showed moderate to high agreement with manually delineated volumes (range (r): 0.4 – 0.86). Also, 
the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 
and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The 
auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest 
AUC (0.66, CI: 0.55–0.77 and 0.65, CI: 0.54–0.76), comparable to manually defined volumes (0.64, 
CI: 0.53–0.75 and 0.63, CI: 0.52–0.74, respectively). BraTumIA and manual tumor sub-compartments 
showed comparable performance in terms of prognosis and correlation with VASARI features. This 
method can enable more reproducible definition and quantification of imaging based biomarkers and 
has potential in high-throughput medical imaging research.

Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults and it is among 
most lethal primary tumors, characterized by an unfavorable prognosis with a 5-year survival rate of 
5%1. According to the Cancer Genome Atlas Research Network, GBM tumors should be considered as 
different entities with distinct molecular characteristics, each with different response to treatment2.

Studies have shown that phenotypic features, captured non-invasively by structural magnetic resonance 
(MR) imaging, are able to stratify GBM patients into distinct prognosis groups3,4. For instance, quantita-
tive measurements of the relative sub-division of tumors into the non-enhanced, contrast-enhanced and 
necrotic portions have been associated with response to treatment and prognosis5–7.
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Also radiogenomic analyses have linked specific MR phenotypes to gene expression profiles in GBM, 
where molecular characteristics of tumors can be predicted by extraction of characteristic MR features 
of the necrotic core and the contrast-enhanced tumor rim8–10,38. However, these features have been 
frequently assessed qualitatively, i.e., by scoring “presence or absence of enhancement” or by manual 
delineation of the tumor volumes and sub-compartments, both of which are influenced by inter-rater 
variability. Particularly in MR images, the inter-observer agreement of GBM boundaries is troublesome11.

To elucidate meaningful associations between imaging features and survival or genomic alterations 
of GBM, accurate and reproducible measurement of MR features is critical12,13. Automatic segmentation 
methods reduce inter-observer variability in tumor definition and allow for more reproducible quantifi-
cation of imaging based tumor metrics14–16. Efforts such as the VASARI Research Project have enabled a 
controlled vocabulary to describe the morphology of GBM on MR images17.

Recently, a dedicated fully automated segmentation tool for brain tumors (BraTumIA), has shown to 
provide statistically equivalent tumor volumes to those manually defined by medical experts, in terms 
of volume and spatial overlap18. However, the potential to define prognostic tumor sub-volumes in MR 
images needs to be evaluated. Zhang et al. proposed an automated segmentation algorithm to define 
proportions of MR-GBM sub-volumes, which Mazurowski et al. associated with survival on 68 TCGA 
patients, however without comparison with expert defined sub-volumes or external validation of the 
segmentation algorithm19,20.

We hypothesize that automatic MR based sub-volume tumor segmentation of GBM will result in 
comparable prognostic power and association with VASARI data, compared to manually defined 
sub-volumes.

The purpose of this study is to evaluate the prognostic value of GBM tissue compartments segmented 
fully automatically using BraTumIA as compared to those manually delineated by expert physicians in 
the TCGA-GBM dataset21. BraTumIA allows fully automatic segmentation of the four relevant tumor 
sub-compartments: enhancing region, non-enhancing region, necrotic core and edema, and eliminates 
user interaction and therefore intra – and inter – observer variability.

Furthermore, we compared the resulting automatically segmented tumor sub-volumes with the 
VASARI17 features for their association with survival. Because BraTumIA is publicly available22 and eas-
ily accessible by download, its application in GBM could have a large impact in high-throughput data 
mining evaluations of imaging biomarkers in GBM such as Radiomics and Radiogenomics23–25.

Materials and Methods
Patient selection. MRI sets were downloaded from the Cancer Imaging archive (TCIA) for 109 
patients. This is a subset of the patients that were included in the Cancer Genome Atlas project26. MR 
imaging sets included T1w, post-contrast T1w, T2w and fluid-attenuated inversion recovery (FLAIR). All 
MR imaging sets were reviewed to confirm pre-surgery status. All images have been previously de-iden-
tified and are publicly available, therefore no Institutional Review Board approval was required.

Automated segmentation. The Brain Tumor Image Analysis (BraTumIA) software was employed 
for automatic segmentation of MR sets. The software requires the user to load the four respective MRI 
modalities (T1, post-contrast T1, T2, and FLAIR). First, the images are preprocessed, which encompasses 
skull stripping followed by multimodal rigid image registration (where the post-contrast T1-weighted 
image serves as template). Second, segmentation is performed via voxel-wise tissue classification. Every 
voxel is classified into either unaffected tissue (CSF, GM, WM) or tumor tissue (necrosis, edema, contrast 
enhancing and non-enhancing tumor). This process can be subdivided into three subsequent stages: a 
feature extraction yielding a voxel-wise feature vector, a supervised classification step and a spatial regu-
larization. The feature vector is composed of appearance-sensitive (multimodal intensities and intensity 
differences, first-order and gradient textures) and context-sensitive features (atlas-normalized coordi-
nates, multi-scale symmetry features and ray features). The classifier is a decision forest that outputs 
for every voxel and tissue type a corresponding probability. The predicted tissue class label of a voxel is 
chosen as the one with the highest probability. The regularization serves as a refinement of previously 
generated label maps and is conducted in a hierarchical manner27. It is formulated as an energy mini-
mization problem of a conditional random field, where the approximate global optimum corresponds 
to the final segmentation thus guaranteeing repeatability of results27,28. After segmentation, label maps 
can be overlaid on MR images. In Fig. 1, a representative tumor segmentation of a TCIA case is shown.

Prior to the application to new patient data, the segmentation method was trained on 56 high-grade 
glioma patient image sets not included in the present study. These image sets encompassed the training 
data used in the study of Porz et al.18, and an additional set of 20 patient image sets of the Inselspital, 
University Hospital Bern. The training data was manually segmented by expert radiologists according 
to a pre-defined protocol29. This stand - alone trained BraTumIA model was applied directly to the 109 
MRI sets included in this study without user interaction, model re-training or needed previous expertise.

The segmentation method of BraTumIA was ranked among the top performing methods at the 
MICCAI Brain Tumor Segmentation Challenges (BRATS) 2012 and 201330. Moreover, it belongs to the 
fastest automatic methods for brain tumor segmentation to date with an average computation time of 
less than 5 minutes31.
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Manual delineations. The software platform Velocity AI (Atlanta, GA) was used to manually delin-
eate, slice-by-slice, a region containing the abnormal signal detected in the post-contrast T1w images, 
which included the contrast enhancing and necrotic regions for 109 patients.

Similar regions of interest were manually drawn for FLAIR images, encompassing the tumor’s total 
abnormal signal detected by FLAIR, including all the bright areas indicative for edema as well as abnor-
mal regions. The FLAIR region of interest was restricted to the ipsilateral side of the tumor and did not 
include signals that may be originated due to ventricular spread, aiming to estimate the overall tumor 
involvement.

Contrast enhancement and necrosis volumes were determined from the contours drawn on the 
post-contrast T1w images on an assisted mode using FAST32. This algorithm segments the initial 
post-contrast T1w contours into binary images, using a k-means clustering algorithm, resulting in a 
binary tissue classification of the post-contrast T1w masks into the contrast enhancing volume and 
necrosis volume, based on relative pixel intensity. All resulting contrast enhancing and necrotic volumes 
are manually edited on a slice-by-slice basis.

A post contrast abnormal volume (PCAV) was defined as the sum of the necrotic and contrast 
enhancing volumes. The total abnormal volume (TATV) was defined as the entire abnormal signal in 
the FLAIR images. The edema region (FLAIR envelope) was defined as the difference of the PCAV from 
the TATV (Fig. 2).

Statistical analysis. Volumetric agreement between the automatically segmented volumes and man-
ual contours was assessed using Spearman rank correlation for all volumes. Because the non-enhancing 
tumor region was only defined by the automatic segmentation method, we re-defined the automatic 
edema volume as the sum of auto edema and auto non-enhancing regions, for comparison with the 
manual edema volume.

Figure 1. Graphical user interface of the BraTumIA software. After loading the required MR set 
(T1w, post contrast T1w, T2w and FLAIR), skull stripping, multimodal registration and classification are 
performed without user interaction. An overlay of the segmentation results is shown for a representative 
patient (Clockwise: T1w, post-contrast T1w, T2w and FLAIR).
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We also compared proportion features derived from the automatically segmented volumes against 
semi-quantitative measurements scored using the VASARI visual feature guide3. Four relevant VASARI 
features were included: proportion of enhancing tumor, proportion of non-enhancing tumor, propor-
tion of necrosis and proportion of edema. To allow this comparison, the percent of enhancing tumor 
(enhancing volume/TATV), percent of non-enhancing tumor (non-enhancing volume/TATV), percent 
of necrosis (necrosis volume/TATV) and percent of edema (edema volume/TATV) were defined for 
the automatically segmented volumes. Because the VASARI features are scored as ordinal variables 
(e.g. enhancing volume is < 5% of the entire abnormality, all categories are: < 5%, 6–33%, 34–67% and 
68–95%)17, we used the Spearman rank correlation to compare the agreement between the VASARI fea-
tures and the proportion features generated from the automatically segmented tumor sub-compartments.

Next, the prognostic performance of the automatic or manually segmented volumes on pre-operative 
MRI was assessed using the concordance index (CI), which is the probability that among two randomly 
drawn samples, the sample with the higher risk value has also the higher chance of experiencing an event 
(e.g., death) and takes time to event and censoring into account.

As endpoints we used overall survival and 1 year survival calculated from the start of treatment, a 
clinically important endpoint for GBM patients. For the 1 year survival endpoint, data were excluded if 
patients were alive and their follow-up time was less than one year (n =  10). 1 year survival predictive 
performance was evaluated using the area under the curve (AUC) of the receiver operator characteristic 
(ROC). Additionally, we reported the lower and upper bounds of the confidence interval for all CI/AUC 
values.

To assess if a CI/AUC is significantly different than random we used the “noether” method as imple-
mented in the R survcomp package33. To assess if a CI/AUC was higher than another we used a one-sided 
t-test (for the comparison cindex1 > cindex2) for dependent samples, as implemented on the cindex.
comp function of the R survcomp package.

To evaluate if the different sub-volumes had complementary information in a multivariate setting, we 
used a minimum redundancy maximum relevance (mRMR) algorithm implemented in the mRMR R 
package34 on all sub-volumes with respect to one year survival to select a non-redundant highly inform-
ative set of complementary features.

The mRMR algorithm returns a univariate rank of features; we trained logistic regression models 
adding features one by one starting by the highest ranked feature. We cross-validated the performances 
of each model with resamples and retained the model with the highest mean AUC.

Statistical analyses were performed in R (R Foundation for Statistical Computing, Vienna, Austria).

Results
Volumetric agreement between automatic and manual volumes. We investigated the corre-
lation between the automatic and manual techniques to define the tumor sub-compartments: necrosis 
volume, contrast enhancing volume, edema volume (FLAIR), and the composed post-contrast abnormal 
volume and the total abnormal tumor volume. Scatter plots depicting these correlations are shown in 
Fig. 3.

The Spearman’s rank correlation between both segmentation techniques for defining the necrosis 
volume was r =  0.4. High Spearman’s correlations were observed for the contrast enhancing and FLAIR 
envelope regions, r =  0.79 and r =  .77, respectively. Because the non-enhancing tumor was not manually 
defined, we compared the manual edema region with the sum of the auto-segmented non-enhancing 
and edema regions. This resulted in an increased correlation of r =  0.80, and suggests that in terms of 

Figure 2. Tumor sub-compartments as defined by the BraTumIA software. A post contrast abnormal 
volume (PCAV) was defined as the sum of the necrotic and contrast enhancing volumes. The total abnormal 
volume (TATV) was defined as the sum of the four sub-compartments: necrosis, enhancing region, non-
enhancing region and edema. Note that the non-enhancing tumor region was not manually contoured and 
therefore the TATV manual was defined as the sum of necrosis, enhancing and edema regions.
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volumetric association, the sum of auto edema and non-enhancing regions reflects more closely the 
manually defined edema sub-volume.

Strong correlations were observed for both tumor-definition methods for the PCAV (necro-
sis +  enhancing regions) and the TATV (sum of all sub-compartments), r =  0.86 and r =  0.86, respectively.

Figure  4 shows a comparison of the raw volumes for all tumor-sub compartments and edema for 
both tumor definition methods. Statistically significant differences were observed for necrosis, the 
contrast-enhancing tumor, edema and TATV, between both segmentation methods. Overall, the auto 
segmentation method defined significantly smaller necrotic and edema volumes and significantly larger 
contrast enhancing volumes, as compared to the manual ones. No statistical differences were observed 
for the post-contrast abnormal volume.

Comparison with VASARI features. The VASARI features were available for 80 patients. To evaluate 
the correlation between the auto-segmented volumes and the VASARI features, four relevant percent sta-
tistics were calculated: proportion of enhancing tumor, proportion of non-enhancing tumor, proportion 
of necrosis and proportion of edema.

We used the TATV as denominator to determine the sub-volume relative proportions.
The Spearman correlations for the proportion of contrast-enhancing, necrosis and edema with their 

respective VASARI features were: r =  0.35, 0.43 and 0.36 (p <  0.001). The non–enhancing proportion of 
the tumor did not show a correlation with its corresponding VASARI feature (r =  − 0.10; p =  NS).

Additionally we evaluated if the manual volumes are associated with the VASARI features. The 
Spearman’s rank correlations with the VASARI features were 0.17 (p =  NS), 0.67 (p <  0.001) and 0.41 
(p <  0.001), for the percentage of contrast enhancing, percentage of necrosis and percentage of edema, 
respectively.

Fully automatic vs manual: prognostic analysis of tumor sub-compartments. The median fol-
low up of all patients was 10.9 months (range: 0.2–56.2 months). At the time of last follow-up, 81.5% of 

Figure 3. Scatter plots showing the correlation between different tumor regions as defined fully 
automatically or manually drawn. Necrosis showed the weakest correlation ((A), r =  0.4). Stronger 
correlations were found for the FLAIR envelope and contrast enhancing regions, ((B), r =  .765) and  
((D), r =  0.786), respectively. PCAV (necrosis +  enhancing regions) and the TATV (sum of all sub-
compartments), r =  0.86 and r =  0.86, showed strong correlation as well between automatic and manual 
segmentation (E,F).
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the patients had deceased and 18.5% were alive. One year survival rate was 44.4%. One case was excluded 
as survival and follow-up times were not available.

The prognostic performance of the automatic and manual volumes was determined using the C-index. 
For the 1 year survival endpoint, we used the area under the curve (AUC) of the receiving operating 
characteristic (ROC), which is identical to the C-index but can be used for binary classifications.

Figure 5 summarizes the comparison between the manual and auto-segmented volumes in terms of 
outcome prediction. Overall, estimation of 1 year survival showed higher AUC values than prediction 
of overall survival.

Contrast enhancing volume and PCAV were significantly prognostic for both segmentation methods. 
Necrosis was significantly prognostic only for the manual contours. For necrosis, both prognostic perfor-
mance measures were significantly higher for the manual volume as compared to the automatic volume.

Edema (FLAIR) did not show significant prognostic value for any of the segmentation techniques. 
Interestingly, the TATV which encompasses all tumor sub-compartments and the edema did not show 
significant prognostic power, except for the manual TATV C-Index. This underlines the importance of 
performing a meaningful sub-division of the entire GBM lesion into distinct sub-compartments with 
distinct prognostic implications.

The highest AUC values were observed for the contrast enhancing region (AUC =  0.66, p <  0.001) and 
PCVA (AUC =  0.65, p =  0.01) as defined by the auto-segmentation algorithm. However, these AUCs were 
not significantly higher than those estimated for the manual contrast-enhancing and PCVA volumes. The 
non-enhancing region, only segmented by the automatic technique, did not show significant CI or AUC 
values, 0.54 (p =  0.2) and 0.60 (p =  0.08), respectively.

Differences in C-index or AUC between the two segmentation methods were not significant for the 
evaluated volumes (see overlapping confidence intervals in Fig.  5), with the exception of the necrotic 
sub-volume and the TATV, meaning that volumes showed a comparable prognostic value for the auto-
matic and manual segmentations.

The mRMR selection resulted in the auto contrast enhancing sub-volume as the only feature selected 
in the multivariate logistic-regression setting with a mean AUC of 0.67. Adding other sub-volumes 
(either manually or automatically selected) did not improve the logistic regression model accuracy.

Figure 4. Raw volumes in mm3 as determined by manual delineation and by the fully auto-
segmentation. Statistical differences were assessed using the Wilcoxon test.
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Discussion
Medical imaging is moving towards a quantitative computational science, where automated methods 
for tumor definition and characterization are increasingly being developed and applied23. A recently 
developed fully automatic segmentation algorithm (BraTumIA) has shown to provide GBM tumor 
sub-compartments statistically equivalent, in terms of extent and spatial location, to those man-
ually defined by medical experts in MR images18. This study focuses on evaluating as endpoint the 
prognostic implications of the segmented GBM sub-volumes. Therefore we evaluated whether GBM 
sub-compartments defined by the BraTumIA automatic method are comparable in terms of prognosis to 
the sub-volumes defined manually by experienced radiologists in the TCGA-GBM dataset.

Extensive literature has reported on the inter-observer variability with respect to tumor definition in 
GBM14. Previous studies emphasized the importance of minimizing user interaction in order to reduce 
inter-observer variability12,16. Because BraTumIA is a fully automated segmentation tool, it eliminates 
user interaction and thus intra – and inter – observer variability. Imaging based metrics, i.e. the contrast 
enhancing portion of the tumor in pre-operative MR images, have been associated with patient prog-
nosis and response to therapy3,5–7. A crucial step for the development of imaging-based markers is to 
enable their reproducible definition and quantification, as well as to evaluate their importance for patient 
prognosis and response to therapy. Therefore, a fully automatic segmentation tool for GBM, becomes an 
attractive method to identify MR based prognostic markers. Zhang et al. proposed an automatic segmen-
tation algorithm developed and evaluated on 73 TCGA patients, which was compared with manual ref-
erences in terms of volumetric correlation20. Mazurowski et al. applied this method to 68 TCGA patients 
and evaluated automatically defined GBM features for prediction of survival. This study did not compare 
the automatically defined volumes with those defined by medical experts in terms of prognosis19. Both 
studies lacked validation as their methods were developed and evaluated using the same set of patients, 
which limits their generalizability and makes them prone to overfitting and inflated type-I errors35.

This is to our knowledge, the first study comparing the prognostic performance of automatically 
segmented GBM sub-compartments with their manually defined equivalents. We showed that the con-
trast enhancing volume and the post contrast abnormal volume (necrosis +  contrast enhancing) had the 

Figure 5. Prognostic performance (C-index, n = 108/AUC, n = 98) for all tumor sub-compartments 
and composed volumes for the fully automatic segmentation algorithm and manual delineations. The 
concordance index (CI) is a generalization of the AUC, which takes into account the time to event and 
censoring, and provides the probability that among two randomly drawn samples, the sample with the 
higher risk value has also the higher chance of experiencing an event (e.g., death). The symbol * denotes that 
a CI/AUC is significantly different than random (CI/AUC =  0.5) and was determined using the “noether” 
method as implemented in the R survcomp package33. Vertical dotted lines indicate confidence intervals for 
the CI/AUC values. Horizontal solid lines indicate that a performance metric (CI or AUC) is significantly 
higher for the indicated segmentation method as compared to its counterpart (p <  0.05, p-value from the 
Student t test for the comparison cindex1 >  cindex2 as implemented in the R suvcomp package).
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highest ability to predict overall and one year survival. However these predictive values were not signifi-
cantly higher than those obtained with the manual sub-volumes. Interestingly, the total abnormal tumor 
volume, encompassing necrotic, enhancing and non-enhancing tumor portions plus edema did not show 
a significant prognostic power, except for the manually defined TATV CI. This drop in prognostic per-
formance may be driven by the edema, which was not prognostic for both methods. This emphasizes the 
importance of distinguishing the GBM tumor sub-compartments in terms of prognosis.

Necrosis was prognostic for the manually defined volume only. We observed as well that the necrotic 
region was significantly smaller for the auto-segmentation algorithm, as compared to the manual vol-
umes. However the manual definition of necrosis was done by a binary classification of the initial man-
ually delineated region encompassing the necrotic core and the contrast-enhancing tumor region. This 
binary classification was performed by applying an intensity threshold that varies across patients and 
inevitably introduces variability to the definition of the necrotic and contrast-enhanced sub-volumes. 
This may also explain why the manual necrotic volumes are significantly larger than the automatic ones, 
while conversely the contrast-enhanced volumes are significantly smaller for the manual method.

Overall, the sub-volumes segmented automatically appeared to be comparable in terms of prognosis 
to the manually delineated sub-volumes. The mRMR-based multivariate feature selection indicated that 
the auto contrast-enhancing sub-volume had the highest predictive accuracy and that adding other vol-
umes (either manually or automatically segmented) did not improve the prediction accuracy.

We compared the auto-segmented volumes with relevant VASARI features. The results showed that the 
non-enhancing relative proportion of the tumor showed no correlation with the VASARI non-enhancing 
proportion. This perhaps due to the difficulty, even for expert raters, to define the non-enhancing tumor 
volume. The correlations for the percent of necrosis, contrast-enhancing and edema with their corre-
sponding VASARI features ranged from weak to moderate, however statistically significant in all cases. 
This correlation was not significant for the manual contrast-enhancing portion, while it was stronger for 
the manual necrotic portion and its corresponding VASARI feature.

The dataset evaluated in this study is a subset of a larger cohort of patients included in the TCGA con-
sortium26, that involves a number of institutions with different image acquisition protocols and different 
scanners, representing the variability frequently observed in the routine clinical practice, and therefore 
is remarkable that the fully automated segmentation, which does not require user intervention nor pre-
vious expertise, renders significantly prognostic volumes, as good as the manually delineated by medical 
experts. Furthermore, the data used for training BraTumIA was manually segmented by different expert 
raters and according to a different segmentation protocol than the TCGA data used for evaluation. This 
corresponds to a realistic clinical scenario and highlights BraTumIA’s capability to generalize.

A limitation of this algorithm is that it has been developed for pre-operative MR sets only. Future 
developments should involve its extension to longitudinally acquired imaging sets that would enable 
volumetric measurements of tumor response to treatment, i.e. evaluation of radiological response rates 
and the quantification of the extent of tumor resection36 which has been associated with patient favora-
ble prognosis37. Furthermore, its application is limited to patient sets that include all four required MR 
modalities: T1w, post-contrast T1w, T2w and FLAIR.

The end goal of auto-segmentation algorithms is to enable reproducible definition and quantification 
of imaging based markers that have prognostic implications. Thus further evaluation of this algorithm 
will involve larger patient cohorts, evaluation of its influence in defining intra-tumoral imaging metrics 
as well as longitudinal analyses of tumor response to treatment.
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