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2 Search Query

• General search query used for MedLine and EMBASE on Jan 27th 2014:

(“individual patient” OR “individual participant” OR “IPD” OR “patient level data” OR “miss-
ing data”) AND (“meta-analysis” OR “meta-analyses” OR “evidence synthesis” OR “system-
atic review” OR “subgroup analysis” OR “subgroup analyses”)

• For Journal of Research Synthesis Methods, we used a simplified query as most articles in this
journal consider meta-analytical topics:

“individual patient” in Abstract OR “individual participant” in Abstract OR “IPD” in Abstract
OR “patient level data” in Abstract OR “missing data” in Abstract in Research Synthesis
Methods

• For Journal of the Royal Statistical Society: Series A (Statistics in Society), Journal of the Royal
Statistical Society: Series B (Statistical Methodology) and Journal of the Royal Statistical
Society: Series C (Applied Statistics) the following simplified query was used:

“meta-analysis” in Abstract OR “meta-analyses” in Abstract OR “evidence synthesis” in Ab-
stract OR “systematic review” in Abstract OR “subgroup analysis” in Abstract OR “subgroup
analyses” in Abstract

3 Technical background

As we discussed in Section 3.1 of the review, two alternate approaches exist for conducting an
Individual Participant Data meta-analysis (IPD-MA). Below, we illustrate the implementation these
approaches in the R software (http://www.R-project.org/). We begin by generating an example
IPD-MA dataset that can subsequently be used to fit the different models. Afterwards, we illustrate
how to implement statistical models that estimate an overall summary of treatment effect. Finally,
we illustrate how to investigate heterogeneity in treatment effect.

3.1 Example IPD-MA dataset

Let x be a subject-level variable that indicates treatment group (0=control, 1=treatment) and let y
represent the developed (continuous) outcome. Furthermore, let z be a subject-level effect modifier
that follows a different distribution across trials. Finally, let trialid be a numeric variable indicating
to which study each subject belongs. We can generate an example IPD-MA dataset (called ds)
consisting of 6 trials:

> set.seed(1115)

> N <- 1000 #number of patients per trial

> N.trials <- 6 #number of trials

> alpha <- c(11, 8, 10.5, 9.6, 12.9, 15.8) #study effects

> beta <- c(-2.95, -2.97, -2.89, -2.91, -2.93, -2.90) #treatment effects

> gamma <- c(0.24, 0.21, 0.20, 0.18, 0.25, 0.22) #prognostic effects of z

> theta <- c(-0.9, -0.5, -0.6, -0.7, -0.1, -0.3) #interaction effects of z

> trialid <- c(1:6)

> ds <- as.data.frame(array(NA, dim=c(N*6, 4)))

> colnames(ds) <- c("trialid", "x", "z", "y")

>

> for (i in 1:N.trials) {

+ x <- rbinom(N,1,0.5)

+ z <- rnorm(N, mean=rnorm(1, mean=0, sd=0.5), sd=1)

+ y <- round(alpha[i] + beta[i]*x + gamma[i]*z + theta[i]*x*z)

+ ds[(((i-1)*N)+1):(i*N), ] <- cbind(trialid[i], x, z, y)

+ }

> ds$trialid <- as.factor(ds$trialid)

> head(ds)
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trialid x z y

1 1 0 1.5583089 11

2 1 1 0.7058709 8

3 1 1 0.2981992 8

4 1 1 -0.4659147 8

5 1 0 -0.2223901 11

6 1 0 1.7232484 11

3.2 Statistical models to estimate an overall summary of treatment effect

Two-stage IPD-MA

In a two-stage meta-analysis, the IPD are first analyzed separately in each study to produce study-
specific estimates of relative treatment effect. This implies that for our generated dataset (where we
have a continuous outcome y), the following model can be estimated for each trial:

yk ∼ N (µk, σ
2)

µk = α+ βxk
(model 1, stage 1)

This stage then yields estimates of β for each trial (further denoted as β̂i) can be achieved in R
as follows:

> results <- as.data.frame(array(NA, dim=c(N.trials,2)))

> colnames(results) <- c("betai", "var_betai")

> for (i in 1:N.trials) {

+ dsi <- as.data.frame(ds[which(ds$trialid==i),])

+ fit <- glm(y~x, data=dsi)

+ results[i,] <- c(coefficients(fit)[2], vcov(fit)[2,2])

+ }

A combined estimate of the relative treatment effect is then obtained by calculating a weighted
average of the individual estimates β̂i.

β̂i ∼ N
(
β, τ2β + var(β̂i)

)
(model 1, stage 2)

The second stage of the IPD-MA can be implemented as follows in R:

> library(mvmeta)

> fit <- mvmeta(betai~1, S=var_betai, data=results, method="reml")

> summary(fit)

Results indicate that the pooled treatment effect is −2.87 (SE = 0.11) and that the standard
deviation of the between-study heterogeneity (τβ) is 0.27. Results from mvmeta also show that the
I2 statistic, which indicates the percentage of variation across studies that cannot be explained by
chance, is very large: 99%.

One-stage IPD-MA

In the so-called one-stage approach, the IPD from all studies are analyzed simultaneously by adopting
a single statistical model. It is common to stratify the study effects, and to assume a Normal
distribution for the treatment effects:

yik ∼ N (µik, σ
2)

µik = αi + βixik
βi ∼ N

(
β, τ2β

) (model 2)

The model can be implemented in R:
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> library(lme4)

> lmer(y ~ 0 + trialid + x + (x-1|trialid), data=ds)

Results are very similar to estimates obtained by two-stage IPD-MA and indicate that the pooled
treatment effect is −2.87 (SE = 0.11) with τβ = 0.28.

3.3 Statistical models to investigate heterogeneity in treatment effect

Two-stage IPD-MA

We can investigate sources of treatment effect heterogeneity by exploring the presence of effect mod-
ification due to z. In a two-stage IPD-MA, we then need to include treatment-covariate interactions
in the first stage of the meta-analysis model:

yk ∼ N (µk, σ
2)

µk = α+ βxk + γzk + θzkxk
(model 3, stage 1)

This can be achieved in R as follows:

> results <- as.data.frame(array(NA, dim=c(N.trials,2)))

> colnames(results) <- c("betai", "var_betai")

> for (i in 1:N.trials) {

+ dsi <- as.data.frame(ds[which(ds$trialid==i),])

+ fit <- glm(y~x+z+x:z, data=dsi)

+ results[i,] <- c(coefficients(fit)["x"], vcov(fit)["x", "x"])

+ }

The second stage of the IPD-MA can again use the equations from model 1, stage 2, and yields
a pooled treatment effect of −2.95 (SE = 0.02). The degree of between-study heterogeneity τβ has
decreased from 0.27 to 0.06, and the I2 statistic has decreased from 99% to 90%.

One-stage IPD-MA

It is possible investigate heterogeneity in treatment effect by adjusting model 2 to account for effect
modification by z. Although it is common to assume common interaction terms across studies, we
here allow interaction terms to be heterogeneous across studies:

yik ∼ N (µik, σ
2)

µik = αi + βixik + γizik + θizikxik
βi ∼ N

(
β, τ2β

) (model 4)

We can estimate this model in R as follows:

> library(lme4)

> lmer(y ~ 0 + trialid + x + (x-1|trialid) + z:trialid + z:x:trialid, data=ds)

Results are again very similar to the two-stage approach: β̂ = −2.95 (SE = 0.02) with τβ = 0.06
and suggest that heterogeneity in treatment effect can partially be explained by the presence of effect
modification.
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