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Abstract
Tropical forests are believed to be very harsh environments for human life. It is unclear

whether human beings would have ever subsisted in those environments without external

resources. It is therefore possible that humans have developed recent biological adapta-

tions in response to specific selective pressures to cope with this challenge. To understand

such biological adaptations we analyzed genome-wide SNP data under a Bayesian statis-

tics framework, looking for outlier markers with an overly large extent of differentiation be-

tween populations living in a tropical forest, as compared to genetically related populations

living outside the forest in Africa and the Americas. The most significant positive selection

signals were found in genes related to lipid metabolism, the immune system, body develop-

ment, and RNA Polymerase III transcription initiation. The results are discussed in the light

of putative tropical forest selective pressures, namely food scarcity, high prevalence of path-

ogens, difficulty to move, and inefficient thermoregulation. Agreement between our results

and previous studies on the pygmy phenotype, a putative prototype of forest adaptation,

were found, suggesting that a few genetic regions previously described as associated with

short stature may be evolving under similar positive selection in Africa and the Americas. In

general, convergent evolution was less pervasive than local adaptation in one single conti-

nent, suggesting that Africans and Amerindians may have followed different routes to adapt

to similar environmental selective pressures.
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Introduction
Tropical forests are characterized by a high diversity of plants, with tall trees, dense canopies
and low light penetration [1]. Their climate is generally warm with minimum temperatures
well above the freezing point and mean annual rainfall above 1,000 mm [2]. Despite being one
of the most productive environments of the world, tropical forests provide only few resources
for humans [3]. Indeed, in these environments plants invest most of their energy in structure
maintenance and not into the reproductive organs that are the most edible parts for humans
and their prey species [2]. In addition, the instability of food resources in response to the high
seasonality of rainfall raises the costs of foraging, further reducing its capacity to support
human life [2,3].

Besides food limitation, other characteristics of tropical forests may also contribute to the
hostility of these environments. For instance, tropical areas harbor on average 70% higher
human pathogen diversity as compared to more temperate areas [4]. As a consequence, infant
and child mortality rates among tropical forest dwellers should be high [5]. Moreover, the
small differences between air and skin relative humidities and high temperature, coupled with
little air movement, make sweat production and evaporation difficult in tropical forests, poten-
tially compromising thermoregulation [6].

Due to the hostility of this environment, it is unclear whether humans have ever subsisted
in tropical forests without depending on external resources, such as agriculture or possible ex-
changes with neighboring populations. Evidence of societies living in such harsh conditions is
scarce for contemporary modern humans [2], as well as for early Homo [7]. Nonetheless, it is
possible that humans have developed recent biological adaptations to tropical forests. A few ex-
amples of such adaptations have indeed been documented, the most well-known being the
pygmy phenotype, defined by Perry and Dominy [6] as small human body size (mean adult
male height< 155 cm). These authors argue that short-statured individuals may have advan-
tages to cope with food limitation, thermoregulation, and mobility hardship in a dense forest
and, with few exceptions, are thus found in hunter-gatherer populations living in tropical rain-
forests of Africa, Asia, Oceania, and the Americas [6]. However, it has also been suggested that
this phenotype could be a by-product of selection for early onset of reproduction [8], which
could enable populations to overcome problems related to their life history and increased mor-
tality [9].

To investigate whether tropical forest dwellers have developed specific biological adapta-
tions to this harsh environment, we searched for genome-wide signals of positive selection in
populations from the Americas and Africa, specifically aiming at identifying convergent evolu-
tion signals, that is a significant signal of positive selection occurring at the same genomic re-
gion or biological pathway in populations belonging to two distinct evolutionary lineages. To
that effect, we investigated populations living in tropical forests and others, genetically related,
living outside these environments using publicly available genome-wide SNP data and a robust
and sensitive FST-based method for inference of positive selection that explicitly includes a con-
vergent selection model.

Subjects and Methods

Populations and samples
Genome-wide single nucleotide polymorphism (SNP) data were downloaded for seven popula-
tions included in the Human Genetic Diversity Panel database (HGDP; [10, 11]). Two African
(Biaka (n = 30) and Mbuti pygmies (n = 15)) and two American (Surui (n = 21) and Karitiana
(n = 24)) tropical forest populations were selected, as well as three other populations from
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these continents to serve as non-tropical forest comparisons (Mandenka (n = 24) and Yoruba
(n = 24) in Africa; Pima (n = 25) in America). Considering the genetic similarity between Man-
denka and Yoruba [12], these populations were grouped into a single set, hereafter called
“West Africa”, to increase sample size and the statistical power of the analyses. More informa-
tion on the chosen populations can be found in [3, 10–14] and S1 Table. We excluded atypical
and duplicated samples, keeping only those present in the H1048 subset of [15].

The six populations were combined into four distinct population sets (PS), each including
one tropical forest and one control population per continent as follows:

PS1: West Africa, Biaka; Pima, Surui.

PS2: West Africa, Mbuti; Pima, Surui.

PS3: West Africa, Biaka; Pima, Karitiana.

PS4: West Africa, Mbuti; Pima, Karitiana.

Each PS was analyzed separately to find loci and genomic regions that would putatively be
under natural selection. The rationale behind the use of different population sets is to look for
congruent signals of adaptation across data sets, and thus to eliminate signals potentially due
to particular tropical forest populations, which have been shown to present high rates of genet-
ic drift due to their small effective population sizes [16, 17].

The results of this analysis are the core of this study, but since we had a single non-forest
dwelling Amerindian population, we performed a supplementary analysis with a similar sam-
pling design as described above, except that we replaced the Mexican Pima by the Zapotec. The
rationale behind this approach is to check whether the signal observed using the core analyses
is not related to any adaptive evolutionary phenomenon that would be restricted to Pima (non-
forest) rather than to the forest dwellers Karitiana and Surui. Thus, by replacing Pima by Zapo-
tec—another non-forest agriculturalist population—we should be able to check if the reported
signals hold. This analysis is performed separately, because the number of shared SNP for this
dataset (364, 470 SNPs) is much lower than that of the HGDP database (660,918 SNPs). We
therefore studied the following supplementary population sets (SPSs):

SPS1: West Africa, Biaka; Zapotec, Surui.

SPS2: West Africa, Mbuti; Zapotec, Surui.

SPS3: West Africa, Biaka; Zapotec, Karitiana.

SPS4: West Africa, Mbuti; Zapotec, Karitiana.

Genetic data
Data on 660,918 SNPs (Illumina HumanHap 650K Beadchips) were downloaded from the
Stanford University HGDP-CEPH SNP genotyping data supplement 1 ([12];<ftp://ftp.cephb.
fr/hgdp_supp1/>). We initially discarded 250 markers that were monomorphic in all popula-
tions, those that presented only missing data, and those located on either the Y-chromosome
(due to low SNP density in the chip), the pseudoautosomal region of the sex chromosomes, or
the mtDNA, leaving us with 660,668 SNPs. Within each PS defined above, those markers with
minor allele frequency below 5% in all populations joined into one were discarded, yielding
582,074, 581,855, 584,205, and 577,345 SNPs for population sets PS1–PS4, respectively.

The supplementary dataset includes merged data from seven different sources, [18]. The Za-
potec sample was genotyped on Illumina HumanHap 550 V3.0 arrays obtained partially from
MGDP [19] and partially from samples newly genotyped by Reich et al. [18]. Surui data
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includes samples genotyped by HGDP [10, 11] and Kidd Lab [18] on Illumina 650Y arrays.
Data for the remaining populations are from the same source as the core analysis, i.e. HGDP
[10, 11]. This merged dataset was compiled and processed according to stringent data curation
and validation procedures. For our study, we used data on segments of potentially non-native
origin that were originally masked by Reich et al. [18] with a local ancestry inference software.
This yielded a sample size of 43 individuals for Zapotec (merging Zapotec1 and Zapotec2), 13
for Karitiana and 24 to Surui. Readers are referred to the source publications for further details
of genotyping, masking, and filtering [18, 19].

Detecting outlier SNPs
Amodified version of BayeScan [20, 21] was used to identify candidate targets for natural se-
lection. The original methodology in this software is based on the multinomial-Dirichlet likeli-
hood-based approach [22] implemented via a Markov chain Monte Carlo (MCMC) algorithm
[23]. The approach assumes an island model [24]—in which the subpopulations’ allele fre-
quencies are correlated through a common migrant gene pool from which they differ by vary-
ing degrees—to calculate a population-specific FST coefficient. Logistically transformed FST
coefficients are then decomposed into a population-specific component (β), shared by all loci,
and a locus-specific component (α), shared by all the populations [20, 21, 23]. Selection is in-
ferred when α is significantly different from zero. For each locus, two alternative evolutionary
models including α (selection) or neutrality can thus be explored. The posterior probability of
each model (selection vs. neutrality) is estimated with a reversible-jump MCMC algorithm [20,
21] and indicates how likely the model with selection is in comparison to the neutral one. Sig-
nificantly positive values of α are indicators of an overly large level of differentiation of a given
SNP, which could be either due to positive or to balancing selection in a given environment. Al-
ternatively, significantly negative values of α are indicative of simultaneous or global balancing
selection in the two environments, maintaining allele frequencies to similar levels in all popula-
tions. Note that the method has limited power to detect balancing selection with only two pairs
of populations, a limitation not associated to the inference of positive directional selection [20,
21]. Thus with the study design proposed here, it is possible that an apparent lack of instances
of global balancing selection may be actually due to a high false-negative rate for significant
negative α values. Further information on this methodology can be found in the BayeScan
manual or other methodological papers on the F-model [20–23].

The latest version of BayeScan [21] includes a hierarchical island model accounting for the
relatively closer similarity of certain populations in comparison to others, as should be the case
for populations that are sampled in a given continent and therefore share part of their history.
According to the hierarchical island model, each continent has a specific migrant pool. An FSC
coefficient measures the differentiation of each population within the continental pool of mi-
grants and an FCT coefficient measures the differentiation of each continent within the overall
meta-population [21]. In this regard, when considering two pairs of populations in two differ-
ent continents, one ends up with four alternative selection models for each locus: (1) neutral
variability; (2) selection in one continent; (3) selection in the other continent; and (4) selection
in both continents. BayeScan estimates for each marker the posterior probability of each of the
four tested models. These posterior probabilities are then transformed into q-values for each
marker in order to control for the False Discovery Rate (FDR; [25]) considering the probability
of a SNP being under selection regardless of which model (selection in one or both continents).
FDR is defined as the expected proportion of false positives among outlier markers. Further de-
tails on the hierarchical BayeScan methods, its power and sensitivity can be found in ref [21].
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For an FST-based method such as the one implemented in Bayescan, the levels of genetic dif-
ferentiation between the analyzed populations and sample sizes are crucial for the power to de-
tect natural selection. The populations analyzed in this study come from two opposite
extremes of genetic diversity observed in humans [16–18] and Bayescan was shown to have
low power to infer global balancing selection in a scenario with low genetic differentiation or
directional positive selection with a small number of sampled populations with high genetic
differentiation [20]. In this paper, we exclusively discuss the results generated for the posterior
probabilities for each loci being targets of natural selection inside each continent (an estimate
based on FSC) and disregard the results obtained for the highest hierarchical level (i.e. between
continents; FCT), which could be due to other environmental differences between these two
continents. By doing so, we still take into account the divergence between the two continents,
but we avoid any particular bias or power decrease that would result in ignoring them [21]. As
for the effect of sample size upon statistical power, Bayescan was shown to perform well with
as few as 15 individuals per population [20], which is smaller than the sample sizes considered
for this study.

Alternatives to FST-based natural selection tests are those based on Linkage Disequilibrium
(LD). Those tests use information on homozygosity in single populations, which makes it diffi-
cult to formally test for differences in levels of LD and the length of homozygosity tracts over
all populations. This is precisely the strength of the current approach, the integration of all
populations in a single statistical analysis. A detailed comparison of this approach to other
available methods can be found in ref [21].

In this analysis, we considered all SNPs with q-values lower than 0.1 as potentially signifi-
cant. This procedure yielded a list of outlier SNPs for each PS, which were then considered as
candidate loci for natural selection targets. We finally assume hereafter that convergent selec-
tion occurred when selection presents a higher probability than neutrality and model 4 has a
higher posterior probability than models 2 and 3.

Gene and regulatory elements annotation
All SNPs were assigned to genes using PLINK v1.07 ([26]; available at http://pngu.mgh.
harvard.edu/purcell/plink). SNPs not present in coding regions were assigned to a given gene if
located less than 50 kb away from it. When more than one gene was within this range, the clos-
est gene was chosen for the subsequent analyses. This software was also used for indicating the
attributes of the functional SNPs, i.e. if they are nonsense (stop codon), missense (non-synony-
mous), frameshift or splice-site mutations, based on information from dbSNP build 129 avail-
able with PLINK v1.07. The amount of outlier SNPs falling in genic regions (or< 50 kb away
from them) was compared to the amount of outlier SNPs in non-genic regions first taking into
account only protein coding genes and then all regulatory elements as described below. This
proportion was then compared to the distribution of the 660,668 HGDP SNPs in genic or non-
genic regions with a Fisher exact test using R [27] to check if these outlier SNPs were enriched
for genic SNPs in comparison to all available markers. This test assumes that SNPs are inde-
pendent from each other, which may not be the case for all markers. To control for a possible
bias due to LD, we repeated the test (N = 1000) by sampling randomly one outlier SNP and
one non-outlier SNP per 100 kb window.

We tested whether the number of outlier SNPs and genes shared among the population sets
was higher than expected. For this we repeatedly (N = 50,000) sampled randomly the same
number of SNPs as the counts of outlier SNPs from the population sets PS1-PS4 and counted
the number of overlapping SNPs. We assessed the p-value by taking the proportion of

Human Genomic Adaptations to Tropical Forests

PLOS ONE | DOI:10.1371/journal.pone.0121557 April 7, 2015 5 / 19

http://pngu.mgh.harvard.edu/purcell/plink
http://pngu.mgh.harvard.edu/purcell/plink


occasions that resulted in an overlap equal or larger than the overlap we found. We followed
the same procedure when testing the overlap of outlier genes.

The hg19 assembly coordinates (NCBI Build 37.3) of 19,683 protein-coding genes located
on the human autosomal and X chromosomes were obtained from the NCBI Entrez Gene web-
site ([28];<http://www.ncbi.nlm.nih.gov/gene>, accessed on February 7, 2013). Seventeen
genes were annotated with multiple locations (caused by merging of gene records in the NCBI
database); in these cases we took the outermost start and end positions.

The original positions of the SNPs on the hg18 reference genome (NCBI Built 36.3) ob-
tained from the original dataset ([26];<ftp://ftp.cephb.fr/hgdp_supp1/>) were remapped on
hg19 with the NCBI Genome Remapping Service (<http://www.ncbi.nlm.nih.gov/genome/
tools/remap>). In doing so, we were not able to remap 74 SNPs, which were then excluded
from the following analyses.

Information on the DNaseI Hypersensivity sites were obtained online (<http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/>, volume 2, accessed
on April 4, 2013) for the hg19 assembly and added to the annotation file. These clusters show
DNaseI hypersensitive areas assayed in 125 human cell types by the ENCODE Project [29] and
may be indicative of regulatory regions. This information was used to calculate the distance of an
outlier SNP to a putative functional region.

Detecting clusters of outlier SNPs
A sliding-window approach was implemented in R to identify significant clusters of candidate
SNPs and remove isolated loci. We considered consecutive windows of size 500 kb wide with a
shifting increment of 25 kb at each step. Despite the acknowledged differences in the extent of
LD in the analyzed populations due to different time-scales and other particularities of the de-
mographic history of the continent they are located [16–18], a single window size was consid-
ered here in order to normalize the analysis. By doing so, there is a chance to include false
negatives in those populations where recombination was more frequent. The q-value associated
to each window was assumed as the 95% quantile of the q-values calculated for each SNP in-
cluded in the window in order to avoid windows with one outlier SNP to be set as significant
and to account for a potential SNP density bias. Those 500 Kb windows with a SNP density less
than 20% of their chromosome average were set at non-significant. A graphical representation
of this procedure (Manhattan plots) was plotted with R taking into account the physical posi-
tion of the SNPs, their particular q-value, the window q-value, and the best supported model of
selection (if in Africa, the Americas, or both continents) for each outlier SNPs. For the outlier
SNPs, we also included information on their nearest gene if it was at most 50 kb apart.

The sliding-window approach yielded a second set of outlier markers. This SNP set is more
refined than the one with the first candidates, since it ignores the low SNP density regions of
the genome and those candidates that are isolated, highlighting genomic regions with a higher
density of outlier SNP.

Gene set analysis
We applied a gene set enrichment analysis as described by Daub et al. [30] to find pathway level
signals of selection. In short, this method tests whether genes in a gene set show a shift in the dis-
tribution of a certain selection score. In our case, we took as selection score the probability for se-
lection in Africa (paf), the Americas (pam), and both continents (pco, convergent selection). We
also added the score psl, which is the probability of any selection (psl = paf + pam +pco), which
means selection in only one or both continents. As we use one value per gene in the enrichment
test, we transformed the SNP-based scores to gene-based scores. First, SNPs were assigned to
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genes as described above: a SNP was assigned to a gene if the SNP location was within a gene
transcript; otherwise it was assigned to the closest gene within 50 kb distance. For each gene and
each selection model, we took the highest selection score of all SNPs assigned to this gene. After
removing 1,922 genes with no SNPs assigned, a list of 17,761 genes remained for PS1 and PS4,
17,766 for PS2, and 17,769 for PS3.

We collected 2,336 gene sets from the NCBI Biosystems database ([31], http://www.ncbi.
nlm.nih.gov/biosystems, downloaded 3 Sep 2013). After removing genes that were not part of
the gene list mentioned above, excluding gene sets containing less than 10 genes and pooling
(nearly) identical gene sets into union sets, 1,216 (PS1 and PS2) and 1,217 (PS3 and PS4) sets
remained and they were used as input in the enrichment tests.

We computed the SUMSTAT [32] score for each gene set, which is the sum of either the paf,
pam, pco, or psl values of all genes in a set, depending on the selection model. Potential candi-
dates for selection are gene sets that score a high SUMSTAT value. To assess significance, we
compared the SUMSTAT score of each tested gene set with a null distribution created from
random gene sets of equal size. To improve computation time, the creation of the null distribu-
tion was done with a sequential random sampling method. We first tested all sets against
10,000 randomizations. Next, for each tested gene set, we counted the number of random sets
with the same or higher SUMSTAT score. Only for those sets with a count smaller than 5,000,
we expanded the null distribution with another 10,000 randomizations. This process was con-
tinued until we reached a maximum of 500,000 randomizations.

Selecting the highest score among the SNPs in or near a gene can induce a bias, as it is more
likely that genes with high SNP density have an extreme value assigned. We corrected for this
potential bias by placing genes in bins of similar SNP densities and constructing the null distri-
bution from random gene sets with the same bin distribution as the gene set being tested. Note
that we could not rescale the gene scores per bin as was done in [30], because the gene scores
per bin follow a skewed distribution and rescaling would lead to a potential loss of the signal.

We removed the redundancy among candidate gene sets by applying a 'pruning' method ac-
cording to which we iteratively assigned shared genes between sets to the highest scoring gene
set. Thus, we gain more insight into which gene sets actually give the significant signal. As
these tests were not independent anymore, we estimated the q-value of these pruned sets em-
pirically. All sets scoring a q-value below 20% (before and after pruning) were reported.

We used R [27] and Cytoscape [33] to visualize the significant pathways and their overlap
using a layout that was inspired by the Cytoscape plugin EnrichmentMap [34].

Results
According to the FST-based Bayesian approach implemented via BayeScan [20, 21] 1,482,
1,222, 1,579, and 1,365 outlier SNPs were identified in populations sets PS1 to PS4 respectively,
ranging from 0.21 to 0.27% of the SNPs analyzed. From these, 75 SNPs are significant regard-
less of which PS is analyzed. There were no cases in which balancing selection could be in-
ferred, i.e. α never reached a significant negative value, which may be due to the characteristics
of the genetic system employed (e.g. low polymorphism [20] or a possible ascertainment bias),
to the lack of power to detect markers under balancing selection [23], or to the low number of
populations analyzed [20], but not necessarily to the absence of this phenomenon in the evolu-
tionary history of these populations.

Using a threshold of 50 kb, 568, 474, 620, and 517 genes were associated with those significant
SNPs from PS1 to PS4 respectively, of which 57 genes were found to be co-occurring in all four
PSs (namely ABLIM3, ACSS2, AKAP6, ANKRD26, ARHGEF10, ATIC, BCAT1, C20orf111,
C2orf73, CBLN1, CNTN4, CNTNAP5, COL22A1, CPA5, CRTC3, CWH43, DCUN1D4,DHCR7,
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EPHB4, FAM188B, FKBP6, GALNT16, GLIS3, GLRB, GPC6, GRIK2,HLA-DPA1,HMG20B,
HSF2, IQGAP1, KIAA1598, KLHL29, LRRC66,MASTL,MPST, NAALADL2, NRG1, NRP2,
NSUN5, PARK2, PKIB, PPP2R2C, RABGGTB, RAD51B, RBFOX1, RBM9, RBMS3, RFX3,
ROBO2, SCP2, SGCB, SHISA6, SPAG16, SPATA13, SPATA18, ST6GAL1, and TRG@). We con-
firmed with a random permutation test (N = 50,000) that the number of outlier SNPs (75) and
genes (57) shared by all population sets is higher than expected by chance (p-value< 2e-5).

The sliding-window procedure yielded 440, 399, 505, and 471 SNPs with a significant signal
of positive selection for each PS (S1 File). From these, 19 are found to be functional non-synon-
ymous mutations (missense) in one or two PSs (S2 Table). There was no instance of a signifi-
cant SNP defined as nonsense, frameshift, or splice-site mutation.

Outlier SNPs are significantly enriched (Fisher exact test, p-value< 0.022) for genic SNPs
in comparison to the whole HGDP SNP set. On average 72.8% of the outlier SNPs after the
sliding-window procedure are located in or less than 50 kb away from protein-coding regions
considering all four PSs, while for all SNPs in the HGDP database this proportion is only
63.6%. This enrichment is not due to potential LD between outlier SNPs, as it still holds when
randomly sampling one outlier SNP and one non-outlier SNP per 100 kb window (N = 1000,
mean p-value = 0.02, 90% CI [2.3e-4, 9.1e-2]). Moreover, all outliers were located at maximum
45.8 kb apart from a gene or from a putative regulatory element indicated by a hypersensibility
to DNaseI.

Fig. 1 shows the Manhattan plots of the physical position of the SNPs in the genome and
their estimated q-values for the different PSs, as well as the best model for selection (color-
coded) in the sliding-window approach. It was possible to identify seven clusters of outlier
SNPs co-occurring in all four PSs (indicated by gray-shaded boxes at Fig. 1 and at S1–S6 Figs.).
Their coordinates, size, and genic content are described in Table 1.

For the first two clusters, the most likely model of selection for the majority of outlier SNPs
is positive selection in the Americas; however, for a few SNPs convergent evolution cannot be
ruled out (Fig. 1). While the first cluster includes the gene SCP2 (S1 Fig.), the second cluster
lies in an inter-genic region (S2 Fig.). The next two clusters of significant SNPs occur on the
same chromosome and selection in Africa is the best-supported model in most cases, although
convergent selection is likely for a few SNPs (S3 Fig.). Cluster 3 is associated with gene
CWH43, while cluster 4 includes SNPs that fall into genes such as DCUN1D4, LRRC66, SGCB,
and SPATA18 and their vicinity. Convergent evolution is the best-supported model of selection
for the majority of SNPs of the remaining three clusters (S4–S6 Figs.). Cluster 5 is associated
with the following three genes: CCL28, C5orf34, and NNT; which may or may not present a sig-
nificant signal of selection depending on the analyzed PS (S4 Fig.). Cluster 6 includes genes
HSF2 and PKIB for all PSs, and the analysis of PS1 and PS3 revealed an additional significant
SNP located at SERINC1. The last cluster (no. 7) includes two SNPs, one located in a FKBP6 in-
tron and the other located 0.12 kb apart from NSUN5 and 3.55 kb from TRIM50. The above-
mentioned 14 genes that include or are close (<50 kb) to SNPs that present signals of positive
selection in the sliding-windows approach for all four PSs are described in Table 2.

Five of the seven clusters showing signs of positive selection with the HGDP data sets also
show signals of positive selection in the supplementary analysis. The exceptions are cluster 3
on chromosome 4, which was not covered by any SNP in the smaller data set, and cluster 7 on
chromosome 7, for which the signal of positive selection disappears after replacing Pima by Za-
potec. In the supplementary analysis, no additional clusters with signal of positive selection
were found in all SPSs. The type of natural selection—convergent evolution or selection in a
single continent—inferred from the supplementary data set is generally concordant with the
analysis done on HGDP data, except for cluster 6 on chromosome 6, where selection in Africa
is more important in the supplementary analysis. After performing the sliding-window
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approach, cluster 1 appears for SPS1 and SPS3, clusters 4 and 5 for all SPSs, and cluster 6 for
SPS2 and SPS4.

Fifteen genomic regions had been found to be associated with the pygmy phenotype by
means of covariation between allele frequencies and body height in Africa in another study
[35]. We found signals of positive selection in the African continent in four of these regions. By
comparing Mbuti to West Africa, Mendizabal et al. [35] identified two genomic regions as can-
didate for selection. One of them, located in the long arm of chromosome 10, is among those
with the highest q-values in our study (Fig. 1). It includes 14 outlier SNPs in the following 11
genes: P4HA1, NUDT13, ECD, FAM149B1, DNAJC9,MRPS16, ANXA7, ZMYND17, USP54,
PPP3CB, and TTC18. Two outlier SNPs in this region—rs2271904 and rs4294502—are both
non-synonymous mutations in ECD and TTC18 respectively. The second region is defined by
two SNPs (rs7174731 and rs7181518) in TRIP4. In a third region, we found two genes with
positive selection signals considering West Africans in comparison to Biaka instead of Mbuti:
USP46 andMLL3. An additional region suggested by Mendizabal et al. [35] to be associated
with the pygmy phenotype presents signals of convergent adaptation using all four different
combinations of populations in our study. They found significant SNPs in NNT, while we ob-
served a more diffuse significant signal also including CCL28 in some cases (S4 Fig.).

As selection is acting on phenotypes instead of genotypes, we applied a gene set analysis
[30] to detect pathways involved in adaption to living in tropical forests. We found 43 path-
ways scoring a q-value below 20% for at least one of the population sets and selection models
(S7 Fig.), most of them scoring significant for selection in Africa. Among those we find a large
cluster of 22 gene sets involved in immune response, nine of which show signals of convergent
selection, and a cluster of 11 gene sets involved in RNA Polymerase III transcription initiation.
In order to eliminate redundancy, we assigned overlapping genes to the highest scoring path-
way. After this ‘pruning’ procedure, 14 pathways remain significant, including “Apoptosis”

Fig 1. Manhattan plots of the physical position of SNPs (x-axis) and corresponding q-values in log10
scale (y-axis) for inferring selection. Based on a sliding-window approach, SNPs are color-coded
according to the best supported model of selection, namely neutrality (black or grey), in Africa (blue), in the
Americas (green), and in both continents (convergent evolution, red) with a False Discovery Rate of 0.1
(dashed line). Different sets of populations were used in the analysis yielding four different population sets
(PS1–4). Congruent clusters of outlier SNPs considering all four PSs are highlighted with a grey box.

doi:10.1371/journal.pone.0121557.g001

Table 1. Coordinates, size, and genic content of the seven clusters of outlier SNPs occurring in all four population sets (PSs) considered in the
analysis.

Cluster Coordinates in hg19 Size SNPsa Genesb

1 chr1:53,476,720–53,520,376 43.7 kb rs6679819, rs10437066, rs6588459, rs7550236 SCP2

2 chr2:184,608,065–184,633,769 25.7 kb rs17715017, rs1733497, rs1439771, rs2119047 -

3 chr4:48,960,613–48,972,901 12.3 kb rs2605267, rs2572363 CWH43

4 chr4:52,758,044–52,935,931 117.9 kb rs4865414, rs1519590, rs178724, rs1460554 DCUN1D4, LRRC66, SGCB, SPATA18

5 chr5:43,497,655–43,862,944c 365.3 kb rs10062920, rs4449542, rs7721405, rs6875400 CCL28, C5orf34, NNT

6d chr6:122,738,019–122,869,764 131.7 kb - HSF2, SERINC1, PKIB

7 chr7:72,722,731–72,750,595 27.9 kb rs1880948, rs1178970 NSUN5, FKBP6

aOutlier SNPs co-occurring in all PSs.
bNearest genes located at least 50 kb away from an outlier SNP in at least two PSs.
cFor PSs 2 and 4, cluster 5 is defined more broadly, starting at position 43,416,999, including rs4264950 and rs7720858.
dNo outlier SNP at this cluster co-occurred in all four PSs, but in each case four outlier SNPs were found (rs2816141, rs1741820, rs487098, and rs197686

for PSs 1 and 3; and rs3778348, rs3778348, rs9490478, rs9320878 for PSs 2 and 4).

doi:10.1371/journal.pone.0121557.t001
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and “Cholesterol Biosynthesis” among other immune and nervous-system related pathways
(Fig. 2). Four of these pathways present a consistent signal of positive selection across different
PSs or selection models, namely “PD1-signaling”, “IL 12-mediated signaling events”, “RNA Po-
lymerase III Transcription Initiation From Type 3 Promoter”, and “Chemokine receptors bind
chemokines”. Note that taking a q-value threshold of 0.1 would still result in 8 significant gene
sets, of which 3 show multiple signals of adaptation (data not shown).

Discussion
Tropical forests are believed to be very harsh habitats for human beings [3]. In addition to
being almost deprived from energy-rich food and edible plants [2], these environments are
very propitious for the development of diseases [4] and might also compromise thermoregula-
tion [6]. In this work we used a Bayesian method [20, 21] to identify SNPs in a genome-wide
dataset showing overly large or low extent of differentiation between tropical and non-tropical
forest populations. We sought to infer signals of convergent evolution by comparing native
populations from tropical forests (Biaka, Mbuti, Karitiana, and Surui) with genetically related
populations living elsewhere (Mandenka, Yoruba, and Pima) combined in four different popu-
lation sets (PSs). The analysis suggested some SNPs, genes, and a few biological pathways in
which convergence could be inferred. These outlier SNPs are found to be enriched for genic
loci even after correcting for a potential LD bias. Those few cases that fall within an intergenic
region, such as Cluster 2 (S1 Fig.), could always be associated (distance< 50 kb) to a putative
regulatory element described by the ENCODE project. These results suggest that regulatory re-
gions could also be involved in some recent human adaptations [36]. Genomic regions where
the same signal of selection could be identified by employing different combinations of popula-
tions (clusters 1–7 on Fig. 1) suggest that the inferred signal is due to environmental selective
pressures and adaptation rather than to the demographic history of the populations and those

Table 2. Genes with signals of positive selection suggesting human adaptations to tropical forests in
Africa and the Americas.

Gene Cluster Biological function in mammalians or associated human diseases

SCP2 1 Involved in cholesterol trafficking and metabolism [47].

CWH43 3 Enhance lipid remodeling to ceramides [48].

DCUN1D4 4 Unknown.

LRRC66 4 Unknown.

SGCB and
SPATA18

4 Is located in a genomic region where a microdeletion causes Limb-girdle
muscular dystrophy type 2E with joint hyperlaxity and contractures [42].

C5orf34 5 Unknown.

CCL28 5 Modulate immunity to viral infection [49] and skin-related inflammatory
diseases [50].

NNT 5 Produces high concentrations of NADPH at mitochondria and the resulting
energy is used for biosynthesis and in free-radical detoxification [51].

HSF2 6 Involved in the activation of heat-shock response genes under conditions of
heat [52].

PKIB 6 Associated to the aggressive phenotype of prostate cancer [53].

SERINC1 6 Unknown.

FKBP6 7 May play a role in modifying the susceptibility to idiopathic spermatogenic
impairment [54].

NSUN5 7 Deleted in Williams-Beuren syndrome (vascular system and calcium
metabolism problems) [55].

TRIM50 7 May be involved in the Williams-Beuren syndrome [56].

doi:10.1371/journal.pone.0121557.t002
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regions are the main focus of our discussion. For five out of the six clusters with sufficient SNP
coverage in the smaller supplementary dataset, we observed significant SNPs with the same
type of selection—convergence or selection in one continent—as observed in the analysis of
the HGDP data. The exception is cluster 7 where the signal of convergent adaptation does not
hold when we replace Pima by Zapotec. In this case, selection in Africa is the best-supported
model. Based on the agreement between results generated with the two datasets, results for
clusters 1, 2, and 4–6 should thus be considered as very robust, but results obtained for cluster
7 should be considered with some caution. We can see two reasons for an absence of congruent
results for cluster 7. First, it could be that our supplementary analysis did not have enough
power to detect signal given the lower number of SNPs available in Zapotec. Else, our initial re-
sults for cluster 7 could be due to the own evolutionary history of the Pima and have nothing
to do with adaptation to tropical forests. This could be due to an environmental pressure
shared between West African populations and Pima, but not present in Zapotec. It appears dif-
ficult to distinguish between these hypotheses without having more samples genotyped for a
larger number of SNPs.

Fig 2. Gene sets significantly enriched for selection signals.Nodes are gene sets that score a q-value� 20% after pruning in the gene set enrichment
test (See S7 Fig. for the equivalent plot regarding the results before pruning). Gene sets are connected when at least one of them shares>33% of its genes
with the other set before pruning. The size of a node scales with the size of the gene set. Each quadrant of a node represents results on one of the four
selection scores, while the four rings in a node correspond to the four population sets (different combination of populations; see Methods). The color of each
quarter of a ring corresponds to the significance of the test result (dark colored: q�10%, light colored: 10%<q�20%, white: q>20%).

doi:10.1371/journal.pone.0121557.g002
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In a previous study involving Native Americans, Hünemeier et al. [37] suggested that
ABCA1, a gene encoding a cholesterol efflux regulatory protein, was evolving under positive se-
lection due to limited food resources that Native Americans encountered during their history.
We also found significant signals of positive selection in genes that are related to lipid circula-
tion and metabolism, such as SCP2 and CWH43 (Table 1) and in a genetic pathway related to
cholesterol biosynthesis (Fig. 2 and S7 Fig.). Besides playing a role in nutrition, these genes
could also be involved in immunological response, since cholesterol plays an important role in
various infectious processes such as virus invasion and replication [38] as well as in resistance
against malaria [39].

In this regard, Sabeti et al. [40] already noticed a preponderance of genes related to the im-
mune system in available genome-wide scans for positive selection. This prevalence was further
confirmed by Williamson et al. [41], López Herráez et al. [42], and Daub et al. [30]. Besides the
two genes mentioned above—SCP2 and CWH43, which have a possible role in immunity—the
protein encoded by CCL28modulates immunity to HIV infection and skin-related inflamma-
tory diseases. Additionally, the selective pressure of this class of genes may also be important at
the multi-genic level, since a network of 22 pathways involved in immune response presents
signals of positive selection (S7 Fig.). After pruning, two of these pathways remain significant
for more than one PS, namely “PD-1 signaling” and “IL 12-mediated signaling events”. This in-
dicates that they both have independently a strong selective signal, which would deserve further
investigations for their role in adaptations to tropical environments.

Another category of genes that frequently presents signals of positive selection is fertility,
more specifically, spermatozoid development [40]. In this regard, FKBP6, a male fertility factor,
is found here to be potentially evolving under positive selection in our analyses (S6 Fig.), but
this observation has to be taken with caution as this gene is not identified as an outlier in our
supplementary analysis when Ameridian forest populations are compared to Zapotec instead
of Pima.

Heat-shock transcription factors, such as that encoded byHSF2 (Cluster 6; S5 Fig.), are acti-
vated by stress and respond to elevated temperatures. One of the consequences of inefficient
thermoregulation is the increase of body temperature. The observed positive selection signals
at SNPs found in this gene could be due to an adaptation to the tropics, initiating gene(s) tran-
scription in response to high body temperatures. Another study with African-, European-
American, and Chinese populations also found a significant signal of positive selection in heat
shock genes [41], suggesting that this category might have some importance in human adapta-
tion to different environments worldwide.

It is generally accepted that the pygmy phenotype might have evolved as an adaptation to
life in dense tropical forests, to thermoregulation, and to food scarcity [6] or as a by-product of
selection for early onset of reproduction [8]. Our research design enables the comparison of
two African pygmy populations with two other non-pygmy populations from the same conti-
nent, from which inferences can be drawn about the differences in selective pressures that Afri-
can pygmy and non-pygmy populations are subjected to. Clusters 3 and 4 (S3 Fig.) are the two
main regions where we found signals for positive selection in Africa. The first cluster presents a
gene involved in lipid metabolism (CWH43, discussed above) and the second includes the
genes DCUN1D4, LRRC66, and SGCB, which are found in a region known to be associated to
severe limb-girdle muscular Duchenne-like dystrophy [43].

Other regions of interest for the study of the pygmy phenotype are those four in which we
found positive selection signals and are associated with the pygmy phenotype according to an-
other study [35]. From the genes found in this region, three are notable for being also associat-
ed with height, bone development or the pygmy phenotype in previous studies. Those genes
are PPP3CB, which encodes a subunit of calcineurin, a protein that regulates bone formation
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by osteoblast differentiation [44]; TRIP4, a gene with positive selection in pygmy populations
[45] that relates to a category (thyroid hormone receptor) that was suggested to be associated
with this phenotype [42]; andMLL3, involved in histone modification, a category associated
with height in a genome-wide association study [46].

In general, non-convergent positive selection signals were more pervasive than signals of con-
vergent evolution at the SNP, gene and pathway levels. This suggests that the similar selective
pressures imposed by the tropical forest environment in Africa and the Americas have targeted
different genes and pathways. This could be a result of different genetic background of the popu-
lations from these two continents and also a result of the differences in the time-scales that adap-
tation took place, since the Americas were peopled more recently than Africa [16–18]. As it is
particularly true for the pygmy phenotype [45], putative adaptations to the tropical forests could
be the result of selection acting on different genetic targets even though their result might be sim-
ilar at the phenotypic level. Nonetheless, due to the power limitation associated with detecting
convergent evolution [21], this model cannot be ruled out for those regions where at least one
SNP was assigned to it among other SNPs assigned to a model of positive selection in one conti-
nent, which is the case of Clusters 1 to 4. Moreover, the scarcity of convergence examples could
also be a result of the SNP density of the array employed, since the power to detect selection is de-
termined by physical linkage between the sampled SNPs and the causal variant. In addition, due
to different time-scales that such events took place, in populations such as the Africans linkage is
more likely to be disrupted than in a younger population such as the Amerindians, which makes
it necessary to use a denser SNP-array in order to rule out false-negatives in African populations.
In other words, we might be missing some actual convergence signals due to a lack of sufficient
linkage between the target region and the sampled SNPs in Africa and convergence might thus
be underestimated in this continent. Therefore, it is likely that additional genes evolving under
convergent evolution in these populations could be found by using different methods and
genetic systems.

Conclusions
The FST-based hierarchical Bayesian method used in our study enabled us to detect a number
of regions with positive selection, suggesting that the following biological functions and path-
ways may play a role in human adaptations to tropical forest: lipid metabolism, immunology,
body development, and heat stress response. The same signals found in different population
sets suggest that they are due to environmental adaptation rather than to the demographic his-
tory of the sampled populations. Further refinement of these analyses with e.g. full genome or
exome sequence information could reveal which particular mutations are responsible for these
adaptations. Moreover, the few cases in which convergent evolution could be inferred contrast
with the larger amount of genes with non-convergent positive selection signals, suggesting that
Africans and Amerindians may have followed different routes to adapt to similar environmen-
tal selective pressures.

Supporting Information
S1 Fig. Manhattan plots of the physical position of SNPs (x-axis) and their correspondent
q-values (log-transformed at y-axis) for inferring positive selection in Chromosome 1. The
sliding-window q-value is indicated by a yellow continuous line. With a False Discovery Rate
of 0.1 (dashed line), SNPs are color-coded according to the best supported model of selection,
namely neutrality (black), selection in Africa (blue), selection in the Americas (green), and in
both continents (convergent evolution, red). When an outlier SNP was located less than 50 kb
apart from a gene, the closest gene name was written next to it. Different sets of populations
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were used in the analysis yielding four different population sets (PS1: 1A; PS2: 1B; PS3: 1C;
PS4: 1D).
(TIFF)

S2 Fig. Manhattan plots of the physical position of SNPs (x-axis) and their correspondent
q-values (log-transformed at y-axis) for inferring positive selection in Chromosome 2. The
sliding-window q-value is indicated by a yellow continuous line. With a False Discovery Rate
of 0.1 (dashed line), SNPs are color-coded according to the best supported model of selection,
namely neutrality (black), selection in Africa (blue), selection in the Americas (green), and in
both continents (convergent evolution, red). When an outlier SNP was located less than 50 kb
apart from a gene, the closest gene name was written next to it. Different sets of populations
were used in the analysis yielding four different population sets (PS1: 2A; PS2: 2B; PS3: 2C;
PS4: 2D).
(TIFF)

S3 Fig. Manhattan plots of the physical position of SNPs (x-axis) and their correspondent
q-values (log-transformed at y-axis) for inferring positive selection in Chromosome 4. The
sliding-window q-value is indicated by a yellow continuous line. With a False Discovery Rate
of 0.1 (dashed line), SNPs are color-coded according to the best supported model of selection,
namely neutrality (black), selection in Africa (blue), selection in the Americas (green), and in
both continents (convergent evolution, red). When an outlier SNP was located less than 50 kb
apart from a gene, the closest gene name was written next to it. Different sets of populations
were used in the analysis yielding four different population sets (PS1: 3A; PS2: 3B; PS3: 3C;
PS4: 3D).
(TIFF)

S4 Fig. Manhattan plots of the physical position of SNPs (x-axis) and their correspondent
q-values (log-transformed at y-axis) for inferring positive selection in Chromosome 5. The
sliding-window q-value is indicated by a yellow continuous line. With a False Discovery Rate
of 0.1 (dashed line), SNPs are color-coded according to the best supported model of selection,
namely neutrality (black), selection in Africa (blue), selection in the Americas (green), and in
both continents (convergent evolution, red). When an outlier SNP was located less than 50 kb
apart from a gene, the closest gene name was written next to it. Different sets of populations
were used in the analysis yielding four different population sets (PS1: 4A; PS2: 4B; PS3:45C;
PS4: 4D).
(TIFF)

S5 Fig. Manhattan plots of the physical position of SNPs (x-axis) and their correspondent
q-values (log-transformed at y-axis) for inferring positive selection in Chromosome 6. The
sliding-window q-value is indicated by a yellow continuous line. With a False Discovery Rate
of 0.1 (dashed line), SNPs are color-coded according to the best supported model of selection,
namely neutrality (black), selection in Africa (blue), selection in the Americas (green), and in
both continents (convergent evolution, red). When an outlier SNP was located less than 50 kb
apart from a gene, the closest gene name was written next to it. Different sets of populations
were used in the analysis yielding four different population sets (PS1: 5A; PS2: 5B; PS3: 5C;
PS4: 5D).
(TIFF)

S6 Fig. Manhattan plots of the physical position of SNPs (x-axis) and their correspondent
q-values (log-transformed at y-axis) for inferring positive selection in Chromosome 7. The
sliding-window q-value is indicated by a yellow continuous line. With a False Discovery Rate
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of 0.1 (dashed line), SNPs are color-coded according to the best supported model of selection,
namely neutrality (black), selection in Africa (blue), selection in the Americas (green), and in
both continents (convergent evolution, red). When an outlier SNP was located less than 50 kb
apart from a gene, the closest gene name was written next to it. Different sets of populations
were used in the analysis yielding four different population sets (PS1: 6A; PS2: 6B; PS3: 6C;
PS4: 6D).
(TIFF)

S7 Fig. Gene sets significantly enriched for signals of selection. Nodes are gene sets that
score a q-value� 20% (before pruning). Gene sets are connected when at least one of them
shares>33% of its genes with the other set. The width of the connecting lines represents the
amount of similarity between sets; the size of a node scales with the size of the gene set. Each
quadrant of a node represents results on one of the four selection scores, while the four rings
in a node correspond to the four population sets (different combination of populations; see
Methods). The color of each quarter of a ring corresponds to the significance of the test result
(dark colored: q�10%, light colored: 10%<q�20%, white: q>20%). Note that gene sets that
score high in the test using the probability for 'any selection' are not automatically scoring sig-
nificant in the separate selection models and vice versa. A gene can have a high probability
for 'any selection' but this can be the sum of relatively low probabilities of the three selection
models 'selection in Africa', 'selection in America' and 'convergent selection'.
(EPS)

S1 File. List with the outlier SNPs after sliding-windows. Information on SNP coordinates, α
values for each model of selection (Africa, the Americas, or convergence), q-value, and nearest
gene (NA stand for those cases where no gene was found in< 50 kb) is organized by sheet for
each population set (PS).
(XLSX)

S1 Table. Geographical origin of the populations considered in this study.
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S2 Table. Outlier non-synonymous SNPs showing significant directional positive selection
signals in African and Amerindian populations suggesting adaptation to tropical forests.
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