Chromosomally and extrachromosomally mediated high-level gentamicin resistance in *Streptococcus agalactiae*

Parham Sendi, Martina Furitsch, Stefanie Mauerer, Carlos Florindo, Barbara C. Kahl, Sarah Shabayek, Reinhard Berner and Barbara Spellerberg

Department of Infectious Diseases, University Hospital of Bern, and Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany; National Institute of Health Department of Infectious Diseases, Lisboa, Portugal; Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany; Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Egypt; Clinic and Polyclinic of Pediatrics and Adolescent Medicine, Technische Universität Dresden (Carl Gustav Carus University Hospital), Dresden, Germany

Running Head: High-Level Gentamicin Resistance in *S. agalactiae*

#Address correspondence to Barbara Spellerberg, barbara.spellerberg@uniklinik-ulm.de

Institute of Medical Microbiology and Hygiene, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany

Phone: +49 (0) 731-50065333, Fax: +49 (0) 731-50065302

Keywords: *Streptococcus agalactiae*, high-level gentamicin resistance, gentamicin, aminoglycosides.
Abstract:

Streptococcus agalactiae (group B *Streptococcus*, GBS) is a leading cause of sepsis in neonates. The rate of invasive GBS disease in non-pregnant adults also continues to climb. Aminoglycosides alone have little or no effect on GBS, but synergistic killing with penicillin has been shown *in vitro*. High-level gentamicin resistance (HLGR) in GBS isolates, however, leads to loss of a synergistic effect. We therefore performed a multicentre study to determine the frequency of HLGR GBS isolates and to elucidate the molecular mechanisms leading to gentamicin resistance. From eight centres in four countries, 1128 invasive and colonizing GBS isolates were pooled and investigated for the presence of HLGR. We identified two strains that displayed HLGR (BSU1203 and BSU452), both of which carried the *aacA-aphD* gene, typically conferring HLGR. Though, only one strain (BSU1203) also carried the previously described chromosomal gentamicin resistance transposon, designated Tn3706. In the other strain (BSU452), plasmid purification and subsequent DNA sequencing resulted in the detection of plasmid pIP501 carrying a remnant of a Tn3 family transposon. Its ability to confer HLGR was proven by transfer into an *Enterococcus faecalis* isolate. Conversely, loss of HLGR was documented after curing both GBS BSU452 and the transformed *E. faecalis* strain from the plasmid. This is the first report showing a plasmid mediated HLGR in GBS. Thus, in our clinical GBS isolates HLGR is mediated both chromosomally and extrachromosomally.
Introduction

Streptococcus agalactiae, alternatively designated group B *Streptococcus* (GBS), is a leading cause of morbidity and mortality in neonates and pregnant women. Recommendations for diagnosing maternal GBS colonization and administering intrapartum antimicrobial prophylaxis have led to a significant decrease in these infections (1). The rate of invasive GBS disease in non-pregnant adults, however, continues to climb (2). Elderly persons and those with underlying diseases – two expanding segments of the population – are at increased risk (3). Treatment concepts for invasive GBS infections in non-pregnant adults have not been established. Clinical isolates of GBS are susceptible to penicillin, the antimicrobial agent of choice for treating invasive diseases. Several publications advocate the addition of an aminoglycoside to penicillin or ampicillin for infective endocarditis (4) and periprosthetic joint infections (5), although aminoglycosides have ototoxic and nephrotoxic side effects, in particular in the elderly. Aminoglycosides alone have little or no effect on GBS, but synergistic killing with penicillin has been shown *in vitro* (6). In case of the presence of high-level gentamicin resistance (HLGR) in a bacterial isolate, there is a lack of a synergistic effect.

While HLGR in *Enterococcus* spp. is frequently found (7), to the best of our knowledge, only two HLGR GBS strains have been previously reported (8, 9). Most diagnostic laboratories do not test routinely for HLGR in GBS. Thus, little is known about the frequency of HLGR GBS, the mechanisms of acquiring HLGR and the potential to spread genetic elements associated with HLGR.

The aim of this study was to estimate the frequency of HLGR GBS isolates (i) in systematically and continuously collected GBS isolates from colonized pregnant and non-pregnant women and (ii) in GBS isolates pooled in a collection that stems from various selected patient populations. Upon detection of HLGR isolates, we elaborated the molecular mechanism conferring this resistance.
Materials and Methods

GBS isolates

The study consisted of 1128 GBS isolates. Of these, 464 (41%) were pooled from various GBS collections (Table 1). These isolates stem from various centres and were previously investigated in another context (10-15). The other 664 (59%) GBS isolates were prospectively collected and screened for the presence of HLGR. The origin of GBS isolation, the association with diseases or colonization, and the sampling period are presented in Table 1.

Definition and identification of HLGR in GBS

No definition of HLGR in GBS has been published. According to the recommended screening tests for the detection of HLGR in *Enterococcus* spp., the resistant isolates have an MIC ≥500 mg/L (16). In addition, HLGR isolates with an MIC >500 mg/L have been reported (17, 18). Therefore, HLGR in GBS was defined when the gentamicin MIC determined by Etest was ≥512 mg/L. All MIC determinations were confirmed with ≥3 measurements.

Two different methods for the identification of HLGR in GBS were applied. Five hundred sixty-one isolates (49.7%) were plated on Mueller Hinton agar supplemented with 256 mg/L of gentamicin. Subsequently, the MIC of growing GBS colonies was determined by Etest. For 567 (50.3%) isolates, the MIC was primarily determined by Etest without a prior HLGR screening test.

Bacterial strains

The strains used in this study are presented in Table 2. The plasmid-free recipient used in the mating experiments was *E. faecalis* (BSU386), a clinical blood culture isolate without HLGR.

Genetic basis of HLGR

Standard recombinant DNA techniques were used for nucleic acid preparation and analysis. Plasmid DNA was isolated and purified using the QIAprep Spin Miniprep Kit (QIAGEN, Hilden, Germany), according to the manufacturer’s instructions. PCR was performed with *Taq* polymerase according to the manufacturer’s protocol (Roche Diagnostics, Mannheim,
Germany), with 35 cycles of amplification steps consisting of 1 min at 94°C, 1 min at 55°C and 1 min at 72°C. PCR products were sequenced on an ABI PRISM 310 Genetic Analyzer, using the ABI PRISM BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, Weiterstadt, Germany). To identify HLGR resistance gene, we performed multiplex PCR as described by Vakulenko et al. (19). For the detection of Tn3706 specific nucleotide sequences, we used PCR with the primers O1, O2 and O3, as described by Horaud et al. (20). The primers used for this study are presented in Table 3. Detection of open reading frames (ORFs) was carried out by using ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Sequence comparison was performed by using the BLAST system (http://www.ncbi.nlm.nih.gov/BLAST/). Nucleotide sequences were submitted to GenBank under the accession number (KP698941).

Transfer and mobilization of the genetic element conferring HLGR

To investigate the potential transfer of resistance, we transformed E. faecalis (BSU386) with plasmid DNA, as described previously (21). Curing the transformed E. faecalis strain and GBS BSU452 with HLGR was achieved as follows. The strains were exposed in an overnight culture to serial twofold dilutions of ciprofloxacin in Todd Hewitt broth plus 0.5% yeast extract and Luria-Bertani medium. Bacterial cultures containing the highest subinhibitory concentration of ciprofloxacin (i.e. 0.625 mg/L for GBS BSU452 and 10 mg/L for E. faecalis BSU580) were plated on antibiotic-free tryptic soy agar blood plates and grown overnight at 37°C. Single colonies were then tested for loss of resistance to gentamicin by subculturing onto Mueller Hinton agar plates containing 256 mg/L gentamicin. The MIC for gentamicin was then determined by Etest.
Results

GBS isolates with HLGR

Among 1128 GBS isolates, two (0.17%) strains with HLGR were identified. One strain (BSU1203, MIC >1024 mg/L) was obtained from a 35-year-old Swiss woman during prenatal screening. The second HLGR GBS strain (BSU452, MIC 512 mg/L) was isolated in a respiratory specimen from a 26-year-old man with cystic fibrosis.

PCR detection of genes conferring HLGR in GBS

To investigate the resistance determinants in HLGR GBS strains, we performed PCRs that were specific for the \(\text{aac}(6')\text{-Ie-aph}(2^\prime\prime)\text{-Ia} \) gene and the flanking \(\text{IS}256 \) element (19). The \(\text{aac}(6')\text{-Ie-aph}(2^\prime\prime)\text{-Ia} \) gene was readily detected in both strains, yielding the expected product of 348 bp (19).

Detection of an old transposon and a novel element

A PCR with a primer set annealing on the structural gentamicin resistance gene and the \(\text{IS}256 \) sequence, located downstream of this gene, showed the expected 369-bp product for strain GBS BSU1203 (19), indicating the presence of the previously described chromosomal transposon Tn3706. For further characterization of the resistance determinant, PCRs that were specific for insertion sequence elements of Tn3706 were performed, as published previously (20). These PCRs were positive in GBS strain BSU1203 and matched those previously described in HLGR GBS strain B128 (20), confirming the presence of Tn3706. In GBS strain BSU452 the \(\text{aac}(6')\text{-Ie-aph}(2^\prime\prime)\text{-Ia} \) gene was found, but none of the PCR reactions specific for the transposon structures of Tn5281, Tn4001 or Tn3706 (20), yielded a product, suggesting the presence of a novel HLGR resistance determinant in this strain.

Characterization of a novel mobile genetic element conferring HLGR in GBS

To identify the genetic structure of GBS strain BSU452 carrying the \(\text{aac}(6')\text{-Ie-aph}(2^\prime\prime)\text{-Ia} \) gene, we performed an inverse PCR on a plasmid preparation of BSU452. Primers annealing to the gentamicin resistance gene (Table 3) and directed towards DNA regions upstream and
downstream of $\text{aac(6')-Ie-aph(2")-Ia}$ and yielded a PCR product about 2 kb in length, which was completely sequenced. Nucleotide comparison with the GenBank database revealed a 100% identity of nucleotides 1-253 and 721-2029 with plasmid pTEF1 of E. faecalis strain V583 (AE016833.1). Several ORFs were identified on the 2 kb PCR product and comparison of the deduced amino acids with the GenBank database revealed a DNA resolvase fragment and one copy of an insertion sequence element with high homology to IS1216. This structure displayed high similarities to a Tn3 family transposon.

Transfer and mobilization of the resistance determinant in association with HLGR

The HLGR resistance genes and the flanking DNA sequences in GBS BSU1203 matched those previously identified in GBS B128, and because thorough molecular analyses on the acquisition of HLGR have been published for that strain (8, 22, 23), further investigations focussed on GBS BSU452. Tn3 family transposons are typically located on plasmids. To investigate if this is the case in strain GBS BSU452 and to characterize the potential of spreading HLGR to other isolates, we transformed the gentamicin susceptible E. faecalis strain BSU386 with the plasmid preparation obtained from GBS BSU452. Positive clones (i.e. designated E. faecalis BSU580, which carries the mobile element of BSU452) were obtained upon plating the transformed strain onto the HLGR screening agar, as described above. A subsequent gentamicin evaluation revealed an increase in MIC from 12 mg/L to >1024 mg/L (Table 2). To ensure that the increased MIC was due to the uptake of the plasmid DNA, plasmid preparations were subjected to gel electrophoresis (Figure 1), which showed the presence of large plasmids in the HLGR strains BSU452 and BSU580. Further confirmation of the successful transfer was achieved by PCR showing the presence of the $\text{aac(6')-Ie-aph(2")-Ia}$ gene and a lack of any flanking IS256 sequences in E. faecalis strain BSU580. To confirm that the newly detected mobile genetic element is indeed located on a plasmid, we attempted to cure GBS BSU452 and the transformed E. faecalis BSU580 from the plasmid. This was successfully achieved by growing the strains in subinhibitory conditions of...
ciprofloxacin, as described by Eliopoulos et al. (24). Under these conditions, clones of both GBS BSU452 and the transformed *E. faecalis* strain BSU580 lost their elevated resistance to gentamicin. The MICs decreased in GBS strain BSU729 (i.e. strain BSU452 after plasmid curing) from 512 mg/L to 24 mg/L and in *E. faecalis* BSU720 (i.e. strain BSU580 after plasmid curing) from ≥1024 mg/L to 12 mg/L (Table 2). In addition, the lack of a plasmid in the cured strains could be demonstrated by gel electrophoresis (Figure 1). Plasmid loss in the presence of subinhibitory ciprofloxacin occurred at a frequency of about 0.02% (1 in 4500 colonies in GBS and 1 in 6000 colonies of *E. faecalis*). One of the most commonly found plasmids in GBS and enterococci is pIP501. To determine, if the detected plasmid is pIP501, the plasmid preparation obtained from GBS BSU 452 was subjected to PCR as detailed elsewhere (25). PCR products were sequenced and the presence of pIP501 in GBS BSU 452 confirmed.

Discussion

In contrast to screens for *Enterococcus* spp., GBS surveillance schemes usually do not include gentamicin susceptibility testing, and screening for HLGR is often omitted in clinical laboratories. The prevalence of HLGR in GBS is, therefore, unknown. Previously, two HLGR GBS strains were reported. One of them (B128) was isolated from an infected leg wound in 1987 (8), the other from a 49-year-old woman with a urinary tract infection, published in 2002 (9). We identified two further colonizing strains in a collection of over 1000 isolates (0.17%). This proportion is in contrast to a previously published Argentinian study (18). Among 141 strains, the authors found 13.5% HLGR GBS. Although no firm epidemiological conclusion about the frequency of HLGR isolates can be made on the basis of these two studies, it should be noted that up to 20% – 35% of women are colonized with GBS (26), and that the absolute number of HLGR GBS isolates may be much higher than previously estimated (27). Thus, for a patient receiving penicillin-gentamicin combination therapy for
invasive GBS infection, and considering the potential side effects of aminoglycosides, the presence of HLGR is of significant clinical relevance. Investigations on the genetic basis for HLGR in *E. faecalis* led to the identification of the *aacA-aphD* gene (28). It is typically found on the composite transposon Tn5281. The transposon resembles Tn4001 in *Staphylococcus aureus* and is characterized by the presence of two IS256 copies flanking the transposon structure. The *aacA-aphD* gene, later designated *aac(6')-aph(2'*) encodes a bifunctional enzyme with an acetyltransferase and a phosphotransferase function. The enzyme catalyzes inactivation of the vast majority of aminoglycosides with the exception of streptomycin. In most *Enterococcus* spp. with HLGR, the transposon harbouring the *aac(6')-aph(2'*) gene is found on a plasmid (29). Truncated forms of Tn4001 are typically located on plasmid DNA (30). Intact Tn4001 transposons can also be located on chromosomal DNA. In the previously described HLGR GBS strain B128, the *aacA-aphD* gene was found on a Tn4001 derivative (designated Tn3706), located on chromosomal DNA (8). In one of our strains (BSU1203), the finding of transposon Tn3706 conferring HLGR is in agreement with the previously published findings about HLGR GBS strain B128 (8, 22, 23)). Horaud et al. (23) described that its transposition from *E. faecalis* occurred on GBS plasmid pIP501. However, after conjugative transfer between GBS strains, the hybrid replicons pIP501::Tn3706 were found to be structurally unstable. This observation indicated that streptococcal pIP501-like plasmids do not constitute appropriate delivery vectors for the dissemination of Tn3706 among GBS, and therefore, HLGR is found relatively rarely among GBS (23). Although these arguments speak against a high potential for spread, the persistence of HLGR in GBS128 and BSU1203 indicates that Tn3706 can be stably integrated into the chromosome.

In GBS BSU452, we identified a different mobile genetic element. The genes surrounding the *aac(6')-aph(2'*) gene did not display the structures of transposon Tn4001, or any of the closely related derivatives or its truncated forms. We detected plasmid pIP501, which is a
conjugative plasmid that often carries multiresistance genes. It has previously been described
in *S. agalactiae* in association with HLGR and belongs to the Inc18 group of plasmids (25).
Tn3 family transposons are commonly associated with Inc18 plasmids and often confer
antibiotic resistance in *Enterococcus* spp. (31). They are, however, typically associated with
glycopeptide and macrolide resistance (32) and not HLGR. Investigators have previously
reported the presence of an IS1216 transposase on Tn3-like remnants (33) as we found in our
GBS BSU452 strain; however, IS1216 is typically associated with tetracycline resistance in
streptococcal species (34). To the best of our knowledge, the detection of the *aacA-aphD* gene
on a Tn3-like transposon and the presence of IS216 in association with HLGR is a novel
finding. It has been reported neither for enterococci nor for GBS.

The resistance determinant in GBS BSU452 shows close homologies to parts of the
enterococcal resistance plasmid pTEF1 of the *E. faecalis* strain V583 (35), suggesting that it
may have been transferred through horizontal gene transfer. This is, however, speculative for
GBS strain BSU452, since the presence of a HLGR Tn3-like transposon in GBS has not been
previously described. Nevertheless, horizontal gene transfer of resistance genes from
Enterococcus spp. to other gram-positive bacteria by mobile genetic elements is a well-
described mechanism in the spread of antibiotic resistance (31, 32). Horizontal gene transfer
has recently been suggested for the acquisition of vancomycin resistance genes in GBS (36).

GBS strain BSU452 was isolated from the sputum of a cystic fibrosis patient, but there was
no evidence of enterococcal colonization. Considering that patients with cystic fibrosis are
often treated with antibiotics (including aminoglycosides), and their microbiome in the
respiratory tract is different from that of untreated healthy patients, it is possible that
horizontal gene transfer to GBS originated from the selected flora. However this hypothesis
cannot be proven in our case and remains speculation. Though, a plasmid-borne HLGR has
high potential for further spread in a GBS population, the concern of this phenomenon cannot
be predicted yet. In this study, we demonstrated that pIP501, including the HLGR resistance
determinant of GBS452, could easily be transferred to *E. faecalis*. Thus, it is conceivable that transfer to other GBS isolates is also possible, especially in view of the fact that pIP501 is a broad host range plasmid, well established in GBS and enterococci.

In conclusion, the overall frequency of HLGR GBS in our large collection of isolates was low. Molecular investigations revealed a transposon located on the chromosome, as previously described in a single isolate, (8, 22, 23) and a Tn3 family transposon conferring HLGR in association with pIP501. These findings point towards a new dimension of potential spread of HLGR within GBS.

Acknowledgement

We are indebted to Professor Alessandra Carattoli for valuable comments and critical review of the manuscript.

Funding and Transparency Declarations

This work was supported in part by the Velux Foundation, Zurich, Switzerland (Proj. No. 724 to P.S.).

Conflicts of interest: none.

References
 based comparison of strategies to prevent early-onset group B streptococcal disease in

 Craig AS, Schaffner W, Zansky SM, Gershman K, Stefonek KR, Albanese BA,
 Zell ER, Schuchat A, Schrag SJ. 2008. Epidemiology of invasive group B

 LH, Lynfield R, Mohle-Boetani J, Zansky S, Albanese BA, Stefonek K, Zell ER,
 Jackson D, Thompson T, Schrag SJ. 2009. Increasing burden of invasive group B

 antimicrobial susceptibility of group A and B streptococci. Antimicrob Agents
 Chemother 19:716-725.

 susceptibility patterns of enterococci causing infections in Europe. The European VRE

 resistance in Streptococcus agalactiae (group B). Antimicrob Agents Chemother
 34:985-988.

 Antimicrob Chemother 50:142-143.

 Epidemiology of Streptococcus agalactiae colonization in Germany. Int J Med
 Microbiol 296:39-44.

11. Florindo C, Damiao V, Silvestre I, Farinha C, Rodrigues F, Nogueira F, Martins-
 surveillance of colonising group B Streptococcus epidemiology in the Lisbon and
 Tagus Valley regions, Portugal (2005 to 2012): emergence of a new epidemic type
 IV/clonal complex 17 clone. Euro Surveill 19.

 Damman O, von Kries R, Berner R, German Pediatric Surveillance Unit Study
 Group. 2006. Incidence and clinical presentation of invasive neonatal group B

 2011. Genetic differences between invasive and noninvasive neonatal group B

 2009. Emergence of respiratory Streptococcus agalactiae isolates in cystic fibrosis

 distribution of colonizing group B streptococcus in women in Egypt. Epidemiol Infect

Table 1. The pooled collection of isolates investigated for the presence of high-level gentamicin resistance

<table>
<thead>
<tr>
<th>Ref</th>
<th>n</th>
<th>Disease/Case definition</th>
<th>Origin of GBS isolation</th>
<th>Study type</th>
<th>Collection periods</th>
<th>Geographic origin</th>
<th>HLGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>75</td>
<td>No disease/colonization</td>
<td>Vaginal and rectal swabs from pregnant and non-pregnant women</td>
<td>Cross-sectional study</td>
<td>2001 – 2003</td>
<td>Aachen and Munich, Germany</td>
<td>0</td>
</tr>
<tr>
<td>(12)</td>
<td>60</td>
<td>EOD with invasive neonatal GBS infections</td>
<td>Isolation of GBS from blood or CSF and other sterile body fluids</td>
<td>Part of the prospective active surveillance study</td>
<td>2001 – 2003</td>
<td>Freiburg, Germany</td>
<td>0</td>
</tr>
<tr>
<td>(13)</td>
<td>50</td>
<td>Suspicion of EOD without proven invasive GBS disease</td>
<td>GBS isolates from non-sterile sites</td>
<td>Part of the prospective active surveillance study</td>
<td>2001 – 2003</td>
<td>Freiburg, Germany</td>
<td>0</td>
</tr>
<tr>
<td>(14)</td>
<td>30</td>
<td>Patients with cystic fibrosis</td>
<td>Respiratory samples</td>
<td>Collection of isolates</td>
<td>2002 – 2008</td>
<td>Münster, Germany</td>
<td>1</td>
</tr>
<tr>
<td>(15)</td>
<td>150</td>
<td>No disease/colonization</td>
<td>Rectovaginal specimens from pregnant and non-pregnant women</td>
<td>Part of the national surveillance study</td>
<td>2005 – 2009</td>
<td>Lisbon, Portugal</td>
<td>0</td>
</tr>
<tr>
<td>(11)</td>
<td>99</td>
<td>No disease/colonization</td>
<td>Vaginal swabs from pregnant and non-pregnant women</td>
<td></td>
<td>2009</td>
<td>Ulm, Germany</td>
<td>0</td>
</tr>
<tr>
<td>(15)</td>
<td>99</td>
<td>No disease/colonization</td>
<td>Vaginal swabs from pregnant and non-pregnant women</td>
<td>Cross-sectional study</td>
<td>2010</td>
<td>Ismailia, Egypt</td>
<td>0</td>
</tr>
<tr>
<td>(37)</td>
<td>364</td>
<td>No disease/colonization</td>
<td>Vaginal swabs from pregnant and non-pregnant women</td>
<td>Cross-sectional study</td>
<td>2009 – 2010</td>
<td>Bern, Switzerland</td>
<td>1</td>
</tr>
<tr>
<td>- 203</td>
<td>Invasive group B Streptococcus infections</td>
<td>Isolation of GBS from blood, CSF and other sterile body fluids</td>
<td></td>
<td>1998 – 2013</td>
<td>Bern, Switzerland</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total 1128

GBS, Group B Streptococcus; HLGR, high-level gentamicin resistance; Ref, reference; n, number of GBS isolates; EOD, early-onset disease.

* GBS isolates investigated and published in a context other than the presence of HLGR. The number of GBS isolates investigated for HLGR may vary from the number in the source publication for technical reasons.

b For this study, only GBS isolates with serotype III were available.
c GBS isolation occurred during a routine visit or during a visit due to an exacerbation of clinical symptoms.

d Prospective collection during routine diagnostic microbiology laboratory analysis. GBS isolates were investigated for this study.

e Collection of invasive GBS isolates (all age groups) during routine diagnostic microbiology laboratory analysis. GBS isolates were investigated for this study.
<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Description</th>
<th>MIC gentamicin</th>
<th>aac(6')-Ie-aph(3")-Ia gene</th>
<th>Transposon</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBS</td>
<td>BSU1203</td>
<td>wild-type strain</td>
<td>≥1024 mg/L</td>
<td>yes</td>
<td>Tn3706</td>
</tr>
<tr>
<td>GBS</td>
<td>BSU452</td>
<td>wild-type strain</td>
<td>512 mg/L</td>
<td>yes</td>
<td>Tn3-like</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>BSU386</td>
<td>wild-type strain</td>
<td>12 mg/L</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>BSU580</td>
<td>BSU386 + pIP501</td>
<td>≥1024 mg/L</td>
<td>yes</td>
<td>Tn3-like</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>BSU720</td>
<td>BSU580 cured</td>
<td>12 mg/L</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>GBS</td>
<td>BSU729</td>
<td>BSU452 cured</td>
<td>24 mg/L</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

GBS, Group B Streptococcus; HLGR, high-level gentamicin resistance.
Table 3. Primers used for PCR and DNA sequencing

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’- 3’)</th>
<th>Target gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse primer</td>
<td>CTT CAT CTT CCC AAG GCT CTG</td>
<td>aac(6’)- aph(2”)</td>
</tr>
<tr>
<td>HLGR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse primer</td>
<td>GCC AGA ACA TGA ATT ACA CGA GG</td>
<td>aac(6’)- aph(2”)</td>
</tr>
<tr>
<td>HLGR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>369 Vakulenko PCR</td>
<td>CAGGAATTTATCGAAAATGGTAGAAAAG</td>
<td></td>
</tr>
<tr>
<td>369 Vakulenko PCR</td>
<td>CACAATCGACTAAAGAGTACCAATC</td>
<td></td>
</tr>
<tr>
<td>348 Vakulenko PCR</td>
<td>CAGAGCCTTGGGAAGATGAAG</td>
<td></td>
</tr>
<tr>
<td>348 Vakulenko PCR</td>
<td>CCTCGTGTAATTCATGGTTCTGCC</td>
<td></td>
</tr>
<tr>
<td>Primer O1</td>
<td>GGACCTACATGATGAATGGA</td>
<td></td>
</tr>
<tr>
<td>Primer O2</td>
<td>CTTTACAGAATATTCAATAATGC</td>
<td></td>
</tr>
<tr>
<td>Primer O3</td>
<td>GTATAG CAATAGCAATCC</td>
<td></td>
</tr>
<tr>
<td>pIP501-for</td>
<td>TCGCTCAATCACTACCAAGC</td>
<td></td>
</tr>
<tr>
<td>pIP501-rev</td>
<td>CTTGAACGAGTAAAGCCCTT</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Plasmid preparations of GBS and *E. faecalis* strains. Shown are plasmid preparations of *E. faecalis* and GBS strains separated by agarose gel electrophoresis (0.8 % gel). 1: *E. faecalis* strain BSU386 (wild-type strain without HLGR). 2: *E. faecalis* strain BSU 580 (wild-type strain BSU386 after transformation with plasmid preparation from *S. agalactiae* strain BSU452, displaying HLGR). 3: *E. faecalis* strain BSU720 (*E. faecalis* strain BSU580 after plasmid curing and loss of HLGR). 4: *S. agalactiae* strain BSU452 (patient isolate displaying HLGR). 5: *S. agalactiae* strain BSU729 (*S. agalactiae* strain BSU452 after plasmid curing and loss of HLGR). M: molecular size marker.