AAC Accepted Manuscript Posted Online 4 January 2016 Antimicrob. Agents Chemother. doi:10.1128/AAC.01933-15 Copyright © 2016, American Society for Microbiology. All Rights Reserved.

1 Chromosomally and extrachromosomally mediated high-level gentamicin

- 2 resistance in *Streptococcus agalactiae*
- 3

4

- 5 Parham Sendi,^a Martina Furitsch,^b Stefanie Mauerer,^b Carlos Florindo,^c Barbara C. Kahl,^d
- 6 Sarah Shabayek,^{b,e} Reinhard Berner^f and Barbara Spellerberg^{b#}
- 7
- 8 Department of Infectious Diseases, University Hospital of Bern, and Institute for Infectious
- 9 Diseases, University of Bern, Bern, Switzerland^a; Institute of Medical Microbiology and
- 10 Hygiene, University of Ulm, Ulm, Germany^b; National Institute of Health Department of
- 11 Infectious Diseases, Lisboa, Portugal^{c;} Institute of Medical Microbiology, University Hospital
- 12 of Münster, Münster, Germany^d; Microbiology and Immunology Department, Faculty of
- 13 Pharmacy, Suez Canal University, Egypte; Clinic and Polyclinic of Pediatrics and Adolescent
- 14 Medicine, Technische Universität Dresden (Carl Gustav Carus University Hospital), Dresden,
- 15 Germany^f
- 16
- 17 Running Head: High-Level Gentamicin Resistance in S. agalactiae
- 18
- 19
- 20 #Address correspondence to Barbara Spellerberg, <u>barbara.spellerberg@uniklinik-ulm.de</u>
- 21 Institute of Medical Microbiology and Hygiene,
- 22 University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- 23 Phone: +49 (0) 731-50065333, Fax: +49 (0) 731-50065302
- 24
- 25 Keywords: Streptococcus agalactiae, high-level gentamicin resistance, gentamicin,
- aminoglycosides.

27 Abstract:

28	Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of sepsis in
29	neonates. The rate of invasive GBS disease in non-pregnant adults also continues to climb.
30	Aminoglycosides alone have little or no effect on GBS, but synergistic killing with penicillin
31	has been shown in vitro. High-level gentamicin resistance (HLGR) in GBS isolates, however,
32	leads to loss of a synergistic effect. We therefore performed a multicentre study to determine
33	the frequency of HLGR GBS isolates and to elucidate the molecular mechanisms leading to
34	gentamicin resistance. From eight centres in four countries, 1128 invasive and colonizing
35	GBS isolates were pooled and investigated for the presence of HLGR. We identified two
36	strains that displayed HLGR (BSU1203 and BSU452), both of which carried the <i>aacA-aphD</i>
37	gene, typically conferring HLGR. Though, only one strain (BSU1203) also carried the
38	previously described chromosomal gentamicin resistance transposon, designated Tn3706. In
39	the other strain (BSU452), plasmid purification and subsequent DNA sequencing resulted in
40	the detection of plasmid pIP501 carrying a remnant of a Tn3 family transposon. Its ability to
41	confer HLGR was proven by transfer into an Enterococcus faecalis isolate. Conversely, loss
42	of HLGR was documented after curing both GBS BSU452 and the transformed E. faecalis
43	strain from the plasmid. This is the first report showing a plasmid mediated HLGR in GBS.
44	Thus, in our clinical GBS isolates HLGR is mediated both chromosomally and
45	extrachromosomally.
46	
47	
48	
49	
50	

51 52

Accepted Manuscript Posted Online

53 Introduction

54	Streptococcus agalactiae, alternatively designated group B Streptococcus (GBS), is a leading
55	cause of morbidity and mortality in neonates and pregnant women. Recommendations for
56	diagnosing maternal GBS colonization and administering intrapartum antimicrobial
57	prophylaxis have led to a significant decrease in these infections (1). The rate of invasive
58	GBS disease in non-pregnant adults, however, continues to climb (2). Elderly persons and
59	those with underlying diseases - two expanding segments of the population - are at increased
60	risk (3). Treatment concepts for invasive GBS infections in non-pregnant adults have not been
61	established. Clinical isolates of GBS are susceptible to penicillin, the antimicrobial agent of
62	choice for treating invasive diseases. Several publications advocate the addition of an
63	aminoglycoside to penicillin or ampicillin for infective endocarditis (4) and periprosthetic
64	joint infections (5), although aminoglycosides have ototoxic and nephrotoxic side effects, in
65	particular in the elderly. Aminoglycosides alone have little or no effect on GBS, but
66	synergistic killing with penicillin has been shown in vitro (6). In case of the presence of high-
67	level gentamicin resistance (HLGR) in a bacterial isolate, there is a lack of a synergistic
68	effect.
69	While HLGR in <i>Enterococcus</i> spp. is frequently found (7), to the best of our knowledge, only
70	two HLGR GBS strains have been previously reported (8, 9). Most diagnostic laboratories do
71	not test routinely for HLGR in GBS. Thus, little is known about the frequency of HLGR
72	GBS, the mechanisms of acquiring HLGR and the potential to spread genetic elements
73	associated with HLGR.
74	The aim of this study was to estimate the frequency of HLGR GBS isolates (i) in
75	systematically and continuously collected GBS isolates from colonized pregnant and non-
76	pregnant women and (ii) in GBS isolates pooled in a collection that stems from various
77	selected patient populations. Upon detection of HLGR isolates, we elaborated the molecular
78	mechanism conferring this resistance.

79 Materials and Methods

80 GBS isolates

- 81 The study consisted of 1128 GBS isolates. Of these, 464 (41%) were pooled from various
- 82 GBS collections (Table 1). These isolates stem from various centres and were previously
- investigated in another context (10-15). The other 664 (59%) GBS isolates were prospectively
- 84 collected and screened for the presence of HLGR. The origin of GBS isolation, the
- association with diseases or colonization, and the sampling period are presented in Table 1.

86 Definition and identification of HLGR in GBS

- 87 No definition of HLGR in GBS has been published. According to the recommended screening
- tests for the detection of HLGR in *Enterococcus* spp., the resistant isolates have an MIC \geq 500
- mg/L (16). In addition, HLGR isolates with an MIC >500 mg/L have been reported (17, 18).
- 90 Therefore, HLGR in GBS was defined when the gentamicin MIC determined by Etest was
- 91 \geq 512 mg/L. All MIC determinations were confirmed with \geq 3 measurements.
- 92 Two different methods for the identification of HLGR in GBS were applied. Five hundred
- 93 sixty-one isolates (49.7%) were plated on Mueller Hinton agar supplemented with 256 mg/L
- 94 of gentamicin. Subsequently, the MIC of growing GBS colonies was determined by Etest. For
- 95 567 (50.3%) isolates, the MIC was primarily determined by Etest without a prior HLGR
- 96 screening test.

97 Bacterial strains

- 98 The strains used in this study are presented in Table 2. The plasmid-free recipient used in the
- 99 mating experiments was *E. faecalis* (BSU386), a clinical blood culture isolate without HLGR.
- 100 Genetic basis of HLGR
- 101 Standard recombinant DNA techniques were used for nucleic acid preparation and analysis.
- 102 Plasmid DNA was isolated and purified using the QIAprep Spin Miniprep Kit (QIAGEN,
- 103 Hilden, Germany), according to the manufacturer's instructions. PCR was performed with
- 104 Taq polymerase according to the manufacturer's protocol (Roche Diagnostics, Mannheim,

105	Germany), with 35 cycles of amplification steps consisting of 1 min at 94°C, 1 min at 55°C
106	and 1 min at 72°C. PCR products were sequenced on an ABI PRISM 310 Genetic Analyzer,
107	using the ABI PRISM BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems,
108	Weiterstadt, Germany). To identify HLGR resistance gene, we performed multiplex PCR as
109	described by Vakulenko et al.(19). For the detection of Tn3706 specific nucleotide sequences,
110	we used PCR with the primers O1, O2 and O3, as described by Horaud et al (20). The primers
111	used for this study are presented in Table 3. Detection of open reading frames (ORFs) was
112	carried out by using ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Sequence
113	comparison was performed by using the BLAST system
114	(http://www.ncbi.nlm.nih.gov/BLAST/). Nucleotide sequences were submitted to GenBank
115	under the accession number (KP698941).
116	Transfer and mobilization of the genetic element conferring HLGR
117	To investigate the potential transfer of resistance, we transformed <i>E. faecalis</i> (BSU386) with
118	plasmid DNA, as described previously (21). Curing the transformed <i>E. faecalis</i> strain and
119	GBS BSU452 with HLGR was achieved as follows. The strains were exposed in an overnight
120	culture to serial twofold dilutions of ciprofloxacin in Todd Hewitt broth plus 0.5% yeast
121	extract and Luria-Bertani medium. Bacterial cultures containing the highest subinhibitory
122	concentration of ciprofloxacin (i.e. 0.625 mg/L for GBS BSU452 and 10 mg/L for <i>E. faecalis</i>
123	BSU580) were plated on antibiotic-free tryptic soy agar blood plates and grown overnight at
124	37°C. Single colonies were then tested for loss of resistance to gentamicin by subculturing
125	onto Mueller Hinton agar plates containing 256 mg/L gentamicin. The MIC for gentamicin
126	was then determined by Etest.
127	
128	

- 129
- 130

131 Results

132 GBS isolates with HLGR

- 133 Among 1128 GBS isolates, two (0.17%) strains with HLGR were identified. One strain
- 134 (BSU1203, MIC >1024 mg/L) was obtained from a 35-year-old Swiss woman during prenatal

135 screening. The second HLGR GBS strain (BSU452, MIC 512 mg/L) was isolated in a

136 respiratory specimen from a 26-year old man with cystic fibrosis.

137 PCR detection of genes conferring HLGR in GBS

138 To investigate the resistance determinants in HLGR GBS strains, we performed PCRs that

- 139 were specific for the *aac*(6')-*Ie-aph*(2")-*Ia* gene and the flanking IS256 element (19). The
- 140 *aac(6')-Ie-aph(2")-Ia* gene was readily detected in both strains, yielding the expected product
- 141 of 348 bp (19).

142 Detection of an old transposon and a novel element

143 A PCR with a primer set annealing on the structural gentamicin resistance gene and the IS256

- 144 sequence, located downstream of this gene, showed the expected 369-bp product for strain
- 145 GBS BSU1203 (19), indicating the presence of the previously described chromosomal
- 146 transposon Tn3706. For further characterization of the resistance determinant, PCRs that were
- 147 specific for insertion sequence elements of Tn3706 were performed, as published previously
- 148 (20). These PCRs were positive in GBS strain BSU1203 and matched those previously
- 149 described in HLGR GBS strain B128 (20), confirming the presence of Tn3706. In GBS strain
- 150 BSU452 the *aac(6')-Ie-aph(2")-Ia* gene was found, but none of the PCR reactions specific for
- 151 the transposon structures of Tn5281, Tn4001 or Tn3706 (20), yielded a product, suggesting
- 152 the presence of a novel HLGR resistance determinant in this strain.

153 Characterization of a novel mobile genetic element conferring HLGR in GBS

- 154 To identify the genetic structure of GBS strain BSU452 carrying the *aac(6')-Ie-aph(2")-Ia*
- 155 gene, we performed an inverse PCR on a plasmid preparation of BSU452. Primers annealing
- 156 to the gentamicin resistance gene (Table 3) and directed towards DNA regions upstream and

157 downstream of aac(6')-Ie-aph(2")-Ia and yielded a PCR product about 2 kb in length, which 158 was completely sequenced. Nucleotide comparison with the GenBank database revealed a 159 100% identity of nucleotides 1-253 and 721-2029 with plasmid pTEF1 of E. faecalis strain 160 V583 (AE016833.1). Several ORFs were identified on the 2 kb PCR product and comparison 161 of the deduced amino acids with the GenBank database revealed a DNA resolvase fragment 162 and one copy of an insertion sequence element with high homology to IS1216. This structure 163 displayed high similarities to a Tn3 family transposon. 164 Transfer and mobilization of the resistance determinant in association with HLGR 165 The HLGR resistance genes and the flanking DNA sequences in GBS BSU1203 matched 166 those previously identified in GBS B128, and because thorough molecular analyses on the 167 acquisition of HLGR have been published for that strain (8, 22, 23), further investigations 168 focussed on GBS BSU452. Tn3 family transposons are typically located on plasmids. To 169 investigate if this is the case in strain GBS BSU452 and to characterize the potential of 170 spreading HLGR to other isolates, we transformed the gentamicin susceptible E. faecalis 171 strain BSU386 with the plasmid preparation obtained from GBS BSU452. Positive clones (i.e. 172 designated E. faecalis BSU580, which carries the mobile element of BSU452) were obtained 173 upon plating the transformed strain onto the HLGR screening agar, as described above. A 174 subsequent gentamicin evaluation revealed an increase in MIC from 12 mg/L to >1024 mg/L

175 (Table 2). To ensure that the increased MIC was due to the uptake of the plasmid DNA,

176 plasmid preparations were subjected to gel electrophoresis (Figure 1), which showed the

177 presence of large plasmids in the HLGR strains BSU452 and BSU580. Further confirmation

178 of the successful transfer was achieved by PCR showing the presence of the *aac(6')-Ie-*

179 aph(2")-Ia gene and a lack of any flanking IS256 sequences in E. faecalis strain BSU580. To

180 confirm that the newly detected mobile genetic element is indeed located on a plasmid, we

181 attempted to cure GBS BSU452 and the transformed *E. faecalis* BSU580 from the plasmid.

182 This was successfully achieved by growing the strains in subinhibitory conditions of

183	ciprofloxacin, as described by Eliopoulos et al. (24). Under these conditions, clones of both
184	GBS BSU452 and the transformed E. faecalis strain BSU580 lost their elevated resistance to
185	gentamicin. The MICs decreased in GBS strain BSU729 (i.e. strain BSU452 after plasmid
186	curing) from 512 mg/L to 24 mg/L and in <i>E. faecalis</i> BSU720 (i.e. strain BSU580 after
187	plasmid curing) from \geq 1024 mg/L to 12 mg/L (Table 2). In addition, the lack of a plasmid in
188	the cured strains could be demonstrated by gel electrophoresis (Figure 1). Plasmid loss in the
189	presence of subinhibitory ciprofloxacin occurred at a frequency of about 0.02% (1 in 4500
190	colonies in GBS and 1 in 6000 colonies of <i>E. faecalis</i>). One of the most commonly found
191	plasmids in GBS and enterococci is pIP501. To determine, if the detected plasmid is pIP501,
192	the plasmid preparation obtained from GBS BSU 452 was subjected to PCR as detailed
193	elsewhere (25). PCR products were sequenced and the presence of pIP501 in GBS BSU 452
194	confirmed.
195	

196 Discussion

197 In contrast to screens for Enterococcus spp., GBS surveillance schemes usually do not include 198 gentamicin susceptibility testing, and screening for HLGR is often omitted in clinical 199 laboratories. The prevalence of HLGR in GBS is, therefore, unknown. Previously, two HLGR 200 GBS strains were reported. One of them (B128) was isolated from an infected leg wound in 201 1987 (8), the other from a 49-year-old woman with a urinary tract infection, published in 202 2002 (9). We identified two further colonizing strains in a collection of over 1000 isolates 203 (0.17%). This proportion is in contrast to a previously published Argentinian study (18). 204 Among 141 strains, the authors found 13.5% HLGR GBS. Although no firm epidemiological 205 conclusion about the frequency of HLGR isolates can be made on the basis of these two 206 studies, it should be noted that up to 20% - 35% of women are colonized with GBS (26), and 207 that the absolute number of HLGR GBS isolates may be much higher than previously 208 estimated (27). Thus, for a patient receiving penicillin-gentamicin combination therapy for

209	invasive GBS infection, and considering the potential side effects of aminoglycosides, the
210	presence of HLGR is of significant clinical relevance.
211	Investigations on the genetic basis for HLGR in E. faecalis led to the identification of the
212	aacA-aphD gene (28). It is typically found on the composite transposon Tn5281. The
213	transposon resembles Tn4001 in Staphylococcus aureus and is characterized by the presence
214	of two IS256 copies flanking the transposon structure. The aacA-aphD gene, later designated
215	aac(6')- $aph(2'')$, encodes a bifunctional enzyme with an acetyltransferase and a
216	phosphotransferase function. The enzyme catalyzes inactivation of the vast majority of
217	aminoglycosides with the exception of streptomycin. In most Enterococcus spp. with HLGR,
218	the transposon harbouring the $aac(6')$ - $aph(2'')$ gene is found on a plasmid (29). Truncated
219	forms of Tn4001 are typically located on plasmid DNA (30). Intact Tn4001 transposons can
220	also be located on chromosomal DNA. In the previously described HLGR GBS strain B128,
221	the <i>aacA-aphD</i> gene was found on a Tn4001 derivative (designated Tn3706), located on
222	chromosomal DNA (8). In one of our strains (BSU1203), the finding of transposon Tn3706
223	conferring HLGR is in agreement with the previously published findings about HLGR GBS
224	strain B128 (8, 22, 23)). Horaud et al. (23) described that its transposition from E. faecalis
225	occurred on GBS plasmid pIP501. However, after conjugative transfer between GBS strains,
226	the hybrid replicons pIP501::Tn3706 were found to be structurally unstable. This observation
227	indicated that streptococcal pIP501-like plasmids do not constitute appropriate delivery
228	vectors for the dissemination of Tn3706 among GBS, and therefore, HLGR is found relatively
229	rarely among GBS (23). Although these arguments speak against a high potential for spread,
230	the persistence of HLGR in GBS128 and BSU1203 indicates that Tn3706 can be stably
231	integrated into the chromosome.
232	In GBS BSU452, we identified a different mobile genetic element. The genes surrounding the
233	aac(6')- $aph(2'')$ gene did not display the structures of transposon Tn4001, or any of the
234	closely related derivatives or its truncated forms. We detected plasmid pIP501, which is a

conjugative plasmid that often carries multiresistance genes. It has previously been described
in S. agalactiae in association with HLGR and belongs to the Inc18 group of plasmids (25).
Tn3 family transposons are commonly associated with Inc18 plasmids and often confer
antibiotic resistance in Enterococcus spp. (31). They are, however, typically associated with
glycopeptide and macrolide resistance (32) and not HLGR. Investigators have previously
reported the presence of an IS1216 transposase on Tn3-like remnants,(33) as we found in our
GBS BSU452 strain; however, IS1216 is typically associated with tetracycline resistance in
streptococcal species (34). To the best of our knowledge, the detection of the <i>aacA-aphD</i> gene
on a Tn3-like transposon and the presence of IS216 in association with HLGR is a novel
finding. It has been reported neither for enterococci nor for GBS.
The resistance determinant in GBS BSU452 shows close homologies to parts of the
enterococcal resistance plasmid pTEF1 of the <i>E. faecalis</i> strain V583 (35), suggesting that it
may have been transferred through horizontal gene transfer. This is, however, speculative for
GBS strain BSU452, since the presence of a HLGR Tn3-like transposon in GBS has not been
previously described. Nevertheless, horizontal gene transfer of resistance genes from
Enterococcus spp. to other gram-positive bacteria by mobile genetic elements is a well-
described mechanism in the spread of antibiotic resistance (31, 32). Horizontal gene transfer
has recently been suggested for the acquisition of vancomycin resistance genes in GBS (36).
GBS strain BSU452 was isolated from the sputum of a cystic fibrosis patient, but there was
no evidence of enterococcal colonization. Considering that patients with cystic fibrosis are
often treated with antibiotics (including aminoglycosides), and their microbiome in the
respiratory tract is different from that of untreated healthy patients, it is possible that
horizontal gene transfer to GBS originated from the selected flora. However this hypothesis
cannot be proven in our case and remains speculation. Though, a plasmid-borne HLGR has
high potential for further spread in a GBS population, the concern of this phenomenon cannot
be predicted yet. In this study, we demonstrated that pIP501, including the HLGR resistance

261	determinant of GBS452, could easily be transferred to <i>E. faecalis</i> . Thus, it is conceivable that
262	transfer to other GBS isolates is also possible, especially in view of the fact that pIP501 is a
263	broad host range plasmid, well established in GBS and enterococci.
264	In conclusion, the overall frequency of HLGR GBS in our large collection of isolates was
265	low. Molecular investigations revealed a transposon located on the chromosome, as
266	previously described in a single isolate, (8, 22, 23) and a Tn3 family transposon conferring
267	HLGR in association with pIP501. These findings point towards a new dimension of potential
268	spread of HLGR within GBS.
269	
270	Acknowledgement
271	We are indebted to Professor Alessandra Carattoli for valuable comments and critical review
272	of the manuscript.
273	Funding and Transparency Declarations
274	This work was supported in part by the Velux Foundation, Zurich, Switzerland (Proj. No. 724
275	to P.S.).
276	Conflicts of interest: none.
277	
278	
279	
280	
281	
282	
283	
284	
285	
286	References

Accepted Manuscript Posted Online

287	1.	Schrag SJ, Zell ER, Lynfield R, Roome A, Arnold KE, Craig AS, Harrison LH,
287	1.	Reingold A, Stefonek K, Smith G, Gamble M, Schuchat A. 2002. A population-
288		based comparison of strategies to prevent early-onset group B streptococcal disease in
289		neonates. N Engl J Med 347: 233-239.
290 291	2.	
	Ζ.	Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH, Petit S,
292		Craig AS, Schaffner W, Zansky SM, Gershman K, Stefonek KR, Albanese BA,
293		Zell ER, Schuchat A, Schrag SJ. 2008. Epidemiology of invasive group B
294	2	streptococcal disease in the United States, 1999-2005. Jama 299 :2056-2065.
295	3.	Skoff TH, Farley MM, Petit S, Craig AS, Schaffner W, Gershman K, Harrison
296		LH, Lynfield R, Mohle-Boetani J, Zansky S, Albanese BA, Stefonek K, Zell ER,
297		Jackson D, Thompson T, Schrag SJ. 2009. Increasing burden of invasive group B
298		streptococcal disease in nonpregnant adults, 1990-2007. Clin Infect Dis 49: 85-92.
299	4.	Westling K, Aufwerber E, Ekdahl C, Friman G, Gardlund B, Julander I, Olaison
300		L, Olesund C, Rundstrom H, Snygg-Martin U, Thalme A, Werner M, Hogevik H.
301		2007. Swedish guidelines for diagnosis and treatment of infective endocarditis. Scand
302		J Infect Dis 39: 929-946.
303	5.	Zimmerli W, Trampuz A, Ochsner PE. 2004. Prosthetic-joint infections. N Engl J
304		Med 351: 1645-1654.
305	6.	Baker CN, Thornsberry C, Facklam RR. 1981. Synergism, killing kinetics, and
306		antimicrobial susceptibility of group A and B streptococci. Antimicrob Agents
307		Chemother 19: 716-725.
308	7.	Schouten MA, Voss A, Hoogkamp-Korstanje JA. 1999. Antimicrobial
309		susceptibility patterns of enterococci causing infections in Europe. The European VRE
310		Study Group. Antimicrob Agents Chemother 43:2542-2546.
311	8.	Buu-Hoi A, Le Bouguenec C, Horaud T. 1990. High-level chromosomal gentamicin
312		resistance in Streptococcus agalactiae (group B). Antimicrob Agents Chemother
313		34: 985-988.
314	9.	Liddy H, Holliman R. 2002. Group B Streptococcus highly resistant to gentamicin. J
315		Antimicrob Chemother 50:142-143.
316	10.	Brimil N, Barthell E, Heindrichs U, Kuhn M, Lutticken R, Spellerberg B. 2006.
317		Epidemiology of Streptococcus agalactiae colonization in Germany. Int J Med
318		Microbiol 296: 39-44.
319	11.	Florindo C, Damiao V, Silvestre I, Farinha C, Rodrigues F, Nogueira F, Martins-
320		Pereira F, Castro R, Borrego MJ, Santos-Sanches I. 2014. Epidemiological
321		surveillance of colonising group B Streptococcus epidemiology in the Lisbon and
322		Tagus Valley regions, Portugal (2005 to 2012): emergence of a new epidemic type
323		IV/clonal complex 17 clone. Euro Surveill 19 .
324	12.	Fluegge K, Siedler A, Heinrich B, Schulte-Moenting J, Moennig MJ, Bartels DB,
325		Dammann O, von Kries R, Berner R, German Pediatric Surveillance Unit Study
326		G. 2006. Incidence and clinical presentation of invasive neonatal group B
327		streptococcal infections in Germany. Pediatrics 117 :e1139-1145.
328	13.	Fluegge K, Wons J, Spellerberg B, Swoboda S, Siedler A, Hufnagel M, Berner R.
329	15.	2011. Genetic differences between invasive and noninvasive neonatal group B
330		streptococcal isolates. Pediatr Infect Dis J 30 :1027-1031.
331	14.	Eickel V, Kahl B, Reinisch B, Dubbers A, Kuster P, Brandt C, Spellerberg B.
332	17.	2009. Emergence of respiratory Streptococcus agalactiae isolates in cystic fibrosis
333		patients. PLoS One 4 :e4650.
333	15.	Shabayek S, Abdalla S, Abouzeid AM. 2014. Serotype and surface protein gene
335	13.	distribution of colonizing group B streptococcus in women in Egypt. Epidemiol Infect
336		142: 208-210.
550		174,200 ⁻ 210.

337	16.	Clinical and Laboratory Standards Institute. 2014. Performance Standards for
338		Antimicrobial Susceptibility Testing: Twenty-Fourth Information Supplement M100-
339		S24, Screening Test for Detection of High-Level Aminoglycoside Resistance (HLAR)
340		in Enterococcus species. CLSI, Wayne, PA, USA.
341	17.	Weinbren MJ, Johnson AP, Woodford N. 2000. Defining high-level gentamicin
342		resistance in enterococci. J Antimicrob Chemother 45:404-405.
343	18.	Villar HE, Jugo MB. 2013. [Emergence of high-level resistance to gentamicin and
344		streptomycin in Streptococcus agalactiae in Buenos Aires, Argentina]. Rev Esp
345		Quimioter 26: 112-115.
346	19.	Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervos MJ, Lerner SA,
347	- / •	Chow JW. 2003. Multiplex PCR for detection of aminoglycoside resistance genes in
348		enterococci. Antimicrob Agents Chemother 47: 1423-1426.
349	20.	Horaud T, de Cespedes G, Trieu-Cuot P. 1996. Chromosomal gentamicin resistance
350	-0.	transposon Tn3706 in Streptococcus agalactiae B128. Antimicrob Agents Chemother
351		40: 1085-1090.
352	21.	Friesenegger A, Fiedler S, Devriese LA, Wirth R. 1991. Genetic transformation of
353	21.	various species of Enterococcus by electroporation. FEMS Microbiol Lett 63 :323-327.
354	22.	Kaufhold A, Podbielski A, Horaud T, Ferrieri P. 1992. Identical genes confer high-
355	22.	level resistance to gentamicin upon Enterococcus faecalis, Enterococcus faecium, and
356		Streptococcus agalactiae. Antimicrob Agents Chemother 36: 1215-1218.
357	23.	Horaud T, de Cespedes G, Trieu-Cuot P. 1996. Chromosomal gentamicin resistance
358	23.	transposon Tn3706 in Streptococcus agalactiae B128. Antimicrob Agents Chemother
359		40: 1085-1090.
360	24.	Eliopoulos GM, Wennersten C, Zighelboim-Daum S, Reiszner E, Goldmann D,
361	21.	Moellering RC, Jr. 1988. High-level resistance to gentamicin in clinical isolates of
362		Streptococcus (Enterococcus) faecium. Antimicrob Agents Chemother 32: 1528-1532.
363	25.	Brantl S, Nuez B, Behnke D. 1992. In vitro and in vivo analysis of transcription
364	20.	within the replication region of plasmid pIP501. Mol Gen Genet 234: 105-112.
365	26.	Barcaite E, Bartusevicius A, Tameliene R, Kliucinskas M, Maleckiene L,
366	20.	Nadisauskiene R. 2008. Prevalence of maternal group B streptococcal colonisation in
367		European countries. Acta Obstet Gynecol Scand 87: 260-271.
368	27.	Murdoch DR, Reller LB. 2001. Antimicrobial susceptibilities of group B
369	27.	streptococci isolated from patients with invasive disease: 10-year perspective.
370		Antimicrob Agents Chemother 45: 3623-3624.
371	28.	Ferretti JJ, Gilmore KS, Courvalin P. 1986. Nucleotide sequence analysis of the
372	-0.	gene specifying the bifunctional 6'-aminoglycoside acetyltransferase 2"-
373		aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and
374		identification and cloning of gene regions specifying the two activities. J Bacteriol
375		167: 631-638.
376	29.	Horodniceanu T, Bougueleret L, El-Solh N, Bieth G, Delbos F. 1979. High-level,
377	_ /.	plasmid-borne resistance to gentamicin in Streptococcus faecalis subsp. zymogenes.
378		Antimicrob Agents Chemother 16: 686-689.
379	30.	Casetta A, Hoi AB, de Cespedes G, Horaud T. 1998. Diversity of structures
380	50.	carrying the high-level gentamicin resistance gene (aac6-aph2) in Enterococcus
381		faecalis strains isolated in France. Antimicrob Agents Chemother 42: 2889-2892.
381	31.	Palmer KL, Kos VN, Gilmore MS. 2010. Horizontal gene transfer and the genomics
383	51.	of enterococcal antibiotic resistance. Curr Opin Microbiol 13 :632-639.
383	32.	Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. 2010. Mobile
385	54.	genetic elements and their contribution to the emergence of antimicrobial resistant
385		Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16 :541-554.
200		$\Delta M = 10000000000000000000000000000000000$

AAC

387 388 389	33.	Tanous C, Chambellon E, Sepulchre AM, Yvon M. 2005. The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn3 transposon carried by a large plasmid. J Bacteriol 187: 5019-5022.
390	34.	Novais Č, Freitas AR, Silveira E, Baquero F, Peixe L, Roberts AP, Coque TM.
391		2012. Different genetic supports for the tet(S) gene in Enterococci. Antimicrob Agents
392		Chemother 56: 6014-6018.
393	35.	Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE,
394		Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L,
395		Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W,
396		Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T,
397		Radune D, Ketchum KA, Dougherty BA, Fraser CM. 2003. Role of mobile DNA
398		in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071-
399		2074.
400	36.	Park C, Nichols M, Schrag SJ. 2014. Two cases of invasive vancomycin-resistant
401		group B streptococcus infection. N Engl J Med 370:885-886.
402	37.	Frohlicher S, Reichen-Fahrni G, Muller M, Surbek D, Droz S, Spellerberg B,
403		Sendi P. 2014. Serotype distribution and antimicrobial susceptibility of group B
404		streptococci in pregnant women: results from a Swiss tertiary centre. Swiss Med Wkly
405		144: w13935.
406		
407		

408	Table 1. The pooled collection	of isolates investigated for	r the presence of high-level	gentamicin resistance
-----	--------------------------------	------------------------------	------------------------------	-----------------------

Ref ^a	n ^a	Disease/Case definition	Origin of GBS isolation	Study type	Collection periods	Geographic origin	HLGR
(10)	75	No disease/colonization	Vaginal and rectal swabs from pregnant and non-pregnant women	Cross-sectional study	2001 - 2003	Aachen and Munich, Germany	0
(12)	60	EOD with invasive neonatal GBS infections	Isolation of GBS from blood or CSF and other sterile body fluids	Part of the prospective active surveillance study	2001 - 2003	Freiburg, Germany	0
(13)	50 ^b	Suspicion of EOD without proven invasive GBS disease	GBS isolates from non-sterile sites	Part of the prospective active surveillance study	2001 - 2003	Freiburg, Germany	0
(14)	30	Patients with cystic fibrosis	Respiratory samples	Collection of isolates ^c	2002 - 2008	Münster, Germany	1
(11)	150	No disease/colonization	Rectovaginal specimens from pregnant and non-pregnant women	Part of the national surveillance study	2005 - 2009	Lisbon, Portugal	0
-	97	No disease/colonization	Vaginal swabs from pregnant and non-pregnant women	_ d	2009	Ulm, Germany	0
(15)	99	No disease/colonization	Vaginal swabs from pregnant and non-pregnant women	Cross-sectional study	2010	Ismailia, Egypt	0
(37)	364	No disease/colonization	Vaginal swabs from pregnant women	Cross-sectional study	2009 - 2010	Bern, Switzerland	1
-	203	Invasive group B Streptococcus infections	Isolation of GBS from blood, CSF and other sterile body fluids	_ e	1998 - 2013	Bern, Switzerland	0
Total	1128						2

409 GBS, Group B Streptococcus; HLGR, high-level gentamicin resistance; Ref, reference; n, number of GBS isolates; EOD, early-onset disease.

410 ^a GBS isolates investigated and published in a context other than the presence of HLGR. The number of GBS isolates investigated for HLGR may

411 vary from the number in the source publication for technical reasons.

412 ^b For this study, only GBS isolates with serotype III were available.

AAC

- ^c GBS isolation occurred during a routine visit or during a visit due to an exacerbation of clinical symptoms.
 ^d Prospective collection during routine diagnostic microbiology laboratory analysis. GBS isolates were investigation of the symptomic diagnostic microbiology laboratory analysis.
 - ^d Prospective collection during routine diagnostic microbiology laboratory analysis. GBS isolates were investigated for this study.
 - 415 ^e Collection of invasive GBS isolates (all age groups) during routine diagnostic microbiology laboratory analysis. GBS isolates were investigated for
 - 416 this study.
 - 417
 - 418

Accepted Manusc	script Posted Or

419 Table 2. Bacterial strains and their corresponding genetic elements conferring HLGR

Species	Strain	Description	MIC gentamicin	<i>aac</i> (6')- <i>Ie</i> - <i>aph</i> (2") - <i>Ia</i> gene	Transposon
GBS	BSU1203	wild-type strain	≥1024 mg/L	yes	Tn <i>3706</i>
GBS	BSU452	wild-type strain	512 mg/L	yes	Tn3-like
E. faecalis	BSU386	wild-type strain	12 mg/L	no	no
E. faecalis	BSU580	$BSU386 + pIP501^{BSU452}$	$\geq 1024 \text{ mg/L}$	yes	Tn3-like
E. faecalis	BSU720	BSU580 cured	12 mg/L	no	no
GBS	BSU729	BSU452 cured	24 mg/L	no	no

420 GBS, Group B Streptococcus; HLGR, high-level gentamicin resistance.

421 422

423

424

Antimicrobial Agents and Chemotherapy

Table 3. Primers used for PCR and DNA sequencing

Name	Sequence (5'- 3')	Target gene	
Inverse primer	CTT CAT CTT CCC AAG GCT CTG	aac(6')- aph(2")	
HLGR1			
Inverse primer	GCC AGA ACA TGA ATT ACA CGA GG	aac(6')- aph(2")	
HLGR2			
369 Vakulenko PCR	CAGGAATTTATCGAAAATGGTAGAAAAC	j	
369 Vakulenko PCR	CACAATCGACTAAAGAGTACCAATC		
348 Vakulenko PCR	CAGAGCCTTGGGAAGATGAAG		
348 Vakulenko PCR	CCTCGTGTAATTCATGTTCTGGC		
Primer O1	GGACCTACATGATGAATGGA		
Primer O2	CCTTTACAGAATATTCAATAATGC		
Primer O3	GTATAG CAATATGCAAATCC		
pIP501-for	TCGCTCAATCACTACCAAGC		
pIP501-rev	CTTGAACGAGTAAAGCCCTT		

AAC

- 437 **Figure 1.** Plasmid preparations of GBS and *E. faecalis* strains.
- 438 Shown are plasmid preparations of *E. faecalis* and GBS strains separated by agarose gel
- 439 electrophoresis (0.8 % gel). 1: *E. faecalis* strain BSU386 (wild-type strain without HLGR). 2:
- 440 E. faecalis strain BSU 580 (wild-type strain BSU386 after transformation with plasmid
- 441 preparation from S. agalactiae strain BSU452, displaying HLGR). 3: E. faecalis strain
- 442 BSU720 (E. faecalis strain BSU580 after plasmid curing and loss of HLGR). 4: S. agalactiae
- 443 strain BSU452 (patient isolate displaying HLGR). 5: S. agalactiae strain BSU729 (S.
- 444 agalactiae strain BSU452 after plasmid curing and loss of HLGR). M: molecular size marker.

445

Antimicrobial Agents and Chemotherapy

