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Abstract: We calculate the anomalous dimensions of operators with large global charge

J in certain strongly coupled conformal field theories in three dimensions, such as the O(2)

model and the supersymmetric fixed point with a single chiral superfield and a W = Φ3

superpotential. Working in a 1/J expansion, we find that the large-J sector of both

examples is controlled by a conformally invariant effective Lagrangian for a Goldstone

boson of the global symmetry. For both these theories, we find that the lowest state with

charge J is always a scalar operator whose dimension ∆J satisfies the sum rule
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∆J+1 = 0.04067 ,

up to corrections that vanish at large J . The spectrum of low-lying excited states is also

calculable explcitly: for example, the second-lowest primary operator has spin two and

dimension ∆J +
√

3. In the supersymmetric case, the dimensions of all half-integer-spin

operators lie above the dimensions of the integer-spin operators by a gap of order J+ 1
2 .

The propagation speeds of the Goldstone waves and heavy fermions are 1√
2

and ±1
2 times

the speed of light, respectively. These values, including the negative one, are necessary for

the consistent realization of the superconformal symmetry at large J .
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1 Introduction

Motivation. Most conformal field theories (cfts) lack nice limits where they become

simple and solvable. Some of them are just in the middle of coupling-constant space, and

all anomalous dimensions are of order 1, and the ope is just intrinsically complicated, and

no parameter of the theory can be dialed to a simplifying limit.

Even in such cases there may sometimes be sectors of the theory where anomalous

dimension and ope coefficients simplify. Many examples of this type are known, where the

simplifying limit involves taking large quantum numbers, J , under rotational or internal

global symmetries.

The simplifications of such limits at large J have played a role in the correspondence

between strings in holographic spacetime and single-trace operators in planar gauge the-

ory [1]. The large-J limit has also simplified the analysis of the high-spin spectrum in

cft [2, 3] and the worldsheet theory in the confining regime [4].1

It would be desirable to develop a more general understanding of the simplification of

cft at large global symmetry quantum numbers. First of all, in theories that are strongly

coupled, we should exploit any analytic tools available to gain information about the op-

erator spectrum. Second of all, such simplifications in the spectrum as have been observed

in [3, 7, 8] appear to be fundamental to the structure of cft itself as understood through

the conformal bootstrap. These simplifications have been derived using the abstract rules

of the bootstrap rather than any sort of Lagrangian formulation.2 It is therefore quite

intriguing that the form of the asymptotic spectrum at large spin is quite reminiscent of

the results we derive in this paper for large global internal symmetry quantum numbers.3

Summary of methods. In this paper we will illustrate the simplification of cft at

large global symmetry quantum numbers with two simple examples of strongly coupled

fixed points in three dimensions: the critical point of the O(2) model [14] (or XY model),

and the N = 2 superconformal fixed point of the Wess-Zumino model with a single chiral

superfield and a W = Φ3 superpotential.4 We treat these theories by quantizing them on

a 2-sphere of radius R and calculating their operator dimensions via radial quantization.

In the limit of large J , there is a large hierarchy between the radius R of the sphere

and the length scale set by the charge density, ρ−
1
2 ∼ J−

1
2 R. We can then consider the

cft as a Wilsonian effective action at a renormalization group fixed-point with cutoff Λ

and exploit the cutoff-independence of the dynamics to take

1

R
� Λ� √ρ =

√
J

2R
√
π
. (1.1)

which implies J � 1. In the regime Λ � √ρ, it turns out that the effective action is

weakly coupled and under perturbative control, with an expansion in powers of ρ−1, with

numerators given by derivatives of ρ and powers of the cutoff Λ. When we quantize the

1See also [5, 6] for earlier attempts at an analysis in the same limit.
2For progress on the simple 3D conformal theories using modern bootstrap methods, see for

example [9–13].
3We thank Kallol Sen and Aninda Sinha for discussions and correspondence on this point.
4This theory can be shown to flow to a nontrivial fixed point by various means, such as the computation

of the two-point function of the R-current in the infrared [15, 16].
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theory, the leading approximation to any quantity is given by the leading large-ρ term in

the action. Sub-leading corrections are generated by quantum loops and by explicit vertices

with more negative powers of ρ in the operators.

In the Wilsonian action, only non-negative powers of Λ appear, and these are small in

the limit (1.1). Furthermore, the underlying conformal invariance of the theory means that

the Λ-dependence cancels in all physical observables, order by order in the 1
J expansion.

The Λ-dependent terms are scheme-dependent. They play little role in the dynamics of the

large-J theory other than to restore quantum scale invariance in the effective Lagrangian

description and to cancel the Λ-dependence in amplitudes. We will explain how the Λ-

dependent terms may be calculated algorithmically order by order from the Λ-independent

terms for any given form of the cutoff.

Summary of results. In the three-dimensional examples we consider, we find that lead-

ing large-J behavior of the dimension ∆J of the lowest operator with global charge J

goes as

∆J ∝ J+ 3
2 (1.2)

at large J . This is true both in the O(2) model and also in the W = Φ3 model. Note that

the dimension in the latter case does not go as ∆ = J +O(J0), as might naively have been

expected based on supersymmetric considerations. Despite the presence of a bps bound

and multiplet-shortening condition in this N = 2 theory, the operators φJ do not saturate

it, even approximately: the lowest state in the large-J sector is parametrically far above

the supersymmetric bound.

We can also compute the sub-leading terms in the expansion. In both the O(2) model

and the W = Φ3 model, the lowest dimension in the large-J sector has the expansion

∆J = c 3
2
J3/2 + c 1

2
J1/2 − 0.108451 +O

(
J−

1
4

)
. (1.3)

at large J . The coefficients c 3
2

and c 1
2

are related to the coefficients of the leading and

first sub-leading terms in the large-J effective Lagrangian and we do not at present know

how to calculate these coefficients from first principles. They may differ between the

supersymmetric and bosonic models. The order J0 term, on the other hand, is calculable

and common to the two models, and to any other model described by the same large-J

universality class.

Dimensional analysis and large-J scaling. We note here that the leading large-J

scaling can be deduced immediately on dimensional grounds without the need for the

methods developed in this paper. At large charge, the charge density ρ and energy density

H are homogeneous and semiclassical on distance scales between R and ρ−
1
2 . In this range

of scales, the two densities must obey a local and scale-invariant relationship, which in

three dimensions can only be of the form

H ∼ ρ+ 3
2 (1.4)

at large J , leading to the scaling (1.2).

– 3 –
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The only exceptions to the rule (1.4) in three dimensional cft are theories that have

a vacuum manifold of exactly flat directions, such as a free complex scalar or a supersym-

metric theory with a quantum mechanically supersymmetrically protected moduli space.

For such theories, the size of the sphere is never irrelevant, because in the absence of the

conformal coupling term of the scalar fields to the Ricci curvature, the spectrum of the

Hamiltonian would collapse and become continuous. Such theories do indeed have contin-

uous spectra on flat spatial slices such as T 2, and therefore the Ricci curvature Ric3 must

enter into the leading term in any local relationship between the charge density and energy

density, and such theories obey H ∼ (Ric3)+ 1
2 ρ for the ground state at large J .

cft with good spectra on flat slices, on the other hand — by which we mean, theories

with discrete energy levels when quantized on T 2 — are of a more generic character, and

include all known interacting non-supersymmetric theories, and even many supersymmetric

ones. The critical O(2) model, the W = Φ3 model, three-dimensional super-qed and

the CIP(N) model [17], non-supersymmetric Chern-Simons theories with matter [18, 19],

and even theories of free fermions all fall into this category. The scaling of the operator

dimension with global charge in such theories is always J
3
2 . This scaling is directly visible,

for instance, in the theory of a free relativistic fermion, where the J+ 3
2 is just the ground

state energy of a Fermi surface on the sphere. The same scaling also appears in interacting

three-dimensional theories, such as Chern-Simons theory with matter, at large magnetic

flux number.5

Despite the automaticity of the leading-order J+ 3
2 scaling itself, the power laws appear-

ing in the sub-leading large-J corrections do not follow directly from dimensional analysis,

nor does the computability of the coefficients of those corrections in perturbation theory.

Rather, the structure of the sub-leading corrections follows from a renormalisation-group

analysis that may depend on the details of the theory.

Outline. The plan of the paper is as follows. In section 2, we discuss the RG flow

and large-J perturbativity based on a toy model. In section 3, we apply the lessons we

have learned to the full O(2) model in three dimensions and discuss its large-J analysis

and study its reduction to Goldstones after integrating out the a field. We go on to

discuss the classification of operators in the conformal Goldstone action. In section 4, we

move on to the supersymmetric W = Φ3 model. We perform its RG analysis at large J ,

decouple the fermions and compute the large-J expansion of operator dimensions using

radial quantization. In section 5, we work out the energy of the excited states and see

which states are primaries and which are descendants. In section 6, we go on to discuss

other models in three and four dimensions. In section 7, we present our conclusions and

point out interesting future directions.

2 RG flow with a dimensionful vev

We would like to investigate to what extent the operator spectrum simplifies and becomes

calculable at large J in generic cft, particularly in models for which there are no other

5We thank Ethan Dyer and Mark Mezei for discussions and correspondence on their results for this

example and related work by them [17, 20, 21].
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tools or tunable parameters of the Hamiltonian. A paradigmatic example of such a theory

is the critical point of the O(2) model in three dimensions, whose ultraviolet definition is

simply a complex scalar field with potential term V = g2

12 |φ|
4.

On the one hand one expects the spectrum of this model to be under perturbative

control for large J : the loop counting parameter for a process with characteristic scale R

and initial and final state |J〉 is y = g2R/J . On the other hand, the energy of the J th state

on a sphere of radius R scales as J/R and becomes so large as to exceed the scale where

the ultraviolet physics decouples if we require y � 1, i.e. J/R � g2. This would suggest

that large-J perturbativity is not useful for the computation of operator dimensions in the

interacting cft. Such a conclusion is too pessimistic. We shall see how to compute certain

quantities in the large-J sector in a controlled fashion.

We first turn to the analysis of the renormalization group equation for this system, in

states of large J . We will begin with a toy model of the RG flow, that can be thought

of as the O(2) model where only the flow of one particular operator is retained. After

understanding the general behavior of the toy model, we will return to the full O(2) model

and analyze its behavior at large charge density. Then, we will solve the full RG equations

at the fixed point, in the large-J expansion. The solution in this limit reduces to an effective

Lagrangian that is classically scale invariant, plus small quantum corrections suppressed

by positive powers of the ratio of the cutoff to the square root of the charge density.

This Lagrangian explicitly realizes the conformal symmetry of the underlying cft,

even while strongly spontaneously broken by the charge density itself. We then quantize

this theory on the unit S2 spatial slice, and calculate the energy. This gives the value

of the dimensions of operators at large J via radial quantization according to the state-

operator correspondence. The energy of the lowest state at large J can be calculated in an

asymptotic expansion in inverse powers of J in terms of our effective Lagrangian. Certain

terms in the expansion depend on the coefficients in the large-J Lagrangian, while other

terms are universal and theory-independent altogether.

2.1 Toy model of the RG flow

To understand the effect of large J on the renormalisation group flow, let us write a toy

model for the renormalization group equation for the effective action of the O(2) model.

In this model, we discard renormalizations of operators with derivatives and also renor-

malizations of the mass term and other terms in the potential itself, other than the quar-

tic coupling.

We define this model in the spirit of the toy model in [22]: we take the structure of a

true exact Wilsonian RG flow for a real scalar field, truncated to the flow for the quartic

coupling. We discard the cutoff dependence of the mass term, the kinetic term, and all

higher-derivative terms. Though this is an uncontrolled approximation of the full RG flow,

as in the toy model of [22], it illustrates a key behavior of renormalisation group flow in a

situation where the infrared quantum scale invariance is strongly spontaneously broken by

the expectation value of a field.

– 5 –
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The ultraviolet Lagrangian will be that of a three-dimensional real scalar with a quartic

potential:

L[micro] = −1

2
(∂a)2 − g2

12
a4 . (2.1)

Conformal behavior for Λ � g2. We integrate out modes and lower the cutoff,

which is recorded by a Λ-dependent evolution of the effective Lagrangian L[Λ], of which

we keep track of only the renormalized quartic coupling g2
[eff](Λ). At Λ ∼ g2, the quantum

corrections to the coupling g2
[eff](Λ) are of the same order as g2 itself. At that point, the

coupling g2
[eff](Λ) quickly reaches its attractive6 fixed-point value in units of Λ, after which

point it obeys
g2

[eff](Λ1)

Λ1
=
g2

[eff](Λ2)

Λ2
, Λ1,2 � g2 , (2.2)

or equivalently

g2
[eff](Λ) = hΛ , Λ� g2 , (2.3)

where h is a dimensionless coupling whose numerical value is determined by the fixed point

equation.

VEV for the a field as an infrared cutoff. We can calculate the effective Wilsonian

action for any value we like of the modes below the cutoff. In particular, we would like to

give a nonzero value to the constant mode of the scalar field a. We assume this value is

far below the scale set by the ultraviolet scale, so a � g. This expectation value induces

a mass

m2
a = g2

[eff] a
2 (2.4)

for the a-fluctuations. When we integrate down to momentum modes comparable to or

below ma, the evolution of the couplings stops, because modes of a no longer make large

contributions to the running when they are below the gap. Fluctuations of such modes

renormalize the couplings only with a suppression by positive powers of Λ
ma

. Therefore, at

approximately

Λmass = ma (2.5)

the evolution of g(eff) comes to a halt. Combining equations (2.4) and (2.5), the infrared

value of the coupling satisfies

g2
[eff](Λmass) = h2 a2 , (2.6)

Λmass = ma = h a2 . (2.7)

Then the effective potential below Λmass, which is V[eff](a) = 1
12g

2
[eff](Λmass) a

4 becomes

V[eff](a) =
h2

12
a6 . (2.8)

6In the full field theory, the fixed point is not fully attractive; one must fine-tune the mass term for a in

order to stay on the fixed point. In our model, however, we have simply truncated out the quantum running

of the infrared-unstable coupling m2a2 along with all the higher-derivative couplings we don’t want to keep

track of.

– 6 –
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This form for the low-energy effective potential could have been inferred just on the basis

of dimensional analysis, but it is instructive to see how the sextic potential emerges from

the structure of the renormalization group.

For Λ < Λmass = ha2, the effective action asymptotes to a constant as Λ→ 0. Despite

this, the theory is still conformally invariant; the conformal invariance is simply broken

spontaneously by the expectation value of a. Since quantum corrections to the RG flow

are small in this regime, the effective action should be classically scale invariant to first

approximation, with small quantum corrections. In quantum terms, classical scale invari-

ance is broken by operators appearing with coefficients proportional to positive powers the

cutoff. This effective action has a smooth limit as Λ is taken to zero, since there are no

long-range degrees of freedom to generate infrared singularities.

2.2 Coupling to another sector

Dynamical source for the a-field. Now suppose further that the vev of a is not fixed

arbitrarily, but set by a source term B(x)a2, in which case the vacuum expectation value of

a goes as B+ 1
4 , and for Λ� Λmass ∼ B+ 1

2 , the effective action is classically scale-invariant

as a functional of B and its derivatives, with B assigned a scaling dimension of 2, and

quantum corrections suppressed by positive powers of Λ√
B

.

We can go further and let B(x) itself be a dynamical object, constructed as an operator

in a local effective field theory coupled to the a sector. This theory must also be regularized

and renormalized in its own right. However if the sector in which the B operator lives also

has trivial infrared dynamics — either because it is gapped or because it becomes free and

massless at low energies — then once again, the effective Lagrangian will have only positive

powers of Λ at the lowest energies.

Integrating out the a field. For purposes of examining physics of the B sector at

scales below Λmass, we can go further still and integrate out the a field altogether. We are

then left with some effective theory of the B sector. Here, powers of B can appear in the

denominators of terms in in the effective theory, because B sets the mass scale for the a

field. However the derivatives of B only appear as polynomials in the numerator, in the

expansion where B is varying slowly compared to the length scale |B|−
1
2 itself.

If the coupled dynamics of a and B are conformal below the UV scale g2, then the

effective action in the B-sector must itself be invariant under the conformal symmetry at

scales below the mass of a. This theory is under control when the conformal symmetry is

broken spontaneously, since
√
B will always be comparable to the mass of a. The effective

action will contain terms such as |B|+
3
2 , (∂B)2

|B|
3
2
, (∂2B)2

|B|
5
2

, et cetera.

Quantum mechanics of the effective B-theory. We can then quantize this effective

theory in an expansion where the rate of variation of B is small compared to the cutoff Λ,

which in turn is small compared to the scale
√
B ∼ Λmass ∼ a2:

|∂B|
B
� Λ�

√
B . (2.9)

– 7 –
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In this expansion, quantum corrections to amplitudes are suppressed by p/
√
B and

Λ/
√
B. As a result, the effective theory of the B sector is conformally invariant, not

only quantum mechanically, but approximately classically as well. Corrections to classical

scale invariance in the effective Lagrangian are given by terms with positive powers of

Λ/
√
B. In the case where the full theory is conformally invariant, the quantum mechanical,

cutoff-dependent terms can be determined systematically in terms of the classical, cutoff-

independent terms through the renormalization group equation.

Let the effective Lagrangian for the B sector be a sum of terms

L[Λ][B] ≡ L(cl) + L(qu)
[Λ] , (2.10)

where the terms L(cl) are classically scale-invariant, and the terms L(qu)
[Λ] are not. That is,7

L(qu)
[Λ] =

∑
∆c 6=3

Λ3−∆c L(qu)
∆c

, (2.11)

where all terms in L(cl) have classical scaling dimension ∆c equal to 3, and L(qu)
∆c

has

classical scaling dimension equal to ∆c.

If δ(RG)

δΛ L is the renormalization of the Lagrangian as we integrate out a shell of modes

of infinitesimal thickness δΛ, then the equation for the theory to live at a fixed point

is simply

Λ
δ(RG)

δΛ
L =

∑
∆c 6=3

(∆c − 3) Λ3−∆c L(qu)
∆c

. (2.12)

Now, we are working in the limit (2.9), so can expand both sides in powers of Λ√
B

. By our

assumption, the Lagrangian for the B sector is trivial in the infrared (either gapped or else

free and massless), so the left-hand side has only terms with ∆c < 3.

This does not mean, however, that the right-hand side contains only a finite number

of terms. Since we are working in an effective theory where the operators are allowed to

contain powers of B in the denominator, the classical scaling dimensions of the operators

appearing in the Λ-dependent terms can be negative: the set of allowed values of ∆c is

bounded above by +3, but unbounded below.

For instance, the RG flow of the classical piece of the Lagrangian may take the form

Λ
δ(RG)

δΛ
L(cl) = K1 Λ3 +K2

Λ5

B
+K3 Λ5 (∂B)2

B4
+ · · · (2.13)

Then the leading pieces of the quantum action must be

L(qu)
[Λ] = −1

3
K1 Λ3 − 1

5
K2

Λ5

B
− 1

5
K3 Λ5 (∂B)2

B4
+ · · · (2.14)

Thus we can “bootstrap” the coefficients of the operators in the Λ-dependent quantum

terms L(qu) algorithmically from the form of the classically scale-invariant Lagrangian L(cl),

though L(cl) may itself have unknown coefficients.

7In fact, we can allow a slightly more general form of the expansion, with logarithms ln(B/Λ2) on top

of powers of Λ. The logarithms are physically quite interesting, but somewhat beside the point of the

discussion here, so we do not emphasize them. The only potentially important logarithm would be a term

in the expansion with cutoff dependence Λ0 (ln(B/Λ2))k for k > 0. But we have assumed the theory of the

B sector to be trivial as Λ→ 0, which does not allow for such terms.

– 8 –
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2.3 Lessons for large-J perturbativity

Though the discussion at the level of generality in this section may be unfamiliar, many

examples of this type of dynamics are already well known. The most familiar examples

occur in supersymmetric theories with moduli spaces of exactly supersymmetric vacua.

In these theories, the role of the B sector is played by the massless moduli fields and

unbroken gauge fields themselves, while the role of the a sector is played by the massive,

spontaneously broken gauge fields and the scalars that gain a potential through F– and

D-terms.

The toy model above contains the essence of the large-J analysis of the critical O(2)

model in three dimensions and that of its supersymmetric cousin, the superconformal

W = Φ3 model. In these theories, the role of the a field is played by the magnitude of the

complex scalar φ, and the B operator is constructed from the gradient squared of the phase

variable χ, that is, B(x) ≡ |∂χ|2, which is proportional to the charge density of the system.

Our large-J descriptions of the conformal O(2) model and W = Φ3 model will be

effective theories for the phase variable χ after integrating out the magnitude a ≡ |φ| of

the complex scalar. In the supersymmetric W = Φ3 theory, the fermions will also acquire

a gap of order ma ∼
√
B = |∂χ|, and be integrated out, leaving us with the effective theory

of χ alone.

Keeping in mind the toy example of this section will guide us through the theory-

dependent details of the renormalisation-group analysis of the critical O(2) model and

superconformal W = Φ3 model.

3 Bosonic O(2) model in 3D

3.1 O(2) model and its large-J analysis

Now we apply the lessons of the toy model to the full O(2) model. The UV Lagrangian of

the system, which is stable and renormalizable, is of the form

LUV = −∂µφ∂µφ− c|φ|2 − g2|φ|4, (3.1)

where c is fine-tuned in order for the Lagrangian to flow to a conformal IR fixed point [14]:

UV theory
RG flow−−−−−→ IR conformal fixed point. (3.2)

In order for us to make conceptual contact with the toy problem of section 2, we

parametrize φ as

φ = a eiχ, (3.3)

where a ∈ R+ and χ is 2π-periodic.

The full exact Wilsonian RG equations are complicated. They simplify quite a bit

in the large-J limit, but not until the cutoff is lowered to
√
ρ. The charge density ρ

cannot affect the flow between the scale ΛUV ≡ g2 and the scale Λ =
√
ρ. Between

these scales, the renormalisation group flow is unaffected by the vev. In this range, the

equations contain all the complexity of the full Landau-Ginzburg theory in its strongly

– 9 –
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coupled regime, including its flow to the conformal fixed point. This range of the RG flow

can be treated only numerically in a standard treatment, and is not simplified by large J

at all. It is only when we reach the scale Λ =
√
ρ that the RG equations simplify.

We find, however, that if we use as input the fact that this theory flows to a fixed

point, we can strongly constrain the form of its Wilsonian effective action in the regime

of large charge density. When ρ+ 1
2 is much larger than the cutoff, the magnitude field a

decouples as in the toy model of the last section. Let us now study the effective action for

the complex scalar in the regime

Λ� a2 � g2. (3.4)

Approximate Classical scale invariance. In this limit we write the Lagrangian as8

LIR = −1

2
(∂µa)2 − f(a)(∂µχ)2 − V (a) + (higher derivative terms). (3.5)

At the IR fixed point, the Lagrangian is approximately classically scale-invariant, with

corrections to classical scale invariance that go as Λ/a2. The leading Lagrangian density

must have mass dimension 3, and the fields have dimensions

a ∝ [mass]1/2, χ ∝ [mass]0. (3.6)

The former is fixed by the normalization convention for the kinetic term of a, and the latter

is fixed by the dimensionless periodic identification of χ.

It follows that the functions in the Lagrangian have to scale as

V (a) ∝ a6, f(a) ∝ a2. (3.7)

Therefore the Lagrangian at the IR fixed point can be written as

LIR = −1

2
(∂µa)2 − 1

2
κa2(∂µχ)2 − h2

12
a6 + (Ricci coupling)

+ (higher derivative terms), (3.8)

where κ and h2 are numerical constants.

Note that the equilibrium value of a lies at

a4 = −2κ

h2
(∂χ)2 = +

2κ

h2
|∂χ|2 . (3.9)

(Here, we have used the fact that the gradient of χ is timelike around a state of large charge

density.) The charge density ρ = κ a2 χ̇ is

ρ =

√
κh2

2
a4 , (3.10)

and its integral on the sphere is

J =

∫
S2

d2x ρ = 4πR2

√
κh2

2
a4. (3.11)

8The normalization condition for the field has been chosen so that the kinetic term of a is unit and

canonical.
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In terms of the charge density ρ, our double hierarchy (3.4) becomes

Λ� √ρ� g2. (3.12)

Since we are working on a sphere of radius R, in order for the effective action to be

consistent, Λ must be parametrically larger than the IR cutoff Mir = 1/R. This means

that Λ is in the regime
1

R
� Λ�

√
J

2R
√
π
� g2 (3.13)

which can only be consistent if the charge is large:

J � 1. (3.14)

Renormalization Group Analysis. Let us now analyze the RG equations for the ef-

fective action (3.5), using the property that the underlying theory is conformally invariant.

In particular, let us show that the corrections to classical scale invariance are small, and

that the cutoff-dependent quantum terms can be derived algorithmically from the cutoff-

independent classical terms by the renormalization group equation.

Now let us prove that the classical scaling above is correct for large enough charge

density ρ. For this purpose, we want to estimate the change of f(a) and V (a) in (3.5) with

respect to the change in the momentum cut-off Λ.

We first Taylor expand around the minimum of a, which will be denoted a0. We also

let â = a− a0:

LIR = − 1

2
(∂µâ)2

− V (a0)− âV ′(a0)− 1

2
âV ′′(a0) + · · ·

− f(a0)(∂µχ)2 − âf ′(a0)(∂µχ)2 − 1

2
â2f ′′(a0)(∂µχ)2 + · · ·

+ (higher derivative terms).

(3.15)

Here the Feynman rules are as follows:

k
â =

1

k2 + V ′′(a0)
(3.16)

k
χ

=
1

2f(a0)k2
(3.17)

k1 k2

= f ′(a0)(k1 · k2) (3.18)

k1 k2

=
1

2
f ′′(a0)(k1 · k2) (3.19)
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The double lines represent â-propagators and the single lines represent χ propagators.

Apart from the ones shown above, we have one more diagram representing the source

term âV ′(a0):

= V ′(a0) (3.20)

First we renormalize the one-point function. As we have defined the effective potential

is at its minimum when â = 0, the full one-point function becomes zero. Therefore, we

shall not worry about one-point functions anymore.

Diagrams that contribute to the renormalization of f(a) at 1-loop are

(a)

k k

p

(3.21)

(b) k p k (3.22)

We now calculate these diagrams. We will take the momentum cut-off Λ and integrate the

loop momentum over a shell with radius Λ and thickness δΛ.

(a) The contribution from diagram (a), δ1f(a0), is given by

δ1f(a0) ∝ 1

k2

Λ+δΛ∫
Λ

d3p
k2f ′′(a0)

p2 + V ′′(a0)

∼ f ′′(a0)Λ2δΛ

Λ2 + V ′′(a0)
∼ f ′′(a0)Λ2δΛ

V ′′(a0)
.

(3.23)

The last approximation holds when ρ/Λ2 is large enough: a0 ∝ ρ1/4 becomes large

enough to satisfy V ′′(a0)� Λ2 in our limit ρ� Λ2.

(b) The contribution from diagram (b), δ2f(a0), is given by

δ2f(a0) ∝ 1

k2

Λ+δΛ∫
Λ

d3p
1

(k − p)2 + V ′′(a0)

(f ′(a0))2 (k · p)2

f(a0)p2

∼
Λ+δΛ∫
Λ

d|p||p|2
cos(θ)=1∫

cos(θ)=−1

d(cos(θ))
(f ′(a0))2)Λ2 cos2(θ)

V ′′(a0)f(a0)Λ2

∼ (f ′(a0))2Λ2δΛ

V ′′(a0)f(a0)
.

(3.24)

Again the approximation holds when ρ is large enough compared to Λ.
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Summing over the two contributions above, we find the RG equation below for the

quantum scaling (assuming that f(a) ∝ an):

Λ
δ

δΛ

∣∣∣∣
q

f(a0) ∝ f(a0)

a2
0

Λ3

V ′′(a0)
. (3.25)

We can compare this with its classical scaling, which is of course just proportional to f(a0)

itself. Therefore the ratio of the quantum scaling over the classical one is

Λ δ
δΛ

∣∣
q
f(a0)

f(a0)
=

(
Λ

a2

)3

. (3.26)

This is small when ρ is large enough, i.e. when a2 � Λ. The analysis for V (a0) goes parallel

to the analysis above:

Λ δ
δΛ

∣∣
q
V (a0)

V (a0)
=

(
Λ

a2

)3

. (3.27)

Just as in the discussion in section 2.2, we can derive all Λ-dependent coefficients in the

effective Lagrangian from the classically scale-invariant ones, through the fixed point con-

dition in the renormalization group equation.

In the limit Λ→ 0 with the field configuration and in particular a 6= 0 held fixed, the

Wilsonian action is finite. This is clear, because the only possible singularities as Λ → 0

would come from integrals at low momentum. Since a is gapped and χ is infrared-free in the

absence of interactions with a, there are no diagrams that can generate such singularities.

3.2 Reduction to Goldstones

Classical elimination of a. Starting with (3.8), we now integrate out the a field and

examine the effective action for the χ field. The mass term of the a field is proportional to

|∂χ|, so in the limit |∂χ| � Λ we can set the a field classically to its equilibrium value (3.9),

with the quantum corrections from its fluctuations being proportional to positive powers

of Λ
|∂χ| . Using (3.8) we have

L = bχ |∂χ|3 + (lower order in |∂χ|) , (3.28)

where|∂χ| ≡
[
− (∂χ)2

] 1
2 and bχ ≡

√
2

3
κ

3
2

h .

Terms of lower order in ∂χ. The higher-derivative terms come from the kinetic term

for a, as well as from higher-derivative terms in the effective action (3.8). The kinetic

term for a generates higher-derivative terms such as (∂|∂χ|)2

|∂χ| . This term comes along with a

coupling to the Ricci scalar, proportional to Ric3 |∂χ|. The coefficients of these two terms

are not independent; weyl invariance relates them to one another.

There is an infinite series of such terms in the effective action, with arbitrary derivatives

of χ in the numerator, and only |∂χ| occurring to negative powers. These operators are

classically scale-invariant, and are arranged hierarchically in terms of the number of powers
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of ∂χ that occur in them. This is the natural organization of operators when we compute

observables in a state of large and approximately constant density,

∂ρ

ρ
� Λ� √ρ . (3.29)

In subsection 3.4, we will classify the first few leading operators in this expansion of L.9

First, we briefly analyze the quantum properties of the conformal Goldstone theory.

3.3 Conformal Goldstones at the quantum level

At first sight, the action (3.28) looks quite strange. The form of the Lagrangian density

is singular and infinitely strongly coupled as an action expanded around the origin χ = 0.

But the action (3.28) is not meant to be used there: it is only a first term in an infinite

series of terms with higher powers of |∂χ| in the denominator.

Rather, the action is meant to be expanded around a background ∂χ0 ∝
√
ρ0 of

constant charge density, and the field χ quantized in small fluctuations whose wavelength

is long compared to ρ
− 1

2
0 . In this limit, the Lagrangian is fully under perturbative control.

To see this, break up χ into a background and fluctuation, χ = χ0 +χfluc, where χ has

constant gradient. The expansion around a fixed background χ0 takes the form10

L = bχ |∂χ0|3 + |∂χ0|
[

quadratic in ∂χfluc

]
+ [ cubic in ∂χfluc

]
+O

(
(∂χfluc)

4

|∂χ0|

)
, (3.30)

So the quantum mechanical fluctuations of χfluc are of order |∂χ0|−
1
2 , or equivalently

order ρ−
1
4 . It is sometimes convenient to work in terms of a scalar field χ̂ ≡ |∂χ0|+

1
2 χfluc

with unit-normalized kinetic term. In terms of the hatted Goldstone, we have

L = bχ |∂χ0|3 +
[

quadratic in ∂χ̂
]

+ |∂χ0|−
3
2 [ cubic in ∂χ̂

]
+O

(
(∂χ̂)4

|∂χ0|3

)
. (3.31)

The quantum fluctuations of the canonically normalised field χ̂ are of order 1, and all the

ρ-dependence comes through coefficients of the vertices which are powers of ∂χ0 = O(ρ+ 1
2 ).

The effective coupling constant that suppresses each successive quantum loop is therefore

|∂χ0|−3 ∝ ρ−
3
2 .

There is a simple rule to keep track of the quantum-mechanical ρ-scaling of a given

term, without explicitly breaking up the χ field into background and fluctuation. Since the

background χ0 has constant gradient, then the term ∂χ is dominated by the background

piece ∂χ0, while the terms ∂kχ for k ≥ 2 are purely fluctuation pieces, since ∂kχ0 = 0. So

9This is in the spirit of the functional RG flow (see [23] and references therein). Note that our analysis

is novel because we are not making approximations such as large N or ε expansion, but we hold the

dimensionality of space and the field content constant.
10We have dropped the term linear in the fluctuations, which is a total derivative. This term is important

in that it contributes to the form of the expression for the conjugate momentum to χ and therefore the

charge density, in the small-fluctuation expansion. However it does not affect the equations of motion or

the computation of corrections, so we omit it in the present discussion.
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the rules are

∂χ ∼ ∂χ0 = O
(
ρ+ 1

2

)
, (3.32)

∂kχ = ∂kχfluc = |∂χ0|−
1
2 ∂kχ̂ = O

(
ρ−

1
4

)
. (3.33)

These rules will allow us to make quick work of the enumeration of the first sub-leading

operators in the Goldstone effective action, in section 3.4.

Cutoff-dependent terms. The effective Lagrangian for χ is classically scale-invariant

in the large-ρ limit, and also fully quantum-mechanically scale invariant by virtue of our

input assumption that it is the effective theory of an exactly conformally invariant theory.

As a result, one needs in general to include cutoff-dependent terms to restore conformal

invariance at the quantum mechanical level.

Just as in the case of the toy model of section 2.2, we can compute the quantum terms

algorithmically in a Λ3/|∂χ|3 expansion, from the starting point of the Λ-independent, clas-

sically scale-invariant terms in the Lagrangian. The form of these can be seen by taking the

cutoff-dependent terms in the φ system and reducing those to Goldstone terms by integrat-

ing out a = |φ|. Alternately, a renormalization group equation for the χ action determines

the cutoff-dependent terms directly, in terms of the canonically scale-invariant terms in the

Goldstone action. The quantum pieces will consist of terms such as Λ3, Λ3 (∂2χ)2

|∂χ|4 , · · · .
The cutoff-dependent terms are of course scheme-dependent and not very interesting

in themselves, however important they may be as a point of principle for establishing

the self-consistency of our treatment of the theory at large J . For low-order calculations,

such as the one we will perform in section 5.2, an analytic renormalization scheme such

as dimensional regularization or ζ-function regularization, is far more convenient, as it

subtracts the counterterms automatically and we never have to calculate the explicit form of

the quantum terms in the action. In section 5.2 we will indeed use ζ-function regularization,

and therefore we will not pursue the calculation of the cutoff-dependent terms further.

3.4 Classification of operators in the conformal Goldstone action

Let us now classify all possible scale-invariant operators appearing in the conformal Gold-

stone action, according to their ρ-scaling. In order to understand the ρ-scaling of a given

operator at the quantum level, we use the simple ρ-counting rules (3.32), (3.33) derived in

section 3.3.

We are going to write down scale-invariant operators at order ρα≥0. The scalings to

remember are ∂χ ∼ ρ1/2 and ∂ . . . ∂χ ∼ ρ−1/4. We retain only scalar operators of scaling

dimension 3, including curvatures of the background metric in our counting.

Order ρ+
3
2 . There is only one operator of order ρ+ 3

2 : the leading-order Lagrangian

O 3
2
≡ |∂χ|3 . (3.34)

This term is conformally invariant as well as scale-invariant, as an operator in the La-

grangian density.
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Order ρ+
1
2 . At this order, there are two operators and they are both curvature-depen-

dent. The first is

O 1
2
≡ Ric3 |∂χ| , (3.35)

where by Ric3 we mean the three-dimensional Ricci scalar. This term is scale-invariant as

a term in the action but not conformally invariant. This is related to the fact that the Ricci

scalar transforms inhomogeneously under a Weyl transformation of the background metric

g•• → exp {2υ(x)} g••. To restore Weyl-invariance and conformal invariance, this term

must be completed with an operator of the form (∂|∂χ|)2

|∂χ| in the Weyl-invariant combination

Ô 1
2
≡ Ric3 |∂χ|+ 2

(∂|∂χ|)2

|∂χ|
, (3.36)

Note that the ρ-scaling of the completing term is negative.

There is also the operator
Rµν(∂µχ)(∂νχ)

|∂χ|
. (3.37)

This operator is of order ρ+ 1
2 for a generic background metric. However we will be mostly

interested in the case of an unwarped product metric of the form (time)×(spatial slice),

and a spatially homogeneous solution χ0. For such a metric, the only non-vanishing com-

ponents of Rµν are the spatial components, which have vanishing contraction with the

background gradient ∂µχ0. Therefore this operator contributes only through fluctuation

terms. Replacing each of the two contracted ∂χ0’s with a ∂χfluc = |∂χ0|−
1
2 ∂χ̂, the scaling

of the operator comes down to ρ−1, which is below 0 and so we discard it.

Order ρ+
1
4 . We obtain two possible terms at order ρ+ 1

4 :

|∂χ|∂µ∂µχ ∼ ρ1/4, (3.38)

∂µχ∂
µ|∂χ| = ∂µ∂νχ∂

νχ

|∂χ|
∼ ρ1/4. (3.39)

These terms are not linearly independent as operators; one combination vanishes by

virtue of the equations of motion. The remaining linear combination is non-vanishing as

an operator, but does not appear in the effective Lagrangian, because it is odd under the

charge-conjugation symmetry of the theory:

φ↔ φ̄, χ→ −χ . (3.40)

Hence there are no terms of order ρ+ 1
4 appearing in the Lagrangian.

Order ρ0. There are no operators at order ρ0. This is a key fact so let us establish it

formally. Since first derivatives of χ scale as ρ+ 1
2 and higher-derivatives of χ scale as ρ−

1
4 ,

the number of χ’s with higher derivatives on them must be even for an operator to scale as

a half-integer power of ρ. Dimension-3 operators with ∂χ’s only are of the form (∂χ)3−kGk,
where Gk is a geometric invariant of scaling dimension k, constructed from background

curvatures. For k = 3 there are no such operators.11

11The gravitational Chern-Simons term, which has dimension 3, is not gauge-invariant when multiplied

by other operators such as ∂χ.
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The next possibility would be terms with two or more χ’s in the numerator with higher

derivatives acting on them. The total dimension of the numerator would be at least four,

and have ρ scaling bounded above by ρ−
1
2 . The dimension of the operator could then only

be brought down to 3 by putting one or more factors of |∂χ| in the denominator, which

would drive the total ρ-scaling of the operator to ρ−1 or less.

We conclude there are no operators of order ρ0. This fact has physical significance,

and we shall see in section 5 that the J0 term in the expansion of the operator dimension

at large J , is calculable and universal as a result.

4 The supersymmetric W = Φ3 model

4.1 The model

Consider the N = 2 supersymmetric theory in three space-time dimensions, with a single

chiral superfield, Kähler potential K = Φ†Φ and superpotential W = 1
3Φ3. This theory

is known to flow to an interacting superconformal fixed point, as can be shown, e.g., by

the techniques of [15, 16]. The R-charge and dimension of Φ at the fixed point are equal

to +2
3 . This theory has no marginal deformations and no small parameter of any kind.

Nonetheless we would like to analyze its spectrum of operator dimensions. It is equipped

with a continuous global symmetry, namely the R-symmetry itself, and one can inquire

again about the dimension of the lowest operator |J〉 of φ-charge J . (We define the charge

here to be 3
2 times the R-charge, so that φ has φ-charge +1 and the supercurrent Qα has

φ-charge −3
2 . When referring to the “charge” without specifying, we will mean the charge

normalised as φ-charge rather than R-charge.)

4.2 RG flow in the W = Φ3 model

Following both our toy model and the example of the O(2) model in section 3, we expect

large-J perturbativity to mean that the flow of the Lagrangian with log(Λ) is parametri-

cally suppressed relative to the original Lagrangian. This is indeed the case; the calculation

is mostly parallel to that case and so we suppress most details.

In our normalization convention for the fields, W is taken to be unit-normalised (and

thus has scaling [mass]2). This is different from the standard convention in which the kinetic

term is unit-normalised, but it is a far more convenient convention for a supersymmetric

theory with superpotential, due to the non-renormalization theorem for F -terms. Since

the superpotential is

W =
Φ3

3
, (4.1)

it follows that Φ has dimensions Φ ∝ [mass]2/3. The Lagrangian must be classically scale

invariant: in three spacetime dimensions it follows that the Kähler potential has dimension

1 and it must scale as K ∝ |Φ|3/2. We fix the proportionality constant to

K =
16bK

9
|Φ|3/2 , (4.2)

which gives the kinetic term

Lkin = bK |φ|−1/2 ~∂φ~∂φ̄, (4.3)
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and the potential

V =
1

bK
|φ|

9
2 . (4.4)

The Yukawa coupling

LYuk = i φψ↑ψ↓ + (h.c.) (4.5)

does not involve the Kähler potential at all.

Inclusion of the one-loop renormalization. Now we apply the RG equations at large

|φ| at the fixed point, including the small one-loop renormalization of the action. (For the

running of the Kähler potential, for instance, one can use [24], generalizing an earlier

formula [25] in the renormalizable case.)

In three dimensions, we have:

Λ
dK

dΛ
∝ Λ ln

[
Λ2 +m2

]
, (4.6)

where

m2 =
|W ′′|2

K2
φφ̄

=
g2 |φ|2

K2
φφ̄

. (4.7)

We expand the Kähler potential in powers of |φ| as

K(Φ) = K(0)(Φ) +K(1)(Φ) =
16bK

9
|Φ|

3
2 +K(1) + · · · . (4.8)

If we assume that the mass scale M = |φ̂|3/2 defined by the vev satisfies

|φ̂|3/2 � Λ (4.9)

and use the condition K(1) � K(0) ' |φ̂|3/2 we obtain a self-consistent expansion of the

logarithm,

ln[Λ2 +m2] =
b̂KΛ2

|φ̂|3
− 2|φ̂|1/2

b̂K
K

(1)

φφ̂
+ . . . (4.10)

We then see K(1) must scale as
b̂2K Λ2

|φ̂|3
. Higher terms in the Kähler potential can

be determined iteratively from the fixed point equation; this generates a series in the

dimensionless ratio b̂KΛ2/|φ̂|3. All the basic ideas in the determination of the Λ-dependent

terms are as in the toy model and the O(2) model.

Reduction to Goldstones in the supersymmetric model. Now we write the leading

terms in the large-J effective action in terms of |φ| and χ ≡ arg(φ) as in the O(2) model.

L = b̂K
(∂φ)(∂φ̄)

|φ|
1
2

+ V (|φ|) = b̂K |φ|
3
2 (∂χ)2 + b̂K

(∂|φ|)2

|φ|
1
2

+ V (|φ|)

+ (higher derivatives) + (fermions) , (4.11)

with V (|φ|) ∝ |φ|
9
2 .
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For configurations with |φ| constant, the action is minimized when

(∂χ)2 ∝ |φ̂|3 + (higher derivatives) + (fermions) . (4.12)

Eliminating |φ| classically and rewriting the effective action in terms of χ alone, we

have a Goldstone effective Lagrangian with exactly the same structure as in the case of the

O(2) model, with the exception of the presence of the fermions:

L = bχ |∂χ|3 + (lower order in |∂χ|) + (fermions) . (4.13)

4.3 Decoupling of the fermions

The fermions, however, decouple from the dynamics. As we show in the appendix, they

have a rest energy E0 of order |χ̇| = O(
√
ρ), and therefore are heavier than the cutoff of

our effective theory, and we integrate them out. The fermions obtain their large masses

from the Yukawa couplings (4.5), which allow quanta of R-charge carried by the fermions

to convert into quanta of R-charge in the χ̇ sector. This induces a chemical potential for

the fermions.

Importantly, the same Yukawa couplings also impart effective Majorana mass terms

to the fermions that generate the gap. For most purposes of the large-J expansion of the

lowest-dimension operators, the key fact is that the low-lying large-J sector is described

by exactly the same universality class — a conformally-invariant effective field theory for

the R-Goldstone χ — as describes the large-J sector of the critical O(2) model.

Rest energies and speeds of the fermions. The heavy fermions do display a few

interesting features at large J , however. For one, their rest mass obeys a precise identity

at leading order in J ,

E0 = 2
d∆J

dJR
=

3

2

d∆J

dJ
=

3

2
|χ̇| , (4.14)

which is necessary for Bose-Fermi degeneracy. The supercharges Qα map from a sector

of R-charge 2J
3 to a sector of R-charge 2J

3 − 1. They do so by removing one quantum of

R-charge from the Bose condensate and replacing it with a fermion that is almost at rest.

Therefore Bose-Fermi degeneracy implies (4.14) to leading order in J .

The other interesting feature of the fermion dynamics has to do with their propagation

speed. Like the bosons, the fermions propagate slower than the speed of light. One might

have imagined that the fermion and Goldstone speeds are forced by supersymmetry to be

the same, but this is not so: the fermions actually have speed ±1
2 times the speed of light,

rather than 1√
2

as the Goldstones do:

Ef(p) = E0 ± vf |p|+O

(
|p|2

|χ̇|

)
, (4.15)

where

vf =
1

2
. (4.16)

This dispersion relation, particularly the unfamiliar appearance of the negative velocity

is striking and begs for further explanation. Like the value of the speed of the Goldstones,
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the speed of the fermions is also dictated by superconformal symmetry. Consider that the

state |J〉 is the lowest state with R-charge 3J/2 and is thus is annihilated by both the

energy-raising, R-charge-raising generators Q† and the energy-lowering, R-charge-raising

superconformal generators S†. However the state is non-bps and therefore can be annihi-

lated by neither S nor Q. Therefore the states Q |J〉 and S |J〉 are nonvanishing, and have

energies ∆J ± 1
2 .

These states are single-fermion excitations on top of a bose condensate of φ-charge

J − 3
2 , so the rest mass E0 = 3

2 |χ̇| compensates the loss of 3
2 of a unit of φ-charge from

the Bose condensate, modulo an error of order J−
1
2 . The O(1) difference ±1

2 can thus only

come from the kinetic energy of the fermions, which is ± vf |p|. On the unit sphere, the

role of p in the dispersion relation (4.15) is played by the eigenvalue of the Dirac operator,

which for the ` = 1
2 mode has absolute value 1. It follows that vf can only be equal to

1
2 if superconformal symmetry is respected, and that both positive and negative velocities

must be present!

The dynamics of the fermions, particularly the negative velocity modes, is quite inter-

esting in its own right. Such modes are widely studied in condensed matter systems. They

are a generic feature of fermions with a chemical potential and Majorana mass term, as in

our system. The dispersion relation (A.29), for instance, precisely appears in famous work

by Fu and Kane [26] on the interface between a topological insulator and a superconduct-

ing material. For a review of such modes and their role in condensed matter physics, the

reader is referred to [27].

5 Observables

5.1 Classical approximation to large-J states

We now compute the large-J expansion of operator dimensions using radial quantization.

That is, we use the state-operator correspondence, and the fact that the dimension of the

lowest operator of charge J is equal to the energy of the lowest state of charge J on a

unit sphere.

At leading order, all expectation values of operators are given by evaluation of those

operators in the lowest-energy classical solution with charge J . By standard manipulations

in classical mechanics, one may see that the lowest classical solution of a system with a

global symmetry is always invariant under a “helical” symmetry — that is, a symmetry

under a combined time translation and global symmetry transformation. In terms of the

Goldstone field, this is simply the statement that the lowest-energy classical solution with

a given global charge always has the Goldstone χ varying exactly linearly in time at a rate

that is spatially independent.

This simplifies our search for the classical solution representing the ground state. Start-

ing from the Lagrangian density L = bχ
(
χ̇2 −∇χ2

)3/2
, the conjugate momentum to the

field χ is

Π =
δL
δχ̇

= 3bχχ̇
(
χ̇2 − (∇χ)2

)1/2
, (5.1)
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in terms of which the Hamiltonian density reads

H =
1

3
√

6

[
1

bχ

(
9b2χ(∇χ)4 + 4Π2

)3/2 − 27b2χ(∇χ)6 + 36 Π2 (∇χ)2

]1/2

. (5.2)

In terms of χ̇, the Hamiltonian density is given by

H = bχ
(
χ̇2 − (∇χ)2

)1/2 (
2χ̇2 + (∇χ)2

)∣∣∣
χ̇2=

(∇χ)2

2
+

√
4Π2+9b2χ(∇χ)4

6bχ

. (5.3)

For fixed χ̇ or fixed Π, the energy is monotonically increasing as a funcion of (∇χ)2. It

follows that the spherically symmetric state is a global, rather than merely a local, minimum

of the energy with fixed total charge. Note that this is a rather different situation from

that in the system studied in [17], where the spherically symmetric classical solution for

the lowest state at large monopole number is not even perturbatively stable. In our case,

the spherically symmetric state is not only a local minimum but a global minimum of

the energy in the configuration space at fixed J . It follows that the lowest state with

sufficiently large charge always has spin zero in both the O(2) model and W = Φ3 model.

For a spherically symmetric configuration, the Hamiltonian density of the lowest state of

the system is

Π = ρ = 3bχχ̇
2 =

J

4π
, H =

2√
27bχ

Π
3
2 =

J
3
2

4π
√

27πbχ
(5.4)

and the classical solution is

χ0 = Ω t, Ω ≡

√
J

12πbχ
. (5.5)

The total energy of the state is the Hamiltonian density (5.4) integrated over S2:

E = ∆(J) =
J

3
2√

27πbχ
. (5.6)

5.2 Large-J expansion of the operator dimension

Order J+3
2 and J+1

2 classical terms. At order J+ 3
2 , the energy is just given by the

classical energy of the lowest classical solution. These contributions come directly from the

only two terms in the Lagrangian with positive J-scaling, the leading operator O 3
2
|∂χ|3

and Ricci coupling O 1
2
Ric3. As shown in section 3.4, there is no operator of order J0

that contributes classically to the energy of the bosonic ground state. So the only order

J0 terms come from the one-loop vacuum energy, calculated with the Gaussian action for

fluctuations from the leading-order bosonic terms. We now calculate the value of that

correction to the vacuum energy.

Order J0 quantum correction. We would like to use the leading large-J terms in the

conformal Goldstone action to calculate the energy of the lowest state. Since the Goldstone

action describes a large-J universality class that is shared by the critical O(2) model and

the W = Φ3 model, the following discussion shall apply to both cases together.

The action for the phase variable χ is given by

L = bχ |∂χ|3 = bχ [−∂µχ∂µχ]+
3
2 . (5.7)
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To quantize it, we break up the field as in section 3.3, i.e.,

χ ≡ χ0 + |∂χ0|−
1
2 χ̂ . (5.8)

where χ0(t) is the classical solution (5.5) and χ̂ is a canonically normalized fluctuation.

At large-J , we can Taylor expand the action:

L = bχ (∂tχ∂tχ− χ4S2 χ)3/2

= bχ |∂χ0|3 +
3 bχ

2
χ̂

(
−∂2

t +
1

2
4S2

)
χ̂+O

(
χ̂3

|∂χ0|
3
2

)
,

(5.9)

where we have dropped a total derivative term proportional to ∂τ χ̂.

Wick rotating t → iτ and computing the determinant, we find that the one-loop

correction to the vacuum energy is given by the usual Coleman-Weinberg formula applied

to a minimally coupled massless boson with propagation speed 1√
2

times the speed of light:

1

2T
log det

(
−∂2

τ −
1

2
4S2

)
=

1

2
√

2

∞∑
`=0

(2`+ 1)
√
`(`+ 1). (5.10)

(We have let T ≡
∫ T/2
−T/2 dτ denote the total extent of (Euclidean) time.) By using the

ζ-function regularization, the sum can be renormalized to be
∞∑
`=0

(2`+ 1)
√
`(`+ 1) =

∞∑
`=1

(2`+ 1)
√
`(`+ 1)

=

∞∑
`=1

(
2`2 + 2`+

1

4
+O(`−2)

)
→ 2ζ(−2) + 2ζ(−1) +

1

4
ζ(0)

+
∞∑
`=1

(
(2`+ 1)

√
`(`+ 1)− 2`2 − 2`− 1

4

)
= − 7

24
− 0.01508 = −0.30675.

(5.11)

Multiplying by 1
2
√

2
, we have the one-loop renormalized vacuum energy of the bosonic O(2)

model in the large-J sector:

∆(J)

∣∣∣∣
O(J0) term

= −0.108451 . (5.12)

Thus the energy of the lowest state has the asymptotic expansion

∆(J) = c+ 3
2
J+ 3

2 + c+ 1
2
J+ 1

2 − 0.108451 +O(J−
1
2 ) . (5.13)

It is sometimes helpful to re-express the structure of the asymptotic expansion in terms

of a sum rule. We therefore characterize the expansion for the ground state energy (5.13)

as the sum rule:

J2 ∆(J)−
(
J2

2
+
J

4
+

3

16

)
∆(J−1)−

(
J2

2
− J

4
+

3

16

)
∆(J+1) = 0.04067+O(J−

1
2 ) . (5.14)

As we have emphasized throughout, there are no operators scaling as J0, so the order J0

term is universal.
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Noncontribution of higher-loop diagrams at order J0. The Casimir contribution

to the energy is the entire contribution at this order. It is easy to see that there are no

higher-order diagrams contributing to the energy at order J0. Once we write the action

in terms of the canonically normalized fluctuation field χ̂, we see that every cubic vertex

in a Feynman diagram scales as |∂χ0|−
3
2 ∝ ρ−

3
4 at the largest, and every quartic vertex as

|∂χ0|−3 ∝ ρ−
3
2 at the largest. Therefore, a two-loop vacuum diagram contributes as J−

3
2

and smaller.

Corrections to the ground state energy from subleading explicit terms (3.35) are

larger but still too small to contribute at order J0: the operator O 1
2

= Ric3|∂χ| gives

(Ric)3
(∂χ̂)2

|∂χ0|2 ∝ ρ−1 when expanded to quadratic order in fluctuations. It affects the dis-

persion relation and Casimir energy at order J−1.

5.3 Energies of excited states

It is now simple to work out the energy of the excited states and their conformal represen-

tation theory, i.e., which states are primaries and which are descendants. From (5.9), we

see that at leading order the Lagrangian is just that of the free fields, so the equation of

motion is just

χ,tt = +
1

2
∇2χ. (5.15)

Note that the dispersion relation is nonrelativistic; the propagation speed of the Goldstone

boson is 1√
2

times the speed of light. We will see momentarily that this value is the only

one consistent with the spontaneously broken conformal symmetry.

The dispersion relation in terms of frequencies and spins is as usual on a sphere:

ω` =

√
1

2
`(`+ 1). (5.16)

The energies of the excited states are therefore the energy of the ground state, plus the

sum of a set of frequencies ω`.

We start by examining the first-excited states. Take ` = 1 for example. The first

excited states have one excitation of spin 1 that increases the operator dimension by 1,

which corresponds to acting with ∂ on the primary operator to make a descendant. The

speed of the Goldstone, 1/
√

2 plays an essential role here because otherwise there would be

no spin-1 oscillator which would increase the anomalous dimension by 1. The conformal

raising operator Pµ, in other words, is just the Goldstone mode at ` = 1. Therefore the

criterion for a state to be a conformal primary is that it has no ` = 1 modes excited, with

only the modes of ` = 2 or greater occupied.

We can now compute the weights of primaries. Acting with a single ` = 2 oscillator

gives an energy of ∆(J)+
√

3, which is the lowest primary state above the large-J vacuum.

This state must be primary, because there is no state of charge J with energy ∆(J)+
√

3−1.

We can construct scalar primary states as well. The lowest-energy way to do this is by

taking the singlet in the symmetric product of two ` = 2 representations. Therefore the

lowest excited scalar primary is obtained by acting with two ` = 2 oscillators, and therefore
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has energy ∆(J) + 2
√

3. The lowest vector primary is obtained by acting with one ` = 3

oscillator and one ` = 2 oscillator, and has energy ∆(J) +
√

3 +
√

6.

All these states have subheading large-J corrections coming from loop effects and

explicit operator corrections in the Lagrangian, of course. These contribute to E −∆(J)

at order J−
3
2 and J−1, respectively.

6 Large-J analysis of some other models

6.1 4D theories and their anomaly terms

Consider a cft in four dimensions with a U(1) global symmetry, in which Weyl anomalies

are present in the underlying cft. And suppose further that the large J universality

class of this cft is described again by the a four-dimensional version of the conformal

Goldstone system studied in the previous sections.12 In such a cft, the anomalies must

express themselves consistently at the level of the large-J effective dynamics. The result

is that the anomaly coefficients control certain terms in the large-J expansion of the cft.

In four dimensions, the a-anomaly directly dictates the coefficients of certain terms in the

large-J effective action in flat space; certain curvature-dependent terms of order J0 in the

large-J effective action are also dictated by the Weyl anomaly coefficients, of both a- and

c-type.

The analysis of the Wess-Zumino term for anomalous Weyl symmetry has been carried

out in [28] (see their eq. (2.8)) and the result is that

SWZ[gµν , χ; a, c] =

∫
d4x
√
−g
{
− a
[
ln(|∂χ|)E4(g)

+ 4(Rµν(g)− 12gµνR(g))Ω−2δµΩδνΩ

+ 4Ω−3(∂Ω)2�Ω− 2Ω−4(∂Ω)4
]

+ c ln(|∂χ|)W 2(g)
}
,

(6.1)

where g is the background metric, E4 and Wµν
ρ
σ are respectively the Euler density and

Weyl tensor, and for us,

Ω ≡ |∂χ|. (6.2)

The point here is that the logarithm of |∂χ| plays exactly the same role as the effective

dilaton τ in the Wess-Zumino anomaly term, that the logarithm of the overall scaling

modulus plays in the same formula when there is a supersymmetric moduli space of vacua.

It would be interesting to learn from this substitution whether any interesting insights

can be gained from unitarity constraints on Goldstone scattering, perhaps generalizing the

recent celebrated proof of the a-theorem in four dimensions [29].

12Though we do not know of any controlled example of such a cft, we can certainly imagine they

may exist. For instance, an asymptotically free SU(2) gauge theory with two pairs of complex scalar

fields, each transforming as a doublet, may have a phase transition as the bare mass-squared parameter is

varied from positive to negative and the U(1) global symmetry acting on the doublets goes from unbroken

to spontaneously broken. Assuming such a phase structure exists, then the boundary between the two

presumably has a description in terms of a four-dimensional version of the conformal Goldstone theories we

have discussed in previous sections.
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6.2 Monopoles and S-duality in three dimensions

Dualities at large J . Like many known theories of a compact boson in three dimensions,

the conformal Goldstone system has a duality transformation to an Abelian gauge theory in

three dimensions, where the Noether current maps to the monopole current, i.e., the Hodge

dual of the field strength tensor, J µ → 1
2 ε

µνσ(dA)νσ. Then the total Noether charge of a

state maps to the magnetic flux on the sphere. In the language of operators, the Noether

charge of an operator in the original variables, is the monopole number of the operator.

We can use coordinate- and Weyl-transformation properties in order to see how the

field strength tensor can be expressed in terms of χ. We take here a convention where

ε012 = 1 and thus has Weyl weight 0. Also as Fµν has Weyl weight 0 and we are in three

dimensions, so that
√
|g| has weight −3. At leading order in the derivative expansion, we

find that Weyl-invariance, diffeomorphism covariance, and charge quantization uniquely

determine the relation:

Fµν =
√

2 |∂χ| (∗dχ)µν =
1√
2
|∂χ|

√
|g|εµνσ∂σχ, (6.3)

and the inverse relation is:

∂µχ =
1√
2
|F |−1/2 (∗F )µ =

1√
2
|F |−1/2

√
|g|εµνρF νρ, (6.4)

where the numerical factors have been chosen so that

|F |2 = |∂χ|4 . (6.5)

The duality means that the effective Lagrangian for the field strength is immediately

derived from the leading Goldstone action in eq.(3.28):

L = bχ|F |3/2 + . . . . (6.6)

This is consistent with the fact that the Weyl weight of the Lagrangian is 3. An immediate

consequence of the unusual form of the action is that the dimension of the lowest-lying

monopole operator, scales as monopole number to the 3
2 , for large monopole charge.13

Note that the relation between J µ and Fµν is exact, but the relationship between J µ

and ∂µχ depends on higher terms in the Lagrangian. However the modifications have a sub-

leading effect at large magnetic flux number: corrections are suppressed by inverse powers

of constant field strength, with numerators proportional to derivatives of the field strength.

7 Conclusions

We have performed a renormalization group analysis proving that certain simple bosonic

and supersymmetric systems are described at large charge density by a simple conformal

Lagrangian for Goldstone fields. In the limit where the charge density is large compared

to the infrared energy scale, the system is weakly coupled both classically and quantum

mechanically, and can be quantized straightforwardly in perturbation theory. In the limit

of large charge J , the leading large-J expressions for all quantities, such as energies and

13The same scaling has apparently been derived for operators of large monopole number in three-

dimensional fixed points flowing from weakly-coupled gauge theory or Chern-Simons matter theory. We

thank Ethan Dyer for communicating this result to us. [21].
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anomalous dimensions, are controlled by leading terms in the effective action. We do not

know at present how to calculate the coefficients of those terms analytically from first

principles, and we expect them to differ between conformal field theories. For instance,

the value of b describing the large-charge sector of the W = Φ3 supersymmetric model

likely differs from the value of b describing the large-charge sector of the three-dimensional

XY model. In even dimensions certain coefficients in the large-J effective action can be

computed in terms of some intrinsic data of the cft such as anomaly coefficients.

We have also computed the dimensions of excited primary states, and found that they

are given up to order J0 by energies of free oscillators in the λ ≥ 2 spherical harmonics

on S2.

There are a number of interesting questions to investigate in the future.

Since some features of the three-dimensional model may appear counterintuitive, it

would be interesting to compare them with the analogous properties of various known

conformal models in two dimensions. The complete solvability of these models would give

more confidence in the consistency of our framework.

We may hope our framework is powerful enough to provide insights in the large–

J behavior of other strongly coupled cfts which are in general not tractable with known

methods. Natural examples are 2D σ-models with degenerating cycles, non-supersymmetric

Chern-Simons-matter theory at finite rank and level [18, 19], and the (2, 0) theory at

finite N .

A brief list of further interesting directions is given below.

Constraints on large-J Lagrangian parameters. In some cases, one can constrain

terms in the large-J effective theory in terms of the microscopic theory. This is principally

the case for four-dimensional theories, where certain terms are dictated by anomaly coef-

ficients. It would be valuable to understand whether this can be done more generally by

matching correlation functions. It would be nice, e.g. to match the |x|−4 term of a current

two-point function in three dimensions with a current correlation function in the large-J

effective theory, in order to calculate the bχ-coefficient in terms of cft data.

Theories with moduli spaces and bps operators. For theories with moduli spaces

and (equivalently) an infinite ring of bps primary scalar operators, our methods certainly

cannot add anything to the prediction of the leading-order energies of the bps states,

since their dimensions are dictated by an exact formula to be equal to the R-charge,

∆ = |JR|. However large-J methods can certainly shed light on related questions not

controlled directly by superalgebraic considerations, such as the anomalous dimensions of

states lying just above the bps bound.14

Comparison with other results on the critical O(2) model. One would like to see

how our asymptotic formulae for the operator dimension may fit with other approaches to

understanding the O(2) model at the critical point. For one, the model can be simulated

on a lattice and our results tested numerically. Also, much recent progress has been made

on the conformal bootstrap both for the three-dimensional critical O(N) models and the

14See [30] for a related discussion of the large-J sector.
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O(2) model, specifically [13], as well as for the W = Φ3 theory [31, 32], and it would be

desirable to see how such analytic bootstrap methods may confirm and/or complement the

results obtained in the present paper.
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A Fermions and supersymmetry at large R-charge

In this section of the appendix, we work out some general features of the situation in which

we have a theory with four supercharges and an exact R-symmetry, and we examine the

lowest state at large R-charge and the energies of the fermionic excitations above it. The

main focus of this section is to derive at the Lagrangian level the large gap in the fermion

sector in the sector of large R-charge.

A.1 Quantum mechanics with four supercharges

We study a quantum mechanical theory with two complex supercharges Qα, Q
†
α, where we

take α to run over the indices α ∈ {↑, ↓}. The susy algebra is

{Qα, Qβ} = 0 {Q†α, Q
†
β} = 0 {Qα, Q†β} = 2H δαβ . (A.1)

For a chiral multiplet (φ, ψ, F ), the susy transformations are

Qα · φ = −i
√

2ψα Qα · φ = 0 ,

Q†α · φ = 0 Q†α · φ = −i
√

2ψ†α

Qα · ψβ =
√

2 εαβ F Qαψ·†β =
√

2 δαβ
˙̄φ ,

Q†α · ψβ =
√

2 δαβ φ̇ , Q†α · ψ
†
β =
√

2 εαβ F

Qα · F = 0 Qα · F = −i
√

2 εαβ ψ̇
†
β

Q†α · F = −i
√

2 εαβ ψ̇β Q†α · F = 0.

(A.2)

The simplest model with this super algebra and field content is the 0+1-dimensional

Wess-Zumino model, which is defined by a Kähler potential K(φ, φ̄) and holomorphic super-

potential W . Taking the Kähler potential to be the flat, unit-normalized one K(φ, φ̄) ≡ φφ̄,
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we have

LK ≡ −4Q↑ ·Q↓ ·Q†↑ ·Q
†
↓ ·K(φ, φ̄),= |φ̇|2 + |F |2 + iψ†αψ̇α + (total derivative), (A.3)

LW ≡ −
i

2
Q↑ ·Q↓ ·W (φ) = −W ′(φ)F + iW ′′(φ)ψ↑ψ↓ (A.4)

LW ≡ L
†
W = − i

2
Q†↑ ·Q

†
↓ · W̄ (φ̄) = −W̄ ′(φ̄)F + iW

′′
(φ̄)ψ†↑ψ

†
↓ . (A.5)

The total Lagrangian is L ≡ LK + LW + LW = Lbos + Lferm, where

Lbos = |φ̇|2 + |F |2 − F W ′(φ)− F W ′(φ̄) (A.6)

Lferm = iψ†αψ̇α + iW ′′(φ)ψ↑ψ↓ + iW
′′
(φ̄)ψ†↑ψ

†
↓. (A.7)

After integrating out the auxiliary fields, we have

F = W
′
(φ̄), F = W ′(φ), (A.8)

Lbos = |φ̇|2 − |W ′(φ)|2. (A.9)

Now specialize to the case

W (φ) =
gq−1

(q + 1)
√
q
φq+1 , (A.10)

where we have chosen our normalization for g to simplify the formulæ. For the superpo-

tential (A.10)

F =
gq−1 φ̄q
√
q

F =
gq−1 φq
√
q

(A.11)

Lbos = |φ̇|2 − g2q−2

q2
|φ|2q (A.12)

Lferm = iψ†ψ̇ + i
√
q gq−1 φq−1 ψ↑ψ↓ + i

√
q gq−1 φ̄q−1 ψ†↑ψ

†
↓. (A.13)

Writing our complex scalar φ in polar coordinates as in (3.3), we have

Lbos = a2χ̇2− g
2q−2

q
a2q (A.14)

Lferm = iψ†ψ̇+i
√
q gq−1 aq−1

(
exp {i (q−1)χ} ψ↑ψ↓+exp {−i (q−1)χ} ψ†↑ψ

†
↓

)
. (A.15)

We now make an additional redefinition to eliminate the nonderivative coupling of the

R-Goldstone χ to the fermions:

ψ̂ ≡ exp

{
− i (q − 1)

2
χ

}
ψ , ψ̂† ≡ exp

{
+
i (q − 1)

2
χ

}
ψ† ,

ψ = exp

{
− i (q − 1)

2
χ

}
ψ̂ , ψ† = exp

{
+
i (q − 1)

2
χ

}
ψ̂† ,

(A.16)

in terms of which the fermonic Lagrangian is

Lferm = iψ̂†
˙̂
ψ +

q − 1

2
χ̇ ψ̂†ψ̂ + i

√
q gq−1 aq−1

(
ψ̂↑ψ̂↓ + ψ̂†↑ψ̂

†
↓

)
. (A.17)
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For fixed χ̇, the frequency of the a-oscillator scales as χ̇, so we would like to integrate

it out it of the system and obtain an effective theory of the other degrees of freedom.

Working classically, we integrate out a by eliminating it classically from the Lagrangian by

minimizing its energy at fixed χ̇, giving

(g a)2q−2 = χ̇2 , a = g−1 |χ̇|
1
q−1 (A.18)

so for states with a in its ground state we have

Lbos =
1

g2

q − 1

q
|χ̇|

2q
q−1 , (A.19)

Lferm = iψ̂†
˙̂
ψ +

q − 1

2
χ̇ ψ̂†ψ̂ + i

√
q |χ̇|

(
ψ̂↑ψ̂↓ + ψ̂†↑ψ̂

†
↓

)
, (A.20)

which we now write as

Lferm = iψ̂†
˙̂
ψ + µ ψ̂†ψ̂ + iM

(
ψ̂↑ψ̂↓ + ψ̂†↑ψ̂

†
↓

)
, (A.21)

µ ≡ q − 1

2
χ̇ , M ≡ √q |χ̇| , (A.22)

where µ is a kind of pseudo-chemical potential for the ψ̂-charge and ψ̂ is a symmetry

breaking mass term that violates ψ̂-charge. The parameter µ can only be understood as

a true chemical potential in the limit M → 0. For fixed q we are not within the confines

of such a limit, so µ does not admit a consistent interpretation as a chemical potential in

this context.

The energy of the fermionic excitations is

E =
√
µ2 +M2 =

q + 1

2
|χ̇| . (A.23)

There are two degenerate modes with this energy, one with each possible eigenvalue ±1

of the internal SU(2) magnetic quantum number. Notice that the excitation energy of the

fermion is parametrically large as a function of |χ̇|. So if the upper limit on our energy is

some fixed scale Λ independent of J , then we are justified in treating the fermionic degrees

of freedom as frozen in their ground states.

A.2 Lift to field theory

Now we lift the model to 3 + 1 dimensions; this is just the four-dimensional Wess-Zumino

model of a single chiral superfield a homogeneous superpotential of the form (A.10). This

model has a Landau pole for q = 2 and is non-renormalizable for q ≥ 3, but at present

we are only considering semiclassical aspects of the theory, and we can define the model

quantum mechanically with a cutoff Λ if desired.

The form of the Lagrangian density is exactly the same as that of the Lagrangian in

the previous section A.1, except that the fermion kinetic term acquires a piece with spatial

derivatives

Lbos = −φ,µφ̄,µ − |W ′(φ)|2 (A.24)

Lferm = −iψ̄Γµ∂µψ + iW ′′(φ)ψ↑ψ↓ + iW
′′
(φ̄)ψ†↑ψ

†
↓ . (A.25)
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Specifying to the superpotential (A.10), going to polar field variables as in (3.3), and

defining hatted fermions as in (A.16), we have

Lferm = −i ¯̂
ψΓµ∂µψ̂ −Aµ ¯̂

ψΓµψ̂ + iM

(
ψ̂↑ψ̂↓ + ψ̂†↑ψ̂

†
↓

)
, (A.26)

Aµ ≡
q − 1

2
χ,µ , M ≡ √q gq−1 aq−1 . (A.27)

Now restrict to the lowest-energy state with given R-charge, for which the gradient of

χ is constant and purely in the time direction, and a is constant as well, satisfying (A.18).

Then letting µ ∈ (0, A) and using ψ̄ ≡ ψ†Γ0 and ΓAΓ0 = −Γ0ΓA = +σA when acting on

Weyl spinors of a definite chirality, we have

Lferm = iψ̂†
˙̂
ψ + iψ̂†σA∂A

˙̂
ψ + µ ψ̂†ψ̂ + iM

(
ψ̂↑ψ̂↓ + ψ̂†↑ψ̂

†
↓

)
, (A.28)

with M and µ given as before by (A.22). The excitation energies of the fermions are then

E± =
√

(|p| ± µ)2 +M2 , |p| ≡ √pApA . (A.29)

The energy of a fermion at rest in the reference frame of the charge density, has energy

E0 =
q + 1

2
|χ̇|. (A.30)

For small momenta |p| � |χ̇|, the dispersion relation is

E± ∼ E0 ± vf |p| , vf =
q − 1

q + 1
. (A.31)

The same dispersion relation (A.29) holds when the theory is reduced to any lower di-

mension D, with spatial momenta taking values in D−1 dimensional vectors. On reduction

to 0 + 1 dimensions we recover (A.23).

A.3 Nontrivial Kähler potential

It is clear that the parameters M,µ in the dispersion relation, expressed in terms of χ̇,

are independent of the coupling g. It follows immediately that they are independent of

the normalization of the flat Kähler metric as well, because the normalization of the flat

Kähler metric can always be absorbed into a redefinition of g, via a rescaling of the fields

of the multiplet (φ, ψ, F ).

It is slightly less obvious, but still easy to see, that the value (A.30) still holds exactly,

even if the Kähler potential has a general homogeneous form K ∝ |φ|2α. By redefining

φ = φ̃
1
α , (A.32)

we obtain a quadratic Kähler potential K ∝ |φ̃|2 and a superpotential W ∝ φ̃
q+1
α . We then

recover the same system as in sections (A.1),(A.2), with χ replaced by the phase χ̃ of φ̃,

and with q replaced with

qnew =
q + 1

α
− 1 . (A.33)
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All formulae for the fermion dynamics from section A.2 then hold, with the value of a

replaced by qnew. In the case of interest to us in the present paper, namely the three-

dimensional superconformal fixed point, the exponent in the Kähler potential is α = 3
4 ,

and the superpotential is cubic, so in our notation q = 2. Thus using (A.33), we have

qnew = 3.

We therefore have

µ = ˙̃χ , M =
√

3 ˙̃χ , (A.34)

E0 = 2 | ˙̃χ| , vf =
1

2
. (A.35)

A.4 A general supersymmetric identity on the rest mass

The formula for the energy E0 in (A.30) is directly dictated by supersymmetry. Even

though all supercharges are realized nonlinearly, there are no massless goldstini in the

system. This is because the supercharges do not act on the fixed-J Hilbert space; rather,

they map from the Hilbert space with one value of the R-charge to another. As a result,

the rest mass of the fermion is given not by zero, but by the change in energy under the

removal of a unit of φ-charge. Since the ratio between the normalisation of φ-charge to

that of R-charge is 2
q+1 , the condition of Bose-Fermi degeneracy is

E0 =
d∆(J)

dJR
=
q + 1

2

d∆(J)

dJ
, (A.36)

so that the energy of a zero-momentum fermion can exactly compensate the loss of one

unit of R-charge from the Bose condensate.
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