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Abstract. Recently a new method to set the scale in lattice gauge theories, based on the gradient flow
generated by the Wilson action, has been proposed, and the systematic errors of the new scales t0 and
w0 have been investigated by various groups. The Wilson flow provides also an interesting alternative
smoothing procedure particularly useful for the measurement of the topological charge as a pure gluonic
observable. We show the viability of this method for N = 1 supersymmetric Yang-Mills theory by analysing
the configurations produced by the DESY-Muenster Collaboration. The relation between the scale and the
topological charge has been investigated showing a strong correlation. We have found that the scale has a
linear dependence on the topological charge, the slope of which increases decreasing the volume and the
gluino mass. Moreover we have investigated this dependence as a function of the reference parameter used
to define the scale: the tuning of this parameter turns out to be fundamental for a more reliable scale
setting. Similar conclusions hold for the Sommer parameter r0.

1 Introduction

Lattice regularisation allows non-pertubative investigations of quantum field theories. The continuum space-time is
discretised to a hypercubic finite lattice with spacing a. The integral over all possible configurations then has a
mathematically well-defined meaning, and Monte Carlo methods can be applied to approximate expectation values
of observables. The lattice spacing a is an important dimensionful parameter in the regularised theory; knowledge
of its value is crucial to extrapolate physical quantities to the continuum limit a → 0, to test the agreement with
experimental data or simply to compare results obtained with different lattice actions. The value of the lattice spacing
is implicitly defined once a dimensionful observable, for instance the mass of a particle in physical units, is chosen as
input parameter to set the scale and to match simulations done with different bare parameters.

It is important to determine the scale as precisely as possible since an error on it contributes a significant part to
both statistical and systematic errors of the lattice results, that propagates to the final physical predictions of Monte
Carlo simulations. Therefore, the observable used to set the scale has to be chosen with special care. Various examples
for this purpose have been investigated during the last two decades. In particular, three of them have been successfully
tested for many different theories: the Sommer parameter r0 and the Wilson flow scales t0 and w0.

The Sommer parameter r0 was first proposed in ref. [1] as the distance r where the strong force between a static
quark-antiquark pair multiplied by the squared distance, r2F (r), reaches some specified value, typically 1.0 or 1.65.
The Sommer parameter is a pure gluonic observable in the sense that it requires only the computation of expectation
values of Wilson loops. While this measurement is computationally inexpensive, noisy signals affect the result for the
interquark force at large distances where however lattice artefacts are small. Systematic errors arise when different
choices of smoothing procedures are used to improve the signal of F (r) and when the fitting procedure is employed to
extract the value of the parameters, increasing the complexity of the measurement of the Sommer parameter r0.
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Recently a new method to set the scale through the t0 parameter has been proposed in ref. [2], based on the gradient
flow generated by the Wilson gauge field action with or without Symanzik improvement [3]. A closely related method
based on the parameter w0 has been developed in ref. [4]. In this paper we compute the scale parameters t0 and w0

for the N = 1 SU(2) supersymmetric Yang-Mills (SYM) theory and discuss their systematic errors. Our calculations
employ the configurations generated by the DESY-Münster Collaboration [5–7]. We show that, for large flow times,
correlations appear between the topological charge and scale setting quantities. As a consequence, unexpected finite
volume effects do arise in the computation of w0 and t0. We further show that by a suitable choice of the numerical
parameters that enter the determination of the scales t0 and w0 this effect can be reduced significantly. Similar analyses
of the influence of topology on the scale setting have been presented in refs. [8,9] for the Sommer parameter r0 and in
ref. [10] in the context of the gradient flow running coupling. Our findings are relevant for simulations of Yang-Mills
theories at fixed topology as have been studied for example in [11,12].

2 The Wilson flow

The Wilson flow can be considered as a continuous generalisation of stout smearing [13]. The starting point is to
introduce an additional fictitious time t as fifth dimension, in the course of which the gauge fields Uμ(x) generated
by Monte Carlo simulations are “continuously smoothed”. The continuous smoothing procedure is specified by the
partial differential equation

∂

∂t
Vμ(x, t) = −g2

{
∂Sgauge(Vμ(x, τ))

∂Vμ(x, τ)

}
Vμ(x, t), (1)

similar to a diffusion equation, with boundary conditions

Vμ(x, t)
∣∣
t=0

= Uμ(x). (2)

Here Vμ(x, t) denotes the link variables at fictitious time t and Uμ(x) the original link variables.
The Wilson flow removes ultraviolet divergences and therefore local gauge invariant operators defined at positive

flow time are automatically renormalised. Quantities constructed from the link variables Vμ(x, τ) have a well-defined
continuum limit and can be used to set the scale in lattice simulations.

The scale t0 has been introduced in ref. [2] as the flow time t fulfilling

t2〈E(t)〉 = 0.3. (3)

Here the gauge energy E(t) is defined as

E =
1
4
Ga

μνGa
μν , (4)

where Gμν is a lattice version of the field strength tensor Fμν which, as usual, is specified by the antisymmetric clover
plaquette. The scale t0 has the same dimension of the inverse string tension, i.e. length squared.

The closely related scale w0 has been introduced in ref. [4] as the square root of the flow time t, where the condition

t
d
dt

t2〈E(t)〉 = 0.3 (5)

holds. w0 has the dimension of a length, i.e. the same dimension of the lattice spacing. It has been demonstrated
that w0 is less sensitive to lattice artefacts than

√
t0. According to ref. [4], the difference between the application of

the Symanzik and the Wilson gauge field action in the integration of the flow equation on the lattice is not relevant.
In this work we apply the Wilson action since it requires a smaller computational effort. The Wilson flow has been
numerically integrated using a Runge-Kutta scheme with steps of length 0.01, as described in appendix C of ref. [2].

3 Measuring the scale setting quantities r0, w0 and t0

The gauge configurations have been generated by the Two-Step Polynomial Hybrid Monte Carlo (TSPHMC) update
algorithm [14, 15] for the study of the hadron spectrum in SYM with gauge group SU(2) [5–7]. This theory describes
the interactions between gluons and their supersymmetric partners, the gluinos. The gluino is a Majorana fermion in
the adjoint representation of the gauge group. The Symanzik improved action has been used for the gauge action, and
the Wilson-Dirac operator with one-level stout smeared links for the fermion action1. We have determined the Wilson
flow scales for three different values of β = 4/g2, where g is the bare gauge coupling, and many different values of the
fermionic hopping parameter κ = 1/(2m + 8), where m is the bare gluino mass.

1 The value of the stout smearing parameter was ρ = 0.15, see [6] for further details.
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Table 1. Results for the adjoint pion mass mπ, the scales t0, w0 and the autocorrelation time τ(t0) of t0.

Volume β κ amπ

√
t0/a w0/a τ(t0)

243 × 48 1.60 0.15500 0.5788(16) 1.5672(13) 1.5102(14) 21

243 × 48 1.60 0.15700 0.3264(23) 1.7904(11) 1.7292(37) 10

243 × 48 1.60 0.15750 0.2015(93) 1.8986(53) 1.8410(63) 42

323 × 64 1.75 0.14900 0.2385(4) 3.1438(67) 2.9838(59) 50

323 × 64 1.75 0.14920 0.2035(5) 3.270(17) 3.097(25) 45

323 × 64 1.75 0.14940 0.1604(15) 3.362(15) 3.205(20) 35

323 × 64 1.75 0.14950 0.1294(24) 3.551(36) 3.413(40) 65

323 × 64 1.90 0.14387 0.2123(4) 5.73(13) 5.57(19) 440

323 × 64 1.90 0.14415 0.1742(4) 5.71(12) 5.49(11) 296

323 × 64 1.90 0.14435 0.1413(6) 5.96(12) 5.76(14) 502

The integration of the Wilson flow equation has been performed on every sixth thermalised configurations2, and
the results are summarised in table 1. The scales w0 and

√
t0 show only a small dependence on the gluino mass for

a given β. Employing a mass-independent renormalisation scheme, the scales are extrapolated to the chiral limit at
zero renormalised gluino mass and the obtained value is used to set the scale at all gluino masses. The tuning of
the gluino mass is necessary for restoration of supersymmetry in the continuum limit [16, 17]. In our calculations the
renormalised gluino mass is represented by the square of the (adjoint) pion mass (mπ), which is defined in a partially
quenched theory and can be measured with a reasonable precision. As shown in [18], the gluino mass is proportional
to the square of mπ.

The Sommer parameter r0 has been measured by first extracting the static potential V (r) from the Wilson loops
W (r, t)

V (r) = lim
t→∞

ln
(

W (r, t)
W (r, t + 1)

)
(6)

by a suitable fit and then fitting the result to the function

V (r) = σr − c1

r
+ c2. (7)

Four levels of APE smearing with α = 0.5 have been applied to reduce the noise of the expectation value of Wilson
loops W (r, t) for large r and t.

3.1 Matching the β-function

The Callan-Symanzik β-function has been determined for the N = 1 SYM theory in ref. [19] by instanton calculations
with the result

β(g) = μ
d
dμ

g(μ) = − g3

16π2

3Nc

1 − Ncg2

8π2

. (8)

Within the scheme used there the β-function is exact due to the non-renormalisation theorem [19], see also [20] for an
explicit proof. The first two perturbative coefficients are scheme independent, as it is well known. For the comparison
with our numerical data, see below, the scheme-dependence of the higher terms actually does not have a significant
effect and we thus use the expression above. The β-function can be used to compare lattice results at different bare
gauge couplings g. If finite volume corrections and lattice discretisation errors can be neglected, the Wilson flow
parameters t0 and w0 are expected to scale according to

w0(g1)
w0(g2)

= exp (F (g1) − F (g2)), (9)

where the function F (g) is the integral of the inverse of the β-function,

F (g) =
∫ g dg′

β(g′)
=

8π2

3Ncg2
+

2
3

ln g, (10)

up to an unessential integration constant.
2 The individual configurations are separated by 1 unit in HMC time, TMC = 1, the measured configurations are separated

by 6 units in HMC time, skipping the first 500 configurations. The integrated autocorrelation time of the unsmeared plaquette
is always below 1.5 in these units.
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Fig. 1. Scaling of w0 compared to the expected behaviour from the β-function (red line). The orange band represents the
statistical error determined by eq. (9).

Fig. 2. Extrapolation of the dimensionless ratio r0/w0 to the continuum limit.

For our case, Nc = 2, the scaling according to eq. (9) has been checked by taking the value of w0 at β = 4/g2 = 1.9
as reference point, see fig. 1. The agreement with eq. (9) is rather good.

The relative deviation from the scaling,

K =
w0(1.9)
w0(β)

(
1.9
β

)1/3

exp
{

π2(β − 1.9)
3

}
, (11)

is K = 1.03(6) for β = 1.75 and K = 1.20(8) for β = 1.6. The larger deviation at β = 1.6 is presumably due to lattice
artefacts and/or higher order terms in the lattice β-function.

3.2 Extrapolation of the ratio r0/w0 to the continuum limit

The ratio of the Sommer parameter r0 to the Wilson flow scale w0 computed on the lattice is expected to scale in the
continuum limit as

lim
a→0

r0(a)
w0(a)

=
r0

w0
(1 + O(a)), (12)

due to the lattice artefacts coming from the Wilson discretisation of the fermion part of the action. The linear fit of
our data is presented in fig. 2, where the lattice spacing a has been defined implicitly in terms of 1/w0. The final result
extrapolated to the continuum limit is

lim
a→0

r0(a)
w0(a)

= 2.21(12), (13)
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Fig. 3. (a) Topological charge for four different configuration as a function of the flow time t on a 323 × 64 lattice, β = 1.9 and
κ = 0.14435. (b) Distribution of the topological charge at t = 50 for the same run.

and it allows to express w0 in physical units
w0 � 0.226(12) fm, (14)

assuming length scales to be set by QCD units, where the value of r0 is given by r0 � 0.5 fm. In these units the spatial
extent of the lattice used for the simulations at β = 1.9 is therefore

L � 1.27 fm, (15)

which is large enough to avoid finite volume corrections to masses of the bound spectrum of the theory, as has been
shown in [5]. The corresponding lattice spacing is

a(β = 1.9) � 0.04 fm. (16)

4 Measuring the topological charge with the Wilson flow

The topological charge is defined for a given field configuration in the continuum by the integral

Qtop =
1

32π2

∫
d4x εμνρσFμν

a F ρσ
a . (17)

On the lattice we define the topological charge with the same antisymmetric discretisation of the field strength tensor
as used for the flow equation:

Qlat =
1

32π2

∑
x

εμνρσGμν
a Gρσ

a . (18)

This lattice topological charge is affected by ultraviolet fluctuations, and its value is in general not an integer. A
possible solution to this problem is a smoothing procedure to suppress the short distance fluctuations and to recover a
well-defined topological charge in the continuum limit [21]. We have applied the Wilson flow as smoothing procedure,
comparing the results with APE and stout smearing, as done in ref. [22].

As shown in fig. 3(a), for large enough flow time t the topological charge reaches a near integer value and the
topological susceptibility shows a plateau. Actually, after a very long number of iterations, in our case of the order
400 at β = 1.9, when the smoothing starts to affect long range fluctuations, the topological charge drops to zero. This
does, however, not impair the presence of a clear plateau.

Following ref. [22], we convert the raw lattice topological charge to an integer using

Qtop = round(αQlat(t)), (19)

where the flow time t is chosen for definiteness to be

t = w0(β)2, (20)
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Fig. 4. Plot of R(α) for the lattice 323 × 64 at β = 1.75 and κ = 0.1494. The minimum of R(α) is located at α = 1.055.

Table 2. Results for the topological susceptibility obtained using the Wilson Flow (WF) and 250 levels of APE smearing with
α = 0.1.

Run Volume β κ (a4χtop) × 10−6 (WF) (a4χtop) × 10−6 (APE)

A1 243 × 48 1.60 0.15500 131(14) 132(21)

A2 243 × 48 1.60 0.15700 100(8) 78(14)

A3 243 × 48 1.60 0.15750 81(5) 70(9)

B1 323 × 64 1.75 0.14900 15(2) 16(2)

B2 323 × 64 1.75 0.14920 11(1) 12(1)

B3 323 × 64 1.75 0.14940 10(1) 10(1)

B4 323 × 64 1.75 0.14950 7(1) 9(2)

C1 323 × 64 1.90 0.14387 0.82(15) 0.90(18)

C2 323 × 64 1.90 0.14415 1.39(20) 1.53(29)

C3 323 × 64 1.90 0.14435 0.81(10) 0.98(16)

and where the scale w0(β) is defined in the chiral limit and therefore depends only on the gauge coupling. This value
of t is chosen sufficiently large to remove the cut-off effects; but not too large to change the number of instantons and
the final value of the topological charge [23]. The real constant α is chosen to minimise the expectation value [24]

R(α) = 〈(αQlat − round(αQlat))2〉. (21)

Near the continuum limit it is expected that α ≈ 1, i.e. the distribution of Qlat is already centred near integer values
without requiring an additional multiplicative renormalisation, see figs. 3(b) and fig. 4. In addition, the topological
susceptibility χtop, defined by

χtop =
〈Q2

top〉 − 〈Qtop〉2
V

=
〈Q2

top〉 − 〈Qtop〉2
a4N3

s Nt
, (22)

where V is the volume of the system, has been measured. The results are shown in table 2 and in fig. 5. A good
agreement has been observed between the topological susceptibility obtained with the Wilson flow and with APE
smearing. The value of χtop extrapolated to the chiral limit confirms the topological suppression for SYM mentioned
in ref. [25]. The extrapolation to the continuum limit supports the assumption that the remaining non-zero value
observed in the chiral limit at fixed β is only a lattice artefact.

5 Autocorrelation time of flow observables

The autocorrelation time of the topological charge increases drastically near the continuum limit and may even result
in topological freezing. Whether this fact occurs or not depends, however, on the chosen boundary conditions [26, 27].
The scales w0 and t0 exhibit a very long autocorrelation time, especially near the continuum limit, similarly to the
topological charge. Our configurations have been produced with the usual periodic boundary conditions and we observe
the expected increase of the autocorrelations.

The autocorrelation time should scale with the lattice spacing a asymptotically as a−z, where z = 1 for Hybrid
Monte Carlo (HMC) algorithms for free field theory. In our runs the lattice spacing is decreased roughly by a factor
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Fig. 5. Extrapolation of the topological susceptibility χtop (a) to the chiral limit on a 323 × 64 lattice at β = 1.60 and (b) to
the continuum limit.
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Fig. 6. Monte Carlo history of w0 on a 323 ×64 lattice, β = 1.9 and κ = 0.14435. TMC is the Monte Carlo time. w0 is measured
every sixth configurations.

2.5 between β = 1.6 and β = 1.9. The autocorrelation time τ(t0) of t0 at β = 1.9 is, however, approximately twelve
times larger than at β = 1.6, see table 1.

Although the interval between β = 1.6 and β = 1.9 is presumably not yet in the asymptotic regime, the variation
of τ(t0) seems to indicate a value z > 2 and a possible connection of the topological charge with the flow observables
used to set the scale.

6 Correlations between topological charge and the scale w0

In order to investigate the nature of the long autocorrelation of w0, we have considered its Monte Carlo history. The
scale w0 can be defined for a single configuration without the need of an ensemble average by determining the flow
time when the integrated flow matches the condition specified by eq. (5). In fig. 6 the Monte Carlo history of w0 is
shown for a lattice 323 × 64 at β = 1.9 and κ = 0.14435. One can see that the value of w0 has large fluctuations with
a long period. In particular, very strong upward spikes emerge.

Wilson flow scales depend implicitly on the reference value chosen in eq. (5). Small reference values will potentially
produce large lattice artefacts on the final results, while w0 and t0 will be affected by non-negligible finite volume
effects for larger reference values. Let us define the scale wu

0 to be the square root of the flow time when the condition

t
d
dt

t2〈E(t)〉 = u (23)

is satisfied. By varying u, one can study how the autocorrelations are affected by different choices of the reference value.
Here and in the following we set w0 ≡ w0.3

0 . In fig. 7 the Monte Carlo histories of w0.1
0 , w0.3

0 and w0.4
0 are compared.

When the value of u is small the fluctuations and spikes are significantly reduced. On the other hand, when the value
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Fig. 7. Comparison of the Monte Carlo history (a) of w0.1

0 (blue) with w0.3
0 (red) and (b) of w0.1

0 (blue) with w0.4
0 (red), on a

323 × 64 lattice, β = 1.9 and κ = 0.14435. The magnitude of the peaks increases drastically when the reference value to set the
w0 scale is larger.
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(a) Topological distribution of w0.30
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(b) Topological distribution of w0.40
Fig. 8. Probability distribution function of (a) w0.3

0 and of (b) w0.4
0 restricted to the topological sector |Qtop| = 1 (green) and

|Qtop| = 4 (red) on a 323 × 64 lattice, β = 1.9 and κ = 0.14435.

of u is increased the spikes become even more pronounced. Increasing the value of u leads to a larger flow time needed
to match the condition (23), which means that a stronger smoothing induced by the flow equation is applied to the
configurations. Large flow times will more effectively remove ultraviolet fluctuations, and the system will be brought
towards a classical configuration, as observed in sect. 4. Therefore one might argue that spikes and large fluctuations
are related to topological effects. Using the results presented in sect. 4 we have been able to compute the value of wu

0

restricted only to configurations with a fixed definite topological charge.
The distributions of w0.4

0 and w0.3
0 are shown for the same run in fig. 8 for two selected topological sectors, |Qtop| = 1

and |Qtop| = 4. The distribution of w0.3
0 restricted to the topological sector |Qtop| = 1 is rather broad and the average

value is larger than for the distribution in the topological sector |Qtop| = 4. The same behaviour appears for the
restricted distributions of w0.4

0 , but with a slightly larger difference between the two mean values of the distributions.
This result clearly shows that there is a correlation between the value of w0 and the topological charge, not only in
terms of its mean value but also in terms of its distribution. The largest fluctuations observed in fig. 6 are produced by
the configurations at low values of the topological charge, where the distribution of w0 is broad. The long periodicity is
induced by the transitions during the Monte Carlo update time between topological sectors around zero, characterised
by large expectation value of w0, and topological sectors far from the origin with a small mean value of w0. The Monte
Carlo history restricted to a given topological sector is presented in fig. 9.

In fig. 10 we present the expectation value of wu
0 restricted to the various topological sectors for four different

values of u, in the same run on a 323 × 64 lattice, with β = 1.9 and κ = 0.14435. The behaviour of wu
0 (|Qtop|) is

approximately linear for all u but it has a steeper slope when the reference scale u is larger. We have used a linear fit
of the form

〈wu
0 〉(|Qtop|) = s|Qtop| + q. (24)
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Fig. 9. Monte Carlo history of the w0 on a 323 × 64 lattice, β = 1.9 and κ = 0.14435. The purple points highlight the value of
w0 only for configurations characterised by a given topological sector; the blue lines mark its maximal and minimal value.

0 1 2 3 4
|Qtop|

4

5

6

7

<w0u>(|Qtop|)

Fig. 10. Linear fit of the dependence of wu
0 on the topological charge for u equal to 0.1 (green), 0.2 (yellow), 0.3 (purple) and

0.4 (blue) for a lattice 323 × 64, β = 1.9 and κ = 0.14435.

The resulting slope coefficients s are presented as a function of u in fig. 11(a). The modulus of the slope s increases
increasing u. This means that the dependence of wu

0 on the topology is stronger when u is larger. This behaviour
confirms our previous claim about the topological origin of the spikes in fig. 7: when u is large the smoothing effects of
the Wilson flow are large and the configuration is driven towards a classical one where the influence of the topology is
stronger. As a result, the integrated autocorrelation time of w0.4

0 is around 800 TMC, approximately three times larger
than the autocorrelation time of w0.1

0 , which is around 300 TMC. We have also investigated the dependence of s on the
adjoint pion mass squared, observing that it increases as one approaches the chiral limit, see fig. 11(b).

The dependence of the flow scale on the topological charge can be interpreted as a finite volume effect [11,12]. To
address this point we repeated the same systematic analysis on the lattice 323 × 64 at β = 1.75, where the physical
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Fig. 11. (a) Slope coefficient s as a function of the reference value u for the lattice 323 × 64, β = 1.9 and κ = 0.14435. (b)
Slope coefficient s as a function of (w0mπ)2 at β = 1.9 for w0.3

0 . The value of s linearly extrapolated to the chiral limit is
s((w0mπ)2 = 0) = −0.69(14).
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Fig. 12. The same as fig. 10, but for (a) the lattice 323 × 64, β = 1.75 and κ = 0.1494; (b) the lattice 163 × 36, β = 1.75 and
κ = 0.1490.

volume is approximately seven times larger than at β = 1.9. The dependence of the various wu
0 on |Qtop| is presented

in fig. 12(a). As the figure shows, in this large physical volume the dependence of the flow scales on the topology
completely disappears. If instead, the physical volume is shrunk again by simulating on a 163 × 36 lattice at the same
β = 1.75, the observables wu

0 appear to depend on the topological charge |Qtop| as before, see fig. 12(b). Note that the
value of κ used in the smaller volume is smaller than the first case, but according to fig. 11(b) this should even reduce
the slope. This demonstrates that finite volume effects are the origin of the dependence of w0 on the topological charge
in the runs on the finer lattices at β = 1.9.

7 Correlations between topological charge and the scale r0

The Sommer parameter depends on the reference value c used to implicitly define r0 through the equation

r2
0F (r0) = c. (25)

In QCD the value c = 1.65 has been chosen to optimise the signal-to-noise ratio versus lattice artifacts in F (r) for
small distances [1]. The role of c is similar to that of u in the definition of w0, therefore it makes sense to ask whether
also r0 exhibits the same behaviour observed for w0 in the section before.

To this end, the parameter rc
0 has been computed from the fit of Wilson loops measured only on configurations

with a given topological charge. The dependence of r1.65
0 on the topological sector is presented in fig. 13(a) for the

lattice 323 × 64, β = 1.9 and κ = 0.14415. The function r1.65
0 (|Qtop|) is linear like in the case of w0. As before, we fit

the linear behavior of rc
0(|Qtop|) by

〈rc
0〉(|Qtop|) = s|Qtop| + q, (26)

for different values of c. The resulting slope coefficients s are presented as a function of c in fig. 13(b). The slope
coefficient is larger when the reference value c increases. The influence of the topology on the scale rc

0 is therefore
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Fig. 13. Results for the Sommer parameter rc
0 on the lattice 323 × 64, β = 1.9 and κ = 0.14415. (a) Dependence of r1.65

0 on the
topological sector. (b) Slope coefficient s as a function of the reference value c.

Table 3. Results for the scale wu
0 .

Run w0.05
0 w0.10

0 w0.15
0 w0.20

0 w0.25
0 w0.30

0 w0.35
0 w0.40

0

A1 0.6419(10) 0.9587(15) 1.1420(17) 1.2844(19) 1.4048(22) 1.5104(21) 1.6046(26) 1.6901(26)

A2 0.7767(15) 1.1136(22) 1.3192(27) 1.4787(34) 1.6122(40) 1.7290(43) 1.8319(46) 1.9268(44)

A3 0.8341(23) 1.1853(35) 1.4048(41) 1.5760(47) 1.7182(53) 1.8419(60) 1.9511(58) 2.0495(68)

B1 1.5087(42) 2.0058(51) 2.3331(56) 2.5878(60) 2.8011(62) 2.9838(59) 3.1495(62) 3.3012(62)

B2 1.5610(84) 2.082(15) 2.417(19) 2.684(19) 2.904(23) 3.097(25) 3.256(27) 3.424(25)

B3 1.6113(74) 2.151(12) 2.504(13) 2.779(17) 3.005(18) 3.205(20) 3.385(22) 3.551(25)

B4 1.6957(15) 2.269(24) 2.651(28) 2.955(34) 3.205(37) 3.413(41) 3.623(43) 3.793(42)

C1 2.734(46) 3.687(81) 4.35(10) 4.82(14) 5.24(16) 5.60(18) 5.90(18) 6.19(18)

C2 2.717(40) 3.666(85) 4.31(11) 4.76(13) 5.13(13) 5.49(13) 5.78(15) 6.05(14)

C3 2.855(44) 3.822(81) 4.47(11) 4.97(11) 5.40(14) 5.76(14) 6.08(15) 6.38(15)

similar to that of wu
0 , even though both the relative variation of rc

0 between different topological sectors and the slope
coefficient s seem to be smaller in the case of r0. For instance, on the lattice 323 × 64, β = 1.9 and κ = 0.14415, the
slope coefficient s for w0.3

0 is s = −0.35(5), which is almost twice as large as s = −0.19(3) of r1.65
0 .

8 Conclusions

We have presented a detailed analysis of the Wilson flow observables w0, used to set the scale alternatively to the
Sommer parameter r0. The same analysis has been done also for t0 and r0, reaching similar conclusions. In finite
volumes we observed a substantial dependence of w0 on the topological charge, in agreement with the previous
discussion on this topic for the Sommer parameter r0 of refs. [8, 9]. We have found, however, that r0 seems to suffer
less this dependence compared to the Wilson flow scales, when the standard references u = 0.3 and c = 1.65 are used.

Scales based on the Wilson flow require a delicate fine-tuning to correctly handle finite volume effects and errors
due to lattice artefacts. A result free of topological finite volume effects can be obtained if there is no coupling between
the scale and the topological charge, up to the statistical precision. The final result has fairly small statistical and
systematic errors, therefore w0 can be used to set the scale in extrapolations to the chiral and continuum limit. Our
observations support the use of small flow times to set the scale, at least for our model and within our present precision:
the ratio of wu

0 and w0.3
0 is flat for u � 0.1 (see table 3 and fig. 14).

The findings presented in this article have been obtained in the context of our investigation of SYM theory. For
other theories like QCD, with a different number of colours and a different fermion content, the details may be different.
However, the fact that a dependence of the scale on topology emerges for sufficient large reference scales does not rely
on particular properties of SYM and will hold for other theories as well. We therefore encourage systematic studies
in this direction, in particular considering that there are proposals, like in [28], to increase the value of the reference
flow time.
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Fig. 14. Scaling of the various wu
0 with respect to w0.3

0 as a function of the lattice spacing. The scaling is flat within the errors
for u � 0.15.
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5. G. Bergner, T. Berheide, I. Montvay, G. Münster, U.D. Özugurel, D. Sandbrink, JHEP 09, 108 (2012) arXiv:1206.2341

[hep-lat].
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