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extrapolations are unreliable when NV, is less than about six. Nevertheless useful nonper-
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be derived. By further observing that the adjoint conformal window is independent of the
number of colors we argue, among other things, that: the large N, two-index conformal
window is twice the conformal window of the adjoint representation (which can be deter-
mined at small N.) expressed in terms of Dirac fermions; lattice results for adjoint matter
can be used to provide independent information on the conformal dynamics of two-index
theories such as SU(N,) with two and four symmetric Dirac flavors.
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1 Introduction

Gauge-Yukawa theories constitute the backbone of our current understanding of fundamen-
tal interactions. Yet, despite the deceivingly simple description in terms of the elementary
fields and bare interactions very little is known about their dynamics and spectrum. This
severely limits the number of theories that can be used to extend, or modify, the standard
model of particle interactions. On general grounds it is therefore essential to determine the
phase diagram of gauge theories of fundamental interactions.!

However, even in the simpler case of gauge theories with only fermionic matter the
uncovering of the associated phase diagram presents formidable challenges. Recently ana-
lytical [5, 6] and numerical efforts [7-15] have been dedicated to determine whether certain
gauge theories featuring fermionic matter display large distance conformality. The result-
ing conformal window plays a central role for a large number of possible extensions of the
standard model of particle interactions ranging from near conformal composite dynamics
Higgs theories to new dark matter models and even unparticles.

Using large and small N, arguments we will show that it is possible to relate the
conformal window and dynamics of different gauge theories allowing to fast-forward the
investigation of the phase diagram both analytically and via first principle lattice simula-
tions. Specifically we will exploit large N, relations among two-index and adjoint repre-
sentations [16-19] to derive nonperturbative results about the conformal window of these
theories. We will also test these relations for the conformal window by using Schwinger-
Dyson (SD) methods summarised in [20] as well as the maximal known order in pertur-
bation theory [21-24]. Thanks to these approximations we will show that naive large N,
extrapolations to low number of colors are unreliable because one needs to consider at least
O(N*) corrections for describing the conformal window of two-index theories with N.. less
than about six. At order O(N, 1) the extrapolation is only reliable down to about N, ~ 20.
Nevertheless V. independent nonperturbative inequalities can be deduced to significantly

IFor example, the recent discovery of nonsupersymmetric complete asymptotically safe Gauge-Yukawa
theories [1] where elementary scalars are actually needed to make the theory fundamental (i.e. well defined at
arbitrary short distances) has widened the horizon of potentially interesting extensions of the standard model
and unveiled novel thermodynamical properties [2]. Nonperturbative results about the (non) asymptotic
safe behaviour of supersymmetric theories appeared in [3] with earlier studies reported in [4].



constrain the size of two-index conformal windows. By further noting the N, independence
of the adjoint conformal window we will argue that: the large N, conformal window of
two-index theories is twice the conformal window of the adjoint representation in terms
of Dirac fermions; lattice results, obtained at small N,, for adjoint matter can be used to
cross check and predict the conformal dynamics of two-index theories at large and small
number of colors. Note that large N, arguments have also been applied in other studies
like [25] for an estimation of the conformal window.

The outline of this paper is as follows. In section 2 we summarise and further elucidate
the large and small N, relations between theories with adjoint and two-index matter. We
then use SD and the maximum known order in perturbation theory to further validate the
relations and provide novel insight such as the actual range of applicability of naive large
N, results. Here we will also notice that the size of the adjoint conformal window is effec-
tively N, independent. There is only a very mild N, dependence appearing at four loops
which effectively does not change any of our conclusions. We introduce and discuss the
implications of nonperturbative inequalities on the size of the two-index symmetric confor-
mal windows in section 3. Here we further show how to use lattice results for the adjoint
representation to cross-check and predict the conformal dynamics of two-index theories
such as SU(3) with two Dirac flavors in the sextet representation and offer our conclusions.

2 Large and small IV, relations and corrections

The adjoint theory with N, r[G] Weyl fermions is planar equivalent to the theory with
Nyf[S2/A2] = N,yf[G] Dirac fermions in the two-index symmetric or antisymmetric rep-
resentation. Here GG, Sy and Ay denote the adjoint, two-index symmetric and two-index
antisymmetric representations respectively. This fact can easily be seen from a simple
counting of the number of fermionic degrees of freedom. For the adjoint representation
and for each N, f[G] there are N? — 1 degrees of freedom. For the two-index symmetric
and antisymmetric representations and for each N¢[Sa] or N¢[Ajs] there are N.(N.+ 1) or
N.(N; — 1) number of degrees of freedom respectively where we have made sure to count
one Dirac fermion as two Weyl fermions and therefore multiplied by a factor of two. Hence
in the large N, limit the number of degrees of freedom equal N2 in all three cases and the
theory with Ny, ¢[G] adjoint Weyl fermions is equivalent to the theory with N¢[S2/As] Dirac
fermions in either the two-index symmetric or two-index antisymmetric representation.

This implies that if we know the conformal window at large N, for the adjoint theory
all we need to do is to re-interpret it as the large N, conformal window for the two-index
symmetric or antisymmetric theories albeit with the number of adjoint Weyl fermions
replaced by an identical number of two-index symmetric or antisymmetric Dirac flavors.
This nonperturbative result has direct application to the case of either one or two Dirac
flavors, i.e. two or four Weyl fermions, in the adjoint representation, among others. If the
former (latter) theory is conformal at large N, then so is the theory with two (four) Dirac
flavors in the two-index symmetric or antisymmetric representation.

Once we depart from the large N, limit corrections will begin to appear and we will
estimate them shortly. For the two-index symmetric and antisymmetric representations



these corrections come with opposite sign. The two-index antisymmetric representation
corresponds effectively at finite N, to a theory with a fewer number of fermionic degrees of
freedom while the two-index symmetric representation corresponds effectively to a theory
with a larger number of fermionic degrees of freedom. Hence at smaller N, the boundary
of the conformal window moves to smaller N for the two-index symmetric representation
and to larger Ny for the two-index antisymmetric representation. We expect the boundary
of the conformal window for the adjoint representation to receive only mild corrections at
finite N..

We illustrate this behaviour using first the ladder results [5, 6] and then via the maximal
known order in perturbation theory [23, 24]. The latter is a precise result when the fixed
point occurs near the loss of asymptotic freedom because here the fixed point value of the
coupling is small.

The ladder approach to determine the lower boundary of the conformal window is
summarised in [20]. In its simplest incarnation it is a truncation of the Schwinger-Dyson
(SD) induced gap equation by means of the two loop beta-function. It was used first
in [5] for SU(NV.) gauge theories with two-index matter representation and generalised
for arbitrary SU(N,) representations in [6]. Orthogonal and symplectic gauge groups were
investigated in [26] while exceptional and spinorial representations were studied in [27]. We
follow the notation in [6] and indicate the upper boundary of the conformal window where
asymptotic freedom is lost by N J{ . The lower boundary where the fixed point of the two
loop beta function is lost is indicated by IV ;I I while the loss of large distance conformality
estimated via the SD induced gap equation is indicated by N J{I . It is important to note
that Vv J{ J NI and N J{I I all denote a given number of Dirac fermions. For a given matter
representation R of SU(N,) we have [6]:

NHR| = S RIRL NPR = BB g NTR = ARl ()
with
AR < GGG gy ColR) (2.2)
W T AR CA[R] S NoNTE] '

In these expressions G denotes the adjoint representation and the F' functions hold informa-
tion on the group-structure of the theory. For the two-index symmetric Se and two-index
antisymmetric Ay representations with a set of Dirac fermions one has

2N, 4 _
FI[SZ/AZ]Dirac = N +9 =2F ﬁ + ﬁ + O(Nc 3) . (2.3)
and ) .
Fy[Sy/Ag] =1+ N 2@. (2.4)

For the adjoint representation with Dirac fermions we have F}[G] = F»[G] = 1. Note that
the adjoint and two-index symmetric theories coincide in the small N, = 2 limit. Also in
the small N, limit the two-index symmetric and antisymmetric theories diverge maximally
in their dynamics. The divergence of the antisymmetric representation at N. = 2 is due



to the fact that the representation becomes the singlet representation and decouples from
the theory.

At large N, the two-index symmetric and antisymmetric theories converge with the
limiting values F}[Sy/As] = 2F5[Sa/As] = 2. As expected in the large N, limit F;[Sy/As],
which contains information about the dimension of the fermion representation, is twice the
value for the adjoint representation Fi[G].

It is instructive now to consider the leading 1/N. corrections by inserting (2.4)

into (2.1). We find

Njisa/] = NLlel (17 -+ 00 ) | (25)
N2/ ] = NUIG) (17 gt + 0N ) (2.6)
NJsa/aa] = NI (1 gy + O (2.7

with Ny, ¢[G] denoting the corresponding number of adjoint Weyl fermions
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All three numbers qu)f[G], Nlﬁc[G} and Nqﬁf [G] are N, independent. As we decrease the
number of colors we observe that the conformal window of the two-index symmetric (anti-
symmetric) theory stays below (above) the corresponding conformal window of the adjoint
theory.

Since for N, = 2 the two-index symmetric representation is, by construction, equivalent

to the adjoint representation it is also useful to formally expand around N, = 2

NI G _ _9)2
NiLig _ _ 9\2
NSy = wé[ ] <1 22;(%2 2 _ ;2?; (NC4 2) +> : (2.10)
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As we move to larger values of N, with respect to IN. = 2 the boundary of the conformal
window moves upwards. This aligns with the observation above that as we decrease the
number of colors N, from the large N, limit the boundary of the conformal window moves
to smaller values of Nf[Ss].

We summarise in figure 1 the conformal window as estimated via the ladder approx-
imation for the two-index symmetric and adjoint representations in terms of the number
of Dirac flavours. The conformal window of the two-index symmetric theory is orange
while the conformal window for the adjoint theory is light green. The dark green phase on
the other hand is obtained by taking the adjoint conformal window and reinterpreting the
number of adjoint Weyl fermions as Dirac flavors in the manner spelled out above. Hence
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Figure 1. The ladder conformal window for the two-index symmetric representation phase diagram
(orange) and the adjoint representation (light green) in terms of the Ny Dirac flavours. In dark green
we show again the adjoint conformal window but where now N is reinterpreted as the number of
Weyl fermions N,, . For each window the upper bound(lower) corresponds to N f (N J{I ). The orange
dashed curve corresponds to the 1/N, expansion of N{/[S5] up to and including O(N; ") while the
orange dot-dashed curve corresponds to the 1/N, expansion of N J{I [S2] up to and including O(N;3).

via this reinterpretation at large IV, it should be clear that the conformal window of the
adjoint theory coincides with the conformal window of the two-index symmetric theory.

For each window the upper (lower) bound corresponds to N ; (N ;I ). The orange dashed
curve corresponds to the 1/N, expansion of N J{I [S2] up to and including O(N 1) while the
orange dot-dashed curve corresponds to the 1/N, expansion of N J{I [S2] up to and including
O(N;3). From the figure it is clear that the conformal window of the two-index symmetric
theory is well described using the large N, limit only at very large N, since one needs at
least O(N;3) corrections to arrive at N, ~ 6 and new orders are needed to arrive at N. = 3.
In fact, the expansion around N, = 2 converges more rapidly for smaller number of colors.

Another way to estimate the conformal window is via perturbation theory to the
maximal known loop order. Specifically one can employ the beta function of the gauge
coupling and the anomalous dimension of the mass which in the modified minimal subtrac-
tion scheme, MS, are known to four loop order [28, 29]. An investigation of the conformal
phase to this loop order can be found in [23, 24]. Similar investigations in the modified
regularisation invariant, RI’, and minimal momentum subtraction, mMOM, schemes can
be found in [30].

First one should evaluate the anomalous dimension at the zero of the beta function.
Then by setting the lower boundary of the conformal window to be where the anomalous



dimension reaches unity allows for an estimate of the critical number of flavors as a function
of the number of colors.

At two and three loops both the beta function and anomalous dimension of the mass
only depend on the trace normalization factor and quadratic Casimirs for the various
representations. This implies that the bound for the conformal window for the adjoint
theory is independent of V.. This is similar to the above estimate of the conformal window
in the ladder approximation. However at four loops higher order group invariants enter
the beta function and the anomalous dimension [28, 29]. This has the effect of inducing an
N, dependence in the associated estimate of the conformal window for the adjoint theory.
This dependence is very mild since it does not enter until the four loop level and we expect
it to disappear again once the exact conformal window is known. These observations can
be seen explicitly in figure 2 where we present the numerical results.

The orange band is the conformal window for the two-index symmetric theory while the
light green band is the conformal window for the adjoint theory both in terms of a number
of Dirac flavors. As can be seen for the adjoint theory there is a very mild dependence on
N.. The dark green band is the conformal window also for the adjoint representation but in
this case Ny counts the number of adjoint Weyl fermions. Again via this reinterpretation
we see that the conformal window of the adjoint theory is equivalent to the conformal
window of the two-index symmetric theory at large N,.

The conformal windows estimated via the four-loop approximation are larger than the
ones estimated via the previous SD. This happens because the SD estimates involve only
the two-loop beta function.

3 Concluding with non-perturbative results with(out) lattice

We can now discuss further the nonperturbative results that extend beyond the ladder or
the four-loop approximations by using large N, equivalence [16, 17, 19]. The equivalence
resulted, among other things, in intriguing relations between N = 1 supersymmetric Yang-
Mills and nonsupersymmetric two-index theories [19]. The associated effective theory was
constructed in [31]. The proof can be obtained by means of the general expansion in terms of
Wilson lines and is valid as long as no extra phase transitions separate the theories [32, 33].
Hence the (exact) limiting N]? for a conformal behaviour agrees for the adjoint, symmetric,
and antisymmetric representation at large N, provided that each Dirac flavors of the two-
index theories is mapped in a single Weyl fermion of the adjoint theory. The general 1/N,
corrections are not known but we have been able to estimate them in the SD and four-
loops approximation and shown that they are relevant. De facto the size of the corrections
forbid simplistic extrapolations to small values of N.. Although we considered explicitly
the two-index symmetric representation the same holds true for the antisymmetric case.

Nevertheless, based purely on the counting of degrees of freedom we can still arrive at
the following useful inequalities at finite N,

NE[S2] < NGIG) < N§[ A, (3.1)
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Figure 2. The conformal window calculated using the four loop beta function and anomalous
dimension of the mass. The boundary is set by the anomalous dimension reaching unity. The
orange band is the conformal window for the two-index symmetric theory while the light green
band is the conformal window for the adjoint theory both in terms of the number of Dirac flavors as
a function of the inverse number of colors 1/N,.. The dark green band is obtained by reinterpreting
the number of adjoint Weyl fermions as the number of Dirac flavors.

for the limiting number of fermions where the conformal window starts. The inequalities
hold because the effective number of adjoint Weyl fermions is always smaller (larger) than
the number of two-index antisymmetric (symmetric) Dirac fermions. These constraints
on the boundaries of the conformal windows hold true in our estimates above. Therefore
starting at large N, with Ngf G] = NfC[Sg] one expects the critical number of flavours
to move towards Ngf G] = %N]?[Sg] at N, = 2. The SD approximated value of N]? was
indicated above by N J{I .

Another relevant point is that we expect the size of the adjoint conformal window not
to depend on the number of colors. This is an exact statement for the upper bound, i.e.
the value where we loose asymptotic freedom, and within the ladder approximation it is
also true for the lower bound. At four loops, as already noted, a small dependence appears
which, however, can be neglected for all practical purposes and we expect it to disappear
in the full nonperturbative treatment.

These results allow for interesting crosschecks among different nonperturbative inves-
tigations of the conformal window. One well-established tool for these investigations are
numerical lattice simulations that have already started to explore the dynamics of gauge
theories with matter in higher dimensional representations.



We can, therefore, provide salient information on the conformal window and dynamics
of the two-index theories by means of fermions in the adjoint representation at small
N,.. These results add value to lattice simulations of adjoint matter at small number of
colors [7-9, 34-37].

Consider the case of two Dirac adjoint fermions of SU(2) which is believed to possess
large scale conformality [7-9, 34, 35]. According to the arguments above this implies that
at large N., the theories featuring four Dirac fermions in the two-indexr representations
display large distance conformality. Furthermore as we decrease the number of colors it
remains conformal until N, = 16/3 where the theory looses asymptotic freedom.

Another nonperturbative result is that the conformal window for the two-index sym-
metric representation doubles in size from N, = 2 to infinity. This is so because when the
number of colors drops to N. = 2 the two-index symmetric theory becomes the adjoint
with matching Dirac fermions.

We further note that recent studies hint to a potential conformal behaviour of the
theory with one Dirac flavour in the adjoint representation [37]. It is still too premature
to draw firm conclusions, however, if further studies confirm the conformal behaviour it
would demonstrate that the conformal window for the symmetric representation, for any
N, starts below two Dirac flavours. This would therefore add independent insight on
the (non) conformal faith of the phenomenologically relevant SU(3) theory with two Dirac
flavours [13, 14], because for any N, the theory would be conformal.

In conclusion by using large and small N, arguments as well as the N, independence of
the conformal window for adjoint matter we deduced nonperturbative information on the
conformal dynamics of theories with two-index representations. Consequently first principle
lattice results of adjoint matter already provide valuable predictions for the conformal
window and dynamics of two-index theories and further lead to important cross-checks
and constraints among different theories.
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