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1 Introduction

Gauge-Yukawa theories constitute the backbone of our current understanding of fundamen-

tal interactions. Yet, despite the deceivingly simple description in terms of the elementary

fields and bare interactions very little is known about their dynamics and spectrum. This

severely limits the number of theories that can be used to extend, or modify, the standard

model of particle interactions. On general grounds it is therefore essential to determine the

phase diagram of gauge theories of fundamental interactions.1

However, even in the simpler case of gauge theories with only fermionic matter the

uncovering of the associated phase diagram presents formidable challenges. Recently ana-

lytical [5, 6] and numerical efforts [7–15] have been dedicated to determine whether certain

gauge theories featuring fermionic matter display large distance conformality. The result-

ing conformal window plays a central role for a large number of possible extensions of the

standard model of particle interactions ranging from near conformal composite dynamics

Higgs theories to new dark matter models and even unparticles.

Using large and small Nc arguments we will show that it is possible to relate the

conformal window and dynamics of different gauge theories allowing to fast-forward the

investigation of the phase diagram both analytically and via first principle lattice simula-

tions. Specifically we will exploit large Nc relations among two-index and adjoint repre-

sentations [16–19] to derive nonperturbative results about the conformal window of these

theories. We will also test these relations for the conformal window by using Schwinger-

Dyson (SD) methods summarised in [20] as well as the maximal known order in pertur-

bation theory [21–24]. Thanks to these approximations we will show that naive large Nc

extrapolations to low number of colors are unreliable because one needs to consider at least

O(N−4
c ) corrections for describing the conformal window of two-index theories with Nc less

than about six. At order O(N−1
c ) the extrapolation is only reliable down to about Nc ∼ 20.

Nevertheless Nc independent nonperturbative inequalities can be deduced to significantly

1For example, the recent discovery of nonsupersymmetric complete asymptotically safe Gauge-Yukawa

theories [1] where elementary scalars are actually needed to make the theory fundamental (i.e. well defined at

arbitrary short distances) has widened the horizon of potentially interesting extensions of the standard model

and unveiled novel thermodynamical properties [2]. Nonperturbative results about the (non) asymptotic

safe behaviour of supersymmetric theories appeared in [3] with earlier studies reported in [4].
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constrain the size of two-index conformal windows. By further noting the Nc independence

of the adjoint conformal window we will argue that: the large Nc conformal window of

two-index theories is twice the conformal window of the adjoint representation in terms

of Dirac fermions; lattice results, obtained at small Nc, for adjoint matter can be used to

cross check and predict the conformal dynamics of two-index theories at large and small

number of colors. Note that large Nc arguments have also been applied in other studies

like [25] for an estimation of the conformal window.

The outline of this paper is as follows. In section 2 we summarise and further elucidate

the large and small Nc relations between theories with adjoint and two-index matter. We

then use SD and the maximum known order in perturbation theory to further validate the

relations and provide novel insight such as the actual range of applicability of naive large

Nc results. Here we will also notice that the size of the adjoint conformal window is effec-

tively Nc independent. There is only a very mild Nc dependence appearing at four loops

which effectively does not change any of our conclusions. We introduce and discuss the

implications of nonperturbative inequalities on the size of the two-index symmetric confor-

mal windows in section 3. Here we further show how to use lattice results for the adjoint

representation to cross-check and predict the conformal dynamics of two-index theories

such as SU(3) with two Dirac flavors in the sextet representation and offer our conclusions.

2 Large and small Nc relations and corrections

The adjoint theory with Nwf [G] Weyl fermions is planar equivalent to the theory with

Nf [S2/A2] = Nwf [G] Dirac fermions in the two-index symmetric or antisymmetric rep-

resentation. Here G, S2 and A2 denote the adjoint, two-index symmetric and two-index

antisymmetric representations respectively. This fact can easily be seen from a simple

counting of the number of fermionic degrees of freedom. For the adjoint representation

and for each Nwf [G] there are N2
c − 1 degrees of freedom. For the two-index symmetric

and antisymmetric representations and for each Nf [S2] or Nf [A2] there are Nc(Nc + 1) or

Nc(Nc − 1) number of degrees of freedom respectively where we have made sure to count

one Dirac fermion as two Weyl fermions and therefore multiplied by a factor of two. Hence

in the large Nc limit the number of degrees of freedom equal N2
c in all three cases and the

theory with Nwf [G] adjoint Weyl fermions is equivalent to the theory with Nf [S2/A2] Dirac

fermions in either the two-index symmetric or two-index antisymmetric representation.

This implies that if we know the conformal window at large Nc for the adjoint theory

all we need to do is to re-interpret it as the large Nc conformal window for the two-index

symmetric or antisymmetric theories albeit with the number of adjoint Weyl fermions

replaced by an identical number of two-index symmetric or antisymmetric Dirac flavors.

This nonperturbative result has direct application to the case of either one or two Dirac

flavors, i.e. two or four Weyl fermions, in the adjoint representation, among others. If the

former (latter) theory is conformal at large Nc then so is the theory with two (four) Dirac

flavors in the two-index symmetric or antisymmetric representation.

Once we depart from the large Nc limit corrections will begin to appear and we will

estimate them shortly. For the two-index symmetric and antisymmetric representations

– 2 –
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these corrections come with opposite sign. The two-index antisymmetric representation

corresponds effectively at finite Nc to a theory with a fewer number of fermionic degrees of

freedom while the two-index symmetric representation corresponds effectively to a theory

with a larger number of fermionic degrees of freedom. Hence at smaller Nc the boundary

of the conformal window moves to smaller Nf for the two-index symmetric representation

and to larger Nf for the two-index antisymmetric representation. We expect the boundary

of the conformal window for the adjoint representation to receive only mild corrections at

finite Nc.

We illustrate this behaviour using first the ladder results [5, 6] and then via the maximal

known order in perturbation theory [23, 24]. The latter is a precise result when the fixed

point occurs near the loss of asymptotic freedom because here the fixed point value of the

coupling is small.

The ladder approach to determine the lower boundary of the conformal window is

summarised in [20]. In its simplest incarnation it is a truncation of the Schwinger-Dyson

(SD) induced gap equation by means of the two loop beta-function. It was used first

in [5] for SU(Nc) gauge theories with two-index matter representation and generalised

for arbitrary SU(Nc) representations in [6]. Orthogonal and symplectic gauge groups were

investigated in [26] while exceptional and spinorial representations were studied in [27]. We

follow the notation in [6] and indicate the upper boundary of the conformal window where

asymptotic freedom is lost by N I
f . The lower boundary where the fixed point of the two

loop beta function is lost is indicated by N III
f while the loss of large distance conformality

estimated via the SD induced gap equation is indicated by N II
f . It is important to note

that N I
f , N

II
f , and N III

f all denote a given number of Dirac fermions. For a given matter

representation R of SU(Nc) we have [6]:

N I
f [R] =

11

4
F1[R], N II

f [R] = F1[R]
17 + 66F2[R]

10 + 30F2[R]
, N III

f [R] = F1[R]
17

10 + 6F2[R]
, (2.1)

with

F1[R] =
d[G]C2[G]

d[R]C2[R]
, F2[R] =

C2[R]

C2[G]
(2.2)

In these expressions G denotes the adjoint representation and the F functions hold informa-

tion on the group-structure of the theory. For the two-index symmetric S2 and two-index

antisymmetric A2 representations with a set of Dirac fermions one has

F1[S2/A2]Dirac =
2Nc

Nc ± 2
= 2∓ 4

Nc
+

8

N3
c

+O(N−3
c ) . (2.3)

and

F2[S2/A2] = 1± 1

Nc
− 2

1

N2
c

. (2.4)

For the adjoint representation with Dirac fermions we have F1[G] = F2[G] = 1. Note that

the adjoint and two-index symmetric theories coincide in the small Nc = 2 limit. Also in

the small Nc limit the two-index symmetric and antisymmetric theories diverge maximally

in their dynamics. The divergence of the antisymmetric representation at Nc = 2 is due

– 3 –
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to the fact that the representation becomes the singlet representation and decouples from

the theory.

At large Nc the two-index symmetric and antisymmetric theories converge with the

limiting values F1[S2/A2] = 2F2[S2/A2] = 2. As expected in the large Nc limit F1[S2/A2],

which contains information about the dimension of the fermion representation, is twice the

value for the adjoint representation F1[G].

It is instructive now to consider the leading 1/Nc corrections by inserting (2.4)

into (2.1). We find

N I
f [S2/A2] = N I

wf [G]

(
1∓ 2

Nc
+O(N−2

c )

)
, (2.5)

N II
f [S2/A2] = N II

wf [G]

(
1∓ 649

332Nc
+O(N−2

c )

)
, (2.6)

N III
f [S2/A2] = N III

wf [G]

(
1∓ 19

8Nc
+O(N−2

c )

)
, (2.7)

with Nwf [G] denoting the corresponding number of adjoint Weyl fermions

N I
wf [G] =

11

2
, N II

wf [G] =
83

20
, N III

wf [G] =
17

8
. (2.8)

All three numbers N I
wf [G], N II

wf [G] and N III
wf [G] are Nc independent. As we decrease the

number of colors we observe that the conformal window of the two-index symmetric (anti-

symmetric) theory stays below (above) the corresponding conformal window of the adjoint

theory.

Since for Nc = 2 the two-index symmetric representation is, by construction, equivalent

to the adjoint representation it is also useful to formally expand around Nc = 2

N I
f [S2] =

N I
wf [G]

2

(
1 +

(Nc − 2)

4
− (Nc − 2)2

16
+ · · ·

)
, (2.9)

N II
f [S2] =

N II
wf [G]

2

(
1 +

347

664

(Nc − 2)

2
− 1553

5312

(Nc − 2)2

4
+ · · ·

)
, (2.10)

N III
f [S2] =

N III
wf [G]

2

(
1 +

5

16

(Nc − 2)

2
+

17

256

(Nc − 2)2

4
+ · · ·

)
. (2.11)

As we move to larger values of Nc with respect to Nc = 2 the boundary of the conformal

window moves upwards. This aligns with the observation above that as we decrease the

number of colors Nc from the large Nc limit the boundary of the conformal window moves

to smaller values of Nf [S2].

We summarise in figure 1 the conformal window as estimated via the ladder approx-

imation for the two-index symmetric and adjoint representations in terms of the number

of Dirac flavours. The conformal window of the two-index symmetric theory is orange

while the conformal window for the adjoint theory is light green. The dark green phase on

the other hand is obtained by taking the adjoint conformal window and reinterpreting the

number of adjoint Weyl fermions as Dirac flavors in the manner spelled out above. Hence

– 4 –
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Figure 1. The ladder conformal window for the two-index symmetric representation phase diagram

(orange) and the adjoint representation (light green) in terms of the Nf Dirac flavours. In dark green

we show again the adjoint conformal window but where now Nf is reinterpreted as the number of

Weyl fermions Nwf . For each window the upper bound(lower) corresponds to N I
f (N II

f ). The orange

dashed curve corresponds to the 1/Nc expansion of N II
f [S2] up to and including O(N−1

c ) while the

orange dot-dashed curve corresponds to the 1/Nc expansion of N II
f [S2] up to and including O(N−3

c ).

via this reinterpretation at large Nc it should be clear that the conformal window of the

adjoint theory coincides with the conformal window of the two-index symmetric theory.

For each window the upper (lower) bound corresponds to N I
f (N II

f ). The orange dashed

curve corresponds to the 1/Nc expansion of N II
f [S2] up to and including O(N−1

c ) while the

orange dot-dashed curve corresponds to the 1/Nc expansion of N II
f [S2] up to and including

O(N−3
c ). From the figure it is clear that the conformal window of the two-index symmetric

theory is well described using the large Nc limit only at very large Nc since one needs at

least O(N−3
c ) corrections to arrive at Nc ∼ 6 and new orders are needed to arrive at Nc = 3.

In fact, the expansion around Nc = 2 converges more rapidly for smaller number of colors.

Another way to estimate the conformal window is via perturbation theory to the

maximal known loop order. Specifically one can employ the beta function of the gauge

coupling and the anomalous dimension of the mass which in the modified minimal subtrac-

tion scheme, MS, are known to four loop order [28, 29]. An investigation of the conformal

phase to this loop order can be found in [23, 24]. Similar investigations in the modified

regularisation invariant, RI’, and minimal momentum subtraction, mMOM, schemes can

be found in [30].

First one should evaluate the anomalous dimension at the zero of the beta function.

Then by setting the lower boundary of the conformal window to be where the anomalous

– 5 –
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dimension reaches unity allows for an estimate of the critical number of flavors as a function

of the number of colors.

At two and three loops both the beta function and anomalous dimension of the mass

only depend on the trace normalization factor and quadratic Casimirs for the various

representations. This implies that the bound for the conformal window for the adjoint

theory is independent of Nc. This is similar to the above estimate of the conformal window

in the ladder approximation. However at four loops higher order group invariants enter

the beta function and the anomalous dimension [28, 29]. This has the effect of inducing an

Nc dependence in the associated estimate of the conformal window for the adjoint theory.

This dependence is very mild since it does not enter until the four loop level and we expect

it to disappear again once the exact conformal window is known. These observations can

be seen explicitly in figure 2 where we present the numerical results.

The orange band is the conformal window for the two-index symmetric theory while the

light green band is the conformal window for the adjoint theory both in terms of a number

of Dirac flavors. As can be seen for the adjoint theory there is a very mild dependence on

Nc. The dark green band is the conformal window also for the adjoint representation but in

this case Nf counts the number of adjoint Weyl fermions. Again via this reinterpretation

we see that the conformal window of the adjoint theory is equivalent to the conformal

window of the two-index symmetric theory at large Nc.

The conformal windows estimated via the four-loop approximation are larger than the

ones estimated via the previous SD. This happens because the SD estimates involve only

the two-loop beta function.

3 Concluding with non-perturbative results with(out) lattice

We can now discuss further the nonperturbative results that extend beyond the ladder or

the four-loop approximations by using large Nc equivalence [16, 17, 19]. The equivalence

resulted, among other things, in intriguing relations between N = 1 supersymmetric Yang-

Mills and nonsupersymmetric two-index theories [19]. The associated effective theory was

constructed in [31]. The proof can be obtained by means of the general expansion in terms of

Wilson lines and is valid as long as no extra phase transitions separate the theories [32, 33].

Hence the (exact) limiting NC
f for a conformal behaviour agrees for the adjoint, symmetric,

and antisymmetric representation at large Nc provided that each Dirac flavors of the two-

index theories is mapped in a single Weyl fermion of the adjoint theory. The general 1/Nc

corrections are not known but we have been able to estimate them in the SD and four-

loops approximation and shown that they are relevant. De facto the size of the corrections

forbid simplistic extrapolations to small values of Nc. Although we considered explicitly

the two-index symmetric representation the same holds true for the antisymmetric case.

Nevertheless, based purely on the counting of degrees of freedom we can still arrive at

the following useful inequalities at finite Nc

NC
f [S2] ≤ NC

wf [G] ≤ NC
f [A2] , (3.1)

– 6 –
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Figure 2. The conformal window calculated using the four loop beta function and anomalous

dimension of the mass. The boundary is set by the anomalous dimension reaching unity. The

orange band is the conformal window for the two-index symmetric theory while the light green

band is the conformal window for the adjoint theory both in terms of the number of Dirac flavors as

a function of the inverse number of colors 1/Nc. The dark green band is obtained by reinterpreting

the number of adjoint Weyl fermions as the number of Dirac flavors.

for the limiting number of fermions where the conformal window starts. The inequalities

hold because the effective number of adjoint Weyl fermions is always smaller (larger) than

the number of two-index antisymmetric (symmetric) Dirac fermions. These constraints

on the boundaries of the conformal windows hold true in our estimates above. Therefore

starting at large Nc with NC
wf [G] = NC

f [S2] one expects the critical number of flavours

to move towards NC
wf [G] = 1

2N
C
f [S2] at Nc = 2. The SD approximated value of NC

f was

indicated above by N II
f .

Another relevant point is that we expect the size of the adjoint conformal window not

to depend on the number of colors. This is an exact statement for the upper bound, i.e.

the value where we loose asymptotic freedom, and within the ladder approximation it is

also true for the lower bound. At four loops, as already noted, a small dependence appears

which, however, can be neglected for all practical purposes and we expect it to disappear

in the full nonperturbative treatment.

These results allow for interesting crosschecks among different nonperturbative inves-

tigations of the conformal window. One well-established tool for these investigations are

numerical lattice simulations that have already started to explore the dynamics of gauge

theories with matter in higher dimensional representations.
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We can, therefore, provide salient information on the conformal window and dynamics

of the two-index theories by means of fermions in the adjoint representation at small

Nc. These results add value to lattice simulations of adjoint matter at small number of

colors [7–9, 34–37].

Consider the case of two Dirac adjoint fermions of SU(2) which is believed to possess

large scale conformality [7–9, 34, 35]. According to the arguments above this implies that

at large Nc, the theories featuring four Dirac fermions in the two-index representations

display large distance conformality. Furthermore as we decrease the number of colors it

remains conformal until Nc = 16/3 where the theory looses asymptotic freedom.

Another nonperturbative result is that the conformal window for the two-index sym-

metric representation doubles in size from Nc = 2 to infinity. This is so because when the

number of colors drops to Nc = 2 the two-index symmetric theory becomes the adjoint

with matching Dirac fermions.

We further note that recent studies hint to a potential conformal behaviour of the

theory with one Dirac flavour in the adjoint representation [37]. It is still too premature

to draw firm conclusions, however, if further studies confirm the conformal behaviour it

would demonstrate that the conformal window for the symmetric representation, for any

Nc, starts below two Dirac flavours. This would therefore add independent insight on

the (non) conformal faith of the phenomenologically relevant SU(3) theory with two Dirac

flavours [13, 14], because for any Nc the theory would be conformal.

In conclusion by using large and small Nc arguments as well as the Nc independence of

the conformal window for adjoint matter we deduced nonperturbative information on the

conformal dynamics of theories with two-index representations. Consequently first principle

lattice results of adjoint matter already provide valuable predictions for the conformal

window and dynamics of two-index theories and further lead to important cross-checks

and constraints among different theories.
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