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Arterial hypertension is a major public health threat due 
to its high prevalence and associated increased risk for car-
diovascular disease.1 Primary hypertension, also known as 
essential or idiopathic hypertension, accounts for about 95% 
of all cases of hypertension. As a complex trait, it is influ-
enced by environmental (e.g., high salt intake) and genetic 
factors.2,3 From genome-wide association studies, CYP17A1 
was identified as a sensitive locus, linked to blood pressure 
(BP) or arterial hypertension in the general population.4–6 
Functionally, this gene is translated into the cytochrome 
P450 (CYP) type II enzyme, 17α-hydroxylase/17,20-lyase 
(CYP17A1). CYP17A1 is required for the production of 

cortisol in the adrenal cortex and androgen precursors 
of sex hormones in both the adrenal glands and gonads.7 
Therefore, it would be of interest to investigate the associa-
tion of BP and apparent CYP17A1 activity, by assessing pre-
cursor-to-product hormone metabolites ratios in the general 
population.

Until highlighted by genome-wide association studies, the 
association of CYP17A1 activity and BP was mainly investi-
gated in patients with a 17α-hydroxylase deficiency (OMIM 
#202110), in whom a loss-of-function mutant of CYP17A1 
leads to elevation of adrenocorticotropic hormone, with 
consecutive overproduction of mineralocorticoid active 
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BACKGROUND
Genome-wide association studies have linked CYP17A1 coding for the 
steroid hormone synthesizing enzyme 17α-hydroxylase (CYP17A1) to 
blood pressure (BP). We hypothesized that the genetic signal may trans-
late into a correlation of ambulatory BP (ABP) with apparent CYP17A1 
activity in a family-based population study and estimated the heritabil-
ity of CYP17A1 activity.

METHODS
In the Swiss Kidney Project on Genes in Hypertension, day and night 
urinary excretions of steroid hormone metabolites were meas-
ured in 518 participants (220 men, 298 women), randomly selected 
from the general population. CYP17A1 activity was assessed by 2 
ratios of urinary steroid metabolites: one estimating the combined 
17α-hydroxylase/17,20-lyase activity (ratio 1)  and the other predomi-
nantly 17α-hydroxylase activity (ratio 2). A mixed linear model was used 
to investigate the association of ABP with log-transformed CYP17A1 
activities exploring effect modification by urinary sodium excretion.

RESULTS
Daytime ABP was positively associated with ratio 1 under conditions of 
high, but not low urinary sodium excretion (P interaction <0.05). Ratio 
2 was not associated with ABP. Heritability estimates (SE) for day and 
night CYP17A1 activities were 0.39 (0.10) and 0.40 (0.09) for ratio 1, and 
0.71 (0.09) and 0.55 (0.09) for ratio 2 (P values <0.001). CYP17A1 activi-
ties, assessed with ratio 1, were lower in older participants.

CONCLUSIONS
Low apparent CYP17A1 activity (assessed with ratio 1) is associated with 
elevated daytime ABP when salt intake is high. CYP17A1 activity is her-
itable and diminished in the elderly. These observations highlight the 
modifying effect of salt intake on the association of CYP17A1 with BP. 
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hormones,8 leading to salt sensitive hypertension.9 As a 
consequence, arterial hypertension in 17α-hydroxylase-
deficient patients is responsive to supplementation of gluco-
corticoids.7 Further information about the development of 
hypertension by an altered CYP17A1 activity came recently 
from men with advanced prostate cancer who were treated 
with an inhibitor of CYP17A1 (abiraterone) to stop andro-
gen production in adrenal glands. As a side effect, some 
developed hypertension due to mineralcorticoid excess.10 
To prevent the overproduction by the stimulation with 
adrenocorticotropic hormone, patients were treated in fur-
ther studies with glucocorticoids.11 However in 2 large trials, 
hypertension was more frequently reported in the abirater-
one plus prednisone than in the prednisone alone group, 
suggesting that increased BP may be unresponsive to exog-
enous glucocorticoid supplementation in such patients.12,13

CYP17A1 activity catalyzes 2 enzymatic reactions: 
first, hydroxylation of pregnenolone and progester-
one to 17α-hydroxypregnenolone and progesterone 
(17α-hydroxylase activity), respectively, and second, 
enhancement of side-chain cleavage of 17-hydroxylated 
steroids to generate dehydroepiandrosterone (DHEA) and 
androstenedione, the precursors of testosterone (17,20-lyase 
activity).14 Comparing the precursor-to-product ratios of 
the steroid metabolites, CYP17A1 activity in humans can 
be assessed by calculating the ratios of the total urinary 
excretion of 17-hydroxylated steroids with or without side-
chain cleavage (i.e., androsterone (An) and etiocholanolone 
(Et)) and the metabolites of cortisol (tetrahydrocortisone 
(THE), tetrahydrocortisol (THF) and 5α-tetrahydrocortisol 
(5α-THF)), with C-21 steroids without 17-hydroxyl groups 
(i.e., total urinary metabolites of corticosterone (tetrahydro-
11-dehydrocorticosterone (THA), tetrahydrocorticosterone 
(THB), and 5α-tetrahydrocorticosterone (5α-THB)).15

The availability of steroid hormone profiles in a large 
cohort of participants with ambulatory BP (ABP) meas-
urement of European descent offered us the possibility to 
explore the distribution of CYP17A1 activities in a contem-
porary population and investigate its association with ABP, 
while urinary sodium excretion served as proxies for dietary 
salt intake.16 The family-based study design allowed assess-
ment of the heritability of apparent CYP17A1 activities.

METHODS

Study population

Swiss Kidney Project on Genes in Hypertension 
(SKIPOGH) is a family-based cross-sectional study exploring 
the role of genes and kidney hemodynamics in BP regulation 
and kidney function in the general population. A  detailed 
description of the methods is provided elsewhere17,18 and 
will be briefly described here. From December 2009 to 
March 2013, adult participants were recruited in 2 regions 
(Bern and Geneva) and in 1 city (Lausanne) of Switzerland. 
A random sample of the inhabitants were drawn using differ-
ent strategies. Inclusion criteria were: (i) having a minimum 
age of 18 years; (ii) being of European ancestry; (iii) having 
at least 1 first degree family member willing to participate; 
and (iv) providing written, informed consent. Pregnant or 

breastfeeding women were not included. The general partici-
pation rate was 25.6%.

The SKIPOGH study has been carried out in accord-
ance with the Declaration of Helsinki (2008) of the World 
Medical Association, and has been approved by the Ethics 
Committees of each participating university hospital.

Measurements and definitions

The study visit was performed in the morning after an over-
night fast. Body weight was measured in kilograms to the near-
est 100 g using electronic scales (Seca, Hamburg, Germany). 
Height was measured to the nearest 05 mm using a Seca height 
gauge. Body mass index was calculated as weight (kilograms) 
divided by the height squared (square meters). BP was meas-
ured with a validated non-mercury manual auscultatory sphyg-
momanometer (A&D UM-101, A&D Company, Toshima Ku, 
Tokyo, Japan).19 Each subjects conventional office BP was the 
mean of the 5 consecutive readings, and hypertension was 
defined as a mean office BP ≥140/90 mm Hg.20 ABP was meas-
ured using Diasys Integra devices (Novacor, Rueil-Malmaison, 
France). Measurements were taken every 15 minutes during 
the day, and every 30 minutes during the night (from 10 pm 
to 7 am). Participants were included in the analyses if they had 
at least 14 systolic BP (SBP) and diastolic BP (DBP) measure-
ments during the day and at least 7 readings during the night in 
accordance with European Society of Hypertension recommen-
dations.20 During the measurement, a urine sample was saved 
separately for day- and nighttime covering 24 hours. To take 
potential incomplete urine collection into account, we excluded 
participants with a 24-hour urine volume below 300 ml and 
added urinary creatinine excretion per kilogram body weight as 
covariate in the analyses.21 Renal function tests, as well as serum 
and urinary electrolytes, were analyzed by standard clinical lab-
oratory methods in each center. Creatinine was measured using 
isotope dilution mass spectrometry-traceable methods. The 
Chronic Kidney Disease Epidemiology Collaboration formula 
was used to calculate the estimated glomerular filtration rate.22

Gas chromatography-mass spectrometry of steroid 
metabolites

Urinary steroid metabolites were extracted and analyzed 
by gas chromatography-mass spectrometry according to the 
method described by Shackleton.23 Measured steroid metabo-
lites were divided by urinary creatinine excretion. To assess the 
apparent CYP17A1 activity, the following precursor-to-product 
metabolite ratios were derived from the steroid measurements: 
ratio 1 (THA + THB + 5α-THB)/(An + Et) and ratio 2 (THA 
+ THB + 5α-THB)/(THE + THF + 5α-THF)24 (Supplementary 
Figure  1). To more specifically target 17,20-lyase activity, we 
explored the distribution of the ratios of the total cortisol pre-
cursors to the androgen precursors and metabolites (pregnan-
ediol (PD) + 17-hydroxyprogesterone (17HP) + pregnanetriol 
(PT)/(DHEA + An + Et)) and its relationship to ABP.

Statistical analyses

All the continuous variables with normal distribution 
(assessed graphically) are expressed as mean and ±SD and 
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as median and 25th to 75th interquartile ranges whenever 
distribution was skewed. Categorical variables are expressed 
as numbers and frequencies. Student’s t-tests or Mann-
Whitney U-tests, whenever appropriate, and chi-square tests 
were performed to compare baseline characteristics for con-
tinuous and categorical variables, respectively.

Association analyses

Ratios 1 and 2 were log-transformed for statistical analy-
sis. Univariate analyses were performed to examine the asso-
ciations between either log-transformed ratio 1 or 2 with 
systolic and diastolic ABP during night and day. Pearson 
tests with P values were performed to obtain correlations for 
continuous variables. Statistical significance was considered 
for a 2-sided P < 0.05. For multivariable analyses, we used 
mixed linear models to analyze the association of systolic 
and diastolic ABP with log-transformed CYP17A1 ratios 1 
and 2, taken one at a time, using separate models for day and 
night, while taking family correlations into account by way 
of a random family effect. We included age, sex, center, body 
mass index, urine flow rate, urinary potassium excretion, 
urinary creatinine excretion (24 hour per kilogram body 
weight), antihypertensive treatment, and estimated glomer-
ular filtration rate as covariates in the models. We explored 
whether urinary sodium excretion modified the association 
of ABP with log-transformed CYP17A1 ratios by adding 
the appropriate interaction term in the model. For graphi-
cal illustration, we performed separate analyses for partici-
pants with urinary sodium excretion above median vs. those 
below the median. Statistical analyses were performed using 
STATA 12.0 (StataCorp, College Station, TX).

Heritability analyses

We estimated heritability of CYP17A1 activity using 
the ASSOC program in the Statistical Analysis for Genetic 
Epidemiology (S.A.G.E.) package, version 6.3, as previ-
ously described.25 To estimate heritability, ASSOC uses a 
linear regression, allowing for covariates to be entered in 
the model. Heritability estimates are expressed as h2 values 
with SE. The main model included age and sex as covari-
ates. Another model additionally included body mass index, 
24-hour urinary sodium excretion, antihypertensive treat-
ment, and estrogen covariate. The estrogen covariate (0/1) 
was coded as 1 for women having regular periods or taking 
oral contraceptive pill or for postmenopausal women taking 
hormonal replacement therapy.

RESULTS

From December 2009 to March 2013, 1,128 participants 
from 271 nuclear families were included in the SKIPOGH 
study. Participants with missing or insufficient data for 
serum or urinary values, steroid metabolites, and 24-hour 
ABP were excluded, leaving 518 participants coming from 
193 families (median size (interquartile range)  =  3 (2;4), 
maximum size of 8)  for the purpose of this analysis. The 
characteristics of the 298 women and 220 men are presented 

in Table 1. Urinary excretion of sodium, potassium, creati-
nine, and steroid hormone metabolites corrected for creati-
nine were higher in men than in women during both day 
and night (P < 0.001, except for pregnanediol and tetrahy-
droaldosterone, Table 2). However, urine flow rate was simi-
lar in men and women.

Distribution of CYP17A1 activities in the general adult 
population

The distribution of CYP17A1 activities based upon 2 dif-
ferent ratios of urinary steroid hormone metabolites are 
shown in Figure 1. Higher precursor-to-product metabolites 
ratios indicate a lower activity of the enzyme, while lower 
ratios denote higher enzyme activity. Both ratios showed a 
unimodal distribution. Ratio 1 had a second peak at higher 
values, which indicates participants with lower apparent 
CYP17A1 activities.

Association of CYP17A1 ratios with ambulatory blood 
pressure

Due to their asymmetric unimodal distribution, the 
CYP17A1 ratios were log-transformed for association 
analyses with ABP. In univariable mixed linear regression 
analyses, including all participants (n  =  518), SBP and 
DBP tended to be higher during day and night in partici-
pants with lower apparent CPY17A1 activity specified by 
ratio 1 (Supplementary Figure 2), although not reaching 
statistical significance. There was no association of ABP 

Table 1. Characteristics of participants

Variables Men Women

Numbers 220 298

Age, years 48 (17.7) 48.5 (17.4)

Use of contraceptive pill, 
numbers (%)

61 (23)

Menopause, numbers (%) 150 (54)

On antihypertensive 
treatment, numbers (%)

42 (19) 37 (12)

BMI, kg/m2 25.7 (3.9) 23.7 (4)

Serum Na, mmol/l 141 (3) 141 (2)

Serum K, mmol/l 4.2 (0.3) 4.1 (0.4)

eGFR, ml/min/1.73 m2 97.3 (18.9) 93.9 (16.6)

Number of day measures 52 (8) 52 (10)

Day SBP, mm Hg 127.8 (13.7) 120.1 (14.7)

Day DBP, mm Hg 83.3 (9.9) 78.7 (9.1)

Number of night measures 17 (4) 17 (5)

Night SBP, mm Hg 111.1 (14.7) 103.9 (13.3)

Night DBP, mm Hg 71.1 (8.3) 65.7 (7.1)

Data are mean and SD unless otherwise specified.
Abbreviations: BMI, body mass index; Na, sodium; K, potassium; 

SBP, systolic blood pressure; DBP, diastolic blood pressure; eGFR, 
estimated glomerular filtration rate.
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Table 2. Descriptive data for day and night urine for sodium, potassium, urinary volume, and creatinine excretion as well as steroid hormone 
metabolites (corrected for creatinine)

Variables Men Women P-value

Creatinine excretion, mg/kg BW/24 h 22.3 (19;24.6) 18 (14.8;20.5) <0.001

Day Urine duration, min 960 (900;1005) 945 (870;990) <0.01

Urine volume, ml 1,171 (836;1657) 1191 (843;1596) 0.51

Urine flow rate, ml/min 1.22 (0.88;1.75) 1.29 (0.91;1.73) 0.38

Sodium excretion, mmol 109 (81;146) 83 (60;111) <0.001

Potassium excretion, mmol 54.4 (41.3;67.6) 42 (32.1;54.2) <0.001

Tetrahydrodehydrocorticosterone, µg/creat 4.83 (3.17;6.91) 3.39 (2.11;5.45) <0.001

Tetrahydrocorticosterone, µg/creat 100.5 (70;137.7) 70.2 (48.2;97.7) <0.001

5α-Tetrahydrocorticosterone, µg/creat 241 (172;328) 114 (80;169) <0.001

Tetrahydro-11-dehydrocorticosterone, µg/creat 71.5 (49.9;95.4) 50.1 (35;68.6) <0.001

Tetrahydroaldosterone, µg/creat 13.1 (7.8;21.7) 12 (7.3;19.7) 0.48

Pregnanediol, µg/creat 132 (97;201) 126 (73;232) 0.29

17-Hydroxypregnanolone, µg/creat 115.1 (76.4;170.7) 31 (20.6;59.8) <0.001

Pregnanetriol, µg/creat 442 (333;601) 203 (122;297) <0.001

Tetrahydrosubstance S, µg/creat 47.9 (34.3;63.6) 35.8 (24.7;47.2) <0.001

Tetrahydrocortisol, µg/creat 1351 (1051;1722) 827 (579;1054) <0.001

5α-Tetrahydrocortisol, µg/creat 1,076 (774;1466) 383 (247;585) <0.001

Tetrahydrocortisone, µg/creat 2,262 (1810;2864) 1253 (956;1863) <0.001

Dehydroepiandrosterone, µg/creat 101.4 (37.2;400.2) 32.8 (14.8;95) <0.001

Androsterone, µg/creat 1,185 (811;1736) 402 (229;734) <0.001

Etiocholanolone, µg/creat 1,093 (659;1530) 561 (306;869) <0.001

Night Urine duration, min 480 (435;515) 492.5 (450;540) <0.05

Urine volume, ml 500 (357;700) 500 (300;683) 0.5

Urine flow rate, ml/min 1.06 (0.72;1.49) 1.02 (0.63;1.39) 0.48

Sodium excretion, mmol 50.1 (34.2;66.5) 34.3 (23.2;50.7) <0.001

Potassium excretion, mmol 15.1 (10.6;21.3) 11.3 (8.4;16.1) <0.001

Tetrahydrodehydrocorticosterone, µg/creat 1.94 (1.4;2.96) 1.37 (0.89;2.44) <0.001

Tetrahydrocorticosterone, µg/creat 39.7 (27.7;63.5) 29.4 (19.4;41.7) <0.001

5α-Tetrahydrocorticosterone, µg/creat 72.4 (51.9;101) 33.9 (21.7;54) <0.001

Tetrahydro-11-dehydrocorticosterone, µg/creat 25 (17.4;36) 18.1 (12.2;26.5) <0.001

Tetrahydroaldosterone, µg/creat 5.25 (3.29;8.95) 4.8 (2.77;8.51) 0.33

Pregnanediol, µg/creat 65.3 (45.2;93.3) 58.9 (36.7;98) 0.29

17-Hydroxypregnanolone, µg/creat 55.9 (33.2;83.2) 12.3 (8;25.1) <0.001

Pregnanetriol, µg/creat 228 (159;307) 101 (61;150) <0.001

Tetrahydrosubstance S, µg/creat 18 (12.9;25.1) 14 (9.6;19.6) <0.001

Tetrahydrocortisol, µg/creat 423 (297;554) 248 (179;355) <0.001

5α-Tetrahydrocortisol, µg/creat 344 (236;482) 120 (79;185) <0.001

Tetrahydrocortisone, µg/creat 734 (540;995) 440 (296;618) <0.001

Dehydroepiandrosterone, µg/creat 38.5 (13.1;131.8) 13.8 (6.4;32) <0.001

Androsterone, µg/creat 577 (366;864) 210 (105;339) <0.001

Etiocholanolone, µg/creat 533 (345;780) 281 (163;449) <0.001

Data are median and interquartile range (IQR).
Abbreviation: BW, body weight.
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with ratio 2 (Supplementary Figure 3) nor with estimated 
17,20-lyase activity (data not shown). As CYP17A1 inhi-
bition is associated with an excessive mineralocorticoid 
signaling, the impact of salt intake—using urinary sodium 
excretion as a surrogate marker—on ABP in relation to 
CYP17A1 activity was addressed. To graphically illustrate 
the effect modification, men and women were separated 
into low and high sodium excretion subgroups. Day SBP 
and DBP were associated positively with ratio 1 (hence 
negatively with CYP17A1 activity) in participants with 
high sodium excretion (P for interaction between log-
CYP17A1 ratio 1 and salt strata = 0.033 for day SBP and 
=0.004 for day DBP), whereas no such positive associa-
tion was found in participants with low sodium excretion 
(Figure  2). We also used sex-specific tertiles of sodium 
excretion, instead of low and high sodium excretion 
strata, which leads to similar observations and illustrates 
the dose-response modifying effect of sodium excretion 
(Supplementary Figure  4). Nighttime SBP showed the 
same pattern; however, the corresponding interaction was 
not statistically significant. We found no significant effect 
modification of sex for its effect on the association of ABP 
with CYP17A1 activity (data not shown). There was no 
association of ABP with ratio 2 (Supplementary Figure 5) 
nor with estimated 17,20-lyase activity (data not shown) 
upon dichotomizing the participants based on urinary 
sodium excretion.

Heritability estimates of CYP17A1 ratios

Unadjusted heritability estimates showed only a signifi-
cant heritability for ratio 2 (Table 3). Adjustment for age and 
sex showed a significant adjusted heritability for ratio 1 (0.36 
for day and 0.38 for night, P < 0.001) and for ratio 2 (0.58 for 
day and 0.52 for night, P < 0.001). Further adjustment for 
body mass index, 24-hour urinary sodium excretion, antihy-
pertensive treatment, and estrogen status slightly modified 
heritability estimates, which remained approximately 0.40 
for ratio 1 and between 0.55–0.71 for ratio 2 (all P < 0.001).

Association of CYP17A1 ratios with age

We observed a significant positive association of day and 
night CYP17A1 ratio 1 with age (P < 0.001) and a significant 
negative association of day and night CYP17A1 ratio 2 with 
age (P < 0.001) (Figure 3).

Different urinary steroid profile patterns for ratios 1 and 2

Because ratios 1 and 2 showed different results, the pattern 
of the ratios of urinary steroid metabolites between partici-
pants in the highest and those in the lowest quintiles of ratio 1 
or ratio 2 during the day are presented (Figure 4). This figure 
indicates which urinary metabolites predominate in partici-
pants with a lower CYP17A1 activity assessed with ratio 1 or 

Figure 1. Apparent CYP17A1 activities separated by gender, day- or nighttime and ratio 1 or 2. Dashed lines represent women, black lines represent 
men. Abbreviations: THA, tetrahydro-11-dehydrocorticosterone; THB, tetrahydrocorticosterone; 5α-THB, 5α-tetrahydrocorticosterone; THE, tetrahydro-
cortisone; THF, tetrahydrocortisol; 5α-THF, 5α-tetrahydrocortisol; An, androsterone; Et, etiocholanolone.
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ratio 2, respectively. During the day, participants in the high-
est quintile of ratio 1 or 2 showed a higher excretion of min-
eralocorticoid active hormones than the participants in the 
lowest quintile, but the pattern for the other steroid metabo-
lites was different. Participants with a higher CYP17A1 ratio 
1 had a trend to a higher excretion of glucocorticoids, a lower 
excretion of 17α-hydroxylated glucocorticoid precursors and 
a much lower excretion of androgen precursors and androgen 
metabolites. Therefore, in the SKIPOGH population, ratio 1 
seems to indicate a higher mineralocorticoid production with 
a maintained cortisol availability. This first pattern of dimin-
ished apparent CYP17A1 activity was associated with higher 
BP under high sodium intake. In contrast, participants with 
a higher CYP17A1 ratio 2 had a trend to a lower excretion of 
glucocorticoids and a higher excretion of 17α-hydroxylated 
glucocorticoid precursors, androgen precursors and andro-
gen metabolites, thus indicating an increased production of 
mineralocorticoid hormones with a decreased glucocorticoid 
availability. This pattern was not associated with higher BP.

DISCUSSION

We provide evidence that a decreased CYP17A1 activity 
(assessed with ratio 1)  is associated with increased systolic 

Figure 2. Association of day and night ABP with log transformed ratio 1 by salt intake strata. Sex-specific medians for daytime and nighttime urinary 
sodium excretion were used to separate low (below median) vs. high (above median) salt intake. The black lines indicate the high sodium excretion group, 
the gray lines the low sodium excretion group. For daytime, the median urinary Na excretion was 146 mmol in men and 107 mmol in women for high 
intakes and 80 mmol in men and 58 mmol in women for low intakes. For nighttime, the median urinary Na excretion was 65 mmol for men and 51 mmol 
for women for high intakes and 32 mmol in men and 23 mmol in women for low intakes. Data are adjusted for age, sex, center, body mass index, urine 
flow rate (day or night), urinary potassium excretion (day or night), 24-hour urinary creatinine excretion per kilogram body weight, antihypertensive 
treatment, and estimated glomerular filtration rate (GFR) based on the Chronic Kidney Disease Epidemiology Collaboration equation (systolic blood 
pressure (SBP), diastolic blood pressure (DBP), P for interaction (Pint)).

Table 3. Heritability estimates of log-transformed CYP17A1 
activity ratios 1 and 2 and day and night, respectively

Variables Model h2 P-value

CYP17A1 ratio 1, day Unadjusted 0.10 (0.09) 0.133

Model 1 0.36 (0.10) <0.001

Model 2 0.39 (0.10) <0.001

CYP17A1 ratio 1, night Unadjusted 0.11 (0.09) 0.102

Model 1 0.38 (0.09) <0.001

Model 2 0.40 (0.09) <0.001

CYP17A1 ratio 2, day Unadjusted 0.58 (0.10) <0.001

Model 1 0.75 (0.09) <0.001

Model 2 0.71 (0.09) <0.001

CYP17A1 ratio 2, night Unadjusted 0.52 (0.09) <0.001

Model 1 0.63 (0.09) <0.001

Model 2 0.55 (0.09) <0.001

Data are narrow sense h2 estimates in percentage ± SE.
Model 1: adjusted for age and sex; Model 2: adjusted for age, sex, 

study center, body mass index, 24-hour urinary sodium excretion, 
antihypertensive treatment, and estrogen status.
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and diastolic daytime ABP, when salt intake is high. Our data 
support the heritability of CYP17A1 activity and highlight 
the genetic role of CYP17A1 in BP control in the adult popu-
lation. To our knowledge, this is also the first study to report 
the distribution of CYP17A1 activities—assessed with 2 dif-
ferent ratios—in the general adult population.

The association of ratios 1 and 2 to ABP is different, how-
ever. In patients affected with 17α-hydroxylase deficiency, 
lack of CYP17A1 activity is characterized by hyperten-
sion and elevated CYP17A1 ratios 1 and 2, whereas in our 
study ABP was associated with CYP17A1 ratio 1, but not 
with ratio 2. This suggests that the assessment of apparent 
CYP17A1 activity with 2 different ratios is not the same in 
patients with 17α-hydroxylase deficiency, compared to the 
general population. In 17α-hydroxylase-deficient patients, 
glucocorticoid deficiency leads to an increased secretion 
of adrenocorticotropic hormone, which stimulates the syn-
thesis of mineralocorticoid hormones. In contrast, partici-
pants with an elevated CYP17A1 ratio 1, in our study, had 
a preserved production of glucocorticoid hormones, with 
a decreased secretion of 17α-hydroxylated glucocorticoid 
precursors and side-chain cleaved androgens. Therefore, 
participants with a diminished CYP17A1 activity (assessed 
with ratio 1)  seem to have a diminished 17α-hydroxylase 
and 17,20-lyase activity with an increased secretion of min-
eralocorticoid hormone that is not triggered by glucocorti-
coid deficiency. When our participants were assessed with 
ratio 2, participants with an elevated CYP17A1 ratio 2 had 

a decreased excretion of glucocorticoid hormones, but a 
preserved excretion of 17α-hydroxylated glucocorticoid pre-
cursors and androgen metabolites, indicating a decrease in 
glucocorticoid production without a concomitantly decrease 
in 17α-hydroxylated glucocorticoid precursors and side-
chain cleaved androgens. From this point of view, it seems 
likely that a higher CYP17A1 ratio 2 reflects a deficiency of 
glucocorticoid hormones that triggers adrenocorticotropic 
hormone secretion. However, this pattern of increased 
secretion of mineralocorticoid hormones had no effect on 
ABP in our population.

Our observational results are supported by results from 
interventional studies in men with advanced prostate cancer. 
In these patients, decreased androgen synthesis and increased 
mineralcorticoid hormone excretion was observed upon 
treatment with abiraterone, a CYP17A1-inhibitor. Under 
abiraterone treatment, a proportion of these men developed 
hypertension.10 To overcome this side effect, these patients 
were additionally treated with prednisone.11–13 However, in 
2 large prospective randomized studies, mineralocorticoid 
side effects were more commonly reported in the abirater-
one and prednisone treated groups, rather than the pred-
nisone therapy groups, suggesting that prednisone only 
partially prevents the symptoms of mineralocorticoid excess 
induced by abiraterone.12,13 This latter situation is in line 
with our observation of combined mineralocorticoid excess 
and maintained glucocorticoid availability in the presence of 
low CYP17A1 activity (assessed with a high ratio 1).

Figure 3. Apparent CYP17A1 activities—assessed with ratios 1 and 2—separated by gender and day- and nighttime. Open triangles represent women 
and black circles represent men. Dashed lines are the regression lines of participating women and solid lines the ones of men.
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Our novel findings of the close association of BP control 
with CYP17A1 activity are in line with recent associations of 
the CYP17A1 gene locus with BP in the adult population.4–6 
In the International Consortium for Blood Pressure analysis, 
including data on 200,000 individuals of European descent, the 
single nucleotide polymorphism located within the CYP17A1 
gene had the strongest effect size of all genome-wide signals for 
BP.6 This locus was further associated with BP in East-Asians,26 
Japanese,27 Han Chinese,28 and She Chinese.29 The size of the 
effect we observe sharply contrasts with that observed in the 
genetic association studies (i.e., 1 mm Hg per allele).6 We found 
a systolic and diastolic daytime ABP difference of 10 and 7 mm 
Hg between extremes of CYP17A1 activity, when assessed with 
ratio 1, under conditions of high sodium intake. If confirmed 
in other studies and in experimental settings, these results may 
have public health relevance.

We observed CYP17A1 activities to be substantially herit-
able in the general population, which is compatible with a 
genetic continuum between rare monogenic arterial hyper-
tension and essential hypertension. Even in the rare mono-
genic form of hypertension with loss-of function mutations 
in the CYP17A1 gene, BP is highly sensitive to salt intake,9 
which highlights the importance of environmental factors. 
The lower heritability estimate and larger variance of ratio 
1 as compared to ratio 2 suggest that environmental factors 
are more susceptible to impact on ratio 1. Furthermore, the 
lower heritability of ratio 1 may result, in part, from the fact 
that it captures a more complex enzymatic activity than ratio 

2. Similarly, the substantial heritability of CYP17A1 activi-
ties could participate in the clinical observation that a fam-
ily history of high BP predisposes other family members to 
arterial hypertension.2,3

This study also revealed a lower CYP17A1 activity—
assessed with ratio 1—in older participants. It is known 
that DHEA and androstenedione levels decrease with age in 
men and women between the age groups of 20- to 30 years 
old and 50- to 60 years old, with smaller changes observed 
after the age of 60 years.30 The decreased androgen levels are 
most likely due to a decreased CYP17A1 activity. Given this 
observation, it seems obvious, but until now not formally 
shown, that the decline in androgen synthesis leads also to 
an increased secretion of steroid precursors with mineralo-
corticoid properties exposing older individuals to a higher 
risk of increases in BP in the presence of excess salt intake.31

In summary, we identified individuals of European 
ancestry with a diminished CYP17A1 activity who might 
profit from reduced salt intake, such as currently recom-
mended.32,33 Further interventional trials should investigate 
the extent blood pressure could be lowered in participants 
with lower estimated CYP17A1 activity.

SUPPLEMENTARY MATERIAL

Supplementary materials are available at American Journal 
of Hypertension (http://ajh.oxfordjournals.org).

Figure  4. Pattern of the urinary steroid metabolites between participants in the highest and the lowest quintiles of ratio 1 or ratio 2 during the 
day. Abbreviations: THDOC, tetrahydrodeoxycorticosterone; THA, tetrahydro-11-dehydrocorticosterone; THB, tetrahydrocorticosterone; 5α-THB, 
5α-tetrahydrocorticosterone; THALDO, tetrahydroaldosterone; PD, pregnanediol; 17HP, 17-hydroxyprogesterone metabolites; PT, pregnanetriol; THF, tet-
rahydrocortisol; 5α-THF, 5α-tetrahydrocortisol; THE, tetrahydrocortisone; DHEA, dehydroepiandrosterone; An, androsterone; Et, etiocholanolone. THDOC, 
THB, α-THB, THA, and THALDO are mineralocorticoid active hormones, PD, 17HP, and PT are glucocorticoid precursors, THS, THF, 5α-THF and THE are 
metabolites of glucocorticoids, DHEA is an androgen precursors, and An and Et are androgen metabolites.
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