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While coronary atherosclerosis is a leading cause of mortality, evaluation of coronary lesions was previously limited to either indirect angio-
graphic assessment of the lumen silhouette or post mortem investigations. Intracoronary (IC) imaging modalities have been developed that allow
for visualization and characterization of coronary atheroma in living patients. Used alone or in combination, these modalities have enhanced our
understanding of pathobiological mechanisms of atherosclerosis, identified factors responsible for disease progression, and documented the
ability of various medications to reverse the processes of plaque growth and destabilization. These methodologies have established a link
between in vivo plaque characteristics and subsequent coronary events, thereby improving individual risk stratification, paving the way for
risk-tailored systemic therapies and raising the option for pre-emptive interventions. Moreover, IC imaging is increasingly used during coronary
interventions to support therapeutic decision-making in angiographically inconclusive disease, guide and optimize procedural results in selected
lesion and patient subsets, and unravel mechanisms underlying stent failure. This review aims to summarize current evidence regarding the role
of IC imaging for diagnosis and risk stratification of coronary atherosclerosis, and to describe its clinical role for guiding percutaneous coronary
interventions. Future perspectives for in-depth plaque characterization using novel techniques and multimodality imaging approaches are also
discussed.
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Introduction
As coronary artery disease (CAD) remains a leading cause of mor-
tality worldwide,1 growing interest has focused on characterizing in
vivo coronary plaque, i.e. the anatomic substrate of clinical CAD
manifestations. Coronary angiography depicts a two-dimensional
silhouette of the lumen but cannot visualize the arterial vessel
wall per se. In contrast, intracoronary (IC) imaging modalities allow
for direct visualization and characterization of coronary plaque in
vivo. Intravascular ultrasound (IVUS), the first modality introduced
≈25 years ago,2 – 4 provides tomographic imaging of the vessel
wall. The armour of available tools was subsequently enriched
with spectral analysis of IVUS radiofrequency (RF) backscattered

signals and optical coherence tomography (OCT) to better charac-
terize plaque morphology, as well as near-infrared spectroscopy
(NIRS) to provide compositional (but no structural) information
(Table 1). These modalities, along with novel techniques, have broa-
dened our understanding of the natural history of CAD; evaluated
the effect of medications on coronary atheroma; and assessed
indices of plaque composition that were linked to subsequent car-
diovascular events. Moreover, as percutaneous coronary interven-
tions (PCIs) are applied for increasingly complex patient and
lesion subsets, IC imaging has shown potential to optimize proced-
ural results and identify mechanisms of stent failure, i.e. restenosis
and thrombosis. In this review, we summarize evidence regarding
the current role of the main IC imaging modalities (IVUS, OCT,
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and NIRS) for diagnosis and risk stratification of CAD, describe their
clinical role in PCI guidance, and discuss novel modalities and future
perspectives in this field.

Intracoronary imaging modalities
for coronary plaque
characterization
Based on its ability to delineate the lumen and media-adventitia bor-
ders, IVUS allows for identification of plaque in angiographically
non-stenotic lesions, quantification of atheroma burden, assessment
of arterial remodelling, three-dimensional arterial reconstructions
that enable measurement of IC rheology, and evaluation of factors
associated with plaque progression or regression when performed
serially. Commercially available IVUS probes operate at a frequency
of 20 MHz. Higher frequencies (≥40 MHz) provide higher reso-
lution and better image quality at the cost of decreased tissue pene-
tration, although recent improvements in transducer design have
reduced the negative impact of higher frequencies on penetration.5

Grey-scale IVUS cannot directly assess plaque composition;
echo-attenuated plaques correlate with fibroatheroma morphology
by histology with high specificity but low sensitivity.6

Spectral analysis of IVUS-RF backscattered signals allows for char-
acterization of different tissue components. Image analysis systems
based on post-processing of backscatter RF data include IVUS-
virtual histology (IVUS-VH), iMAP, and integrated backscattered
IVUS. Using IVUS-VH, plaque components are classified as necrotic
core, fibrofatty tissue, fibrous tissue, or dense calcium; and lesions
are classified as pathologic intimal thickening, fibrotic, fibrocalcific
plaques, thick- or thin-caped fibroatheroma (TCFA)7 (Figure 1). Tis-
sue characterization by IVUS-VH has consistently shown good cor-
relation with histology in human autopsy studies8 but not in porcine
CAD9; in view of these conflicting findings, future scientific research
needs to continue focusing on robust validation of existing and novel
imaging techniques against histology respecting general require-
ment, i.e. solid sample sizes, independent imaging core labs and
pathology labs.

Optical coherence tomography has 10-fold higher axial (≈10 mm)
and lateral resolution (≈30 mm), but lower penetration depth
(1–3 mm) compared with IVUS, such that visualization of the entire
depth of a lesion is difficult especially in the presence of lipid-rich
tissue where the optical signal is strongly attenuated. Optical coher-
ence tomography has been validated against histology for accurate
measurement of cap thickness and tissue composition (fibrous,
calcific, lipid-rich/necrotic)10 and can also detect macrophage
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Table 1 Characteristics of intravascular ultrasound, RF-intravascular ultrasound, optical coherence tomography, and
near-infrared spectroscopy for assessing plaque morphology and composition

IVUS5 RF-IVUS7 NIRS12 OCT11

General characteristics

Energy source Ultrasound Ultrasound Near-Infrared light Infrared light

Pullback speed (mm/s) 0.5–1.0 0.5–1.0 0.5 10–40

Penetration (mm) 8–10 8–10 1–2 1–3

Spatial resolution (mm) 80–120 80–120 n/a 10

Requirement for blood clearance No No No Yes

Real-time outcome Yes No Yes Yes

Assessment of native plaque

Atheroma volume Yes5,37–40 Yes7 No No

Cap thickness No No No Yes11,19

Arterial remodelling Yes5,24 Yes5,7 No No

Calcification Good5 Good7 – Modest11

Lipid pool/necrotic core – Good7,8 Good12,23 Good11,19

Imaging of non-superficial lipid-core plaque – Yes7 No No

Macrophage accumulation No No No Yes11,20

Neovessels – – – Modest11

Assessment of luminal integrity (erosion, rupture, tears) Modest5 Modest7 – Good11,17

Stent/scaffold imaging

PCI guidance Yes60,72,73,75,77 – – Yes60,83,85

In-stent neoatherosclerosis Poor Modest97 – Good97,100

Underexpansion Yes69,72,73,75 n/a No Yes81,82,93,94

Malapposition Yes69,72,73,75 n/a No Yes81,82,93,94,96

Strut uncoverage No No No Yes92,93,95

IVUS, intravascular ultrasound; n/a, not applicable; NIRS, near-infrared spectroscopy; OCT, optical coherence tomography; RF-IVUS, radiofrequency IVUS.
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accumulations, plaque rupture, micro-calcifications, neovasculariza-
tion, and thrombus11 (Figure 1). Potential limitations include the inabil-
ity to see behind red thrombus, and the need for displacement of
blood for clear visualization of the artery wall which requires a non-
negligible amount of contrast medium; insufficient flushing may give
the false impression of thrombus or dissection flap. Caution is
required for possible artefacts (e.g. tangential drop-out mimicking
plaque rupture) and for differentiation of calcific vs. lipid-rich plaque.

Near-infrared spectroscopy (currently not widely available) is
based on the differential absorption of light by organic molecules
and has shown good specificity (90%) but modest sensitivity (50%)
for lipid pool detection in coronary atheroma.12 Near-infrared spec-
troscopy is capable of identifying relatively superficial lipid cores (with
a cap thickness ,450 mm). Angioscopy, a technique that allows for
direct plaque visualization, is reviewed elsewhere.13

Limitations of IC imaging include the inability to pass catheters
through severely stenotic, calcified, or tortuous lesions; the relative-
ly high cost; and the need for trained operators for interpretation of
findings. Although there are inherent risks related to the introduc-
tion of probes into the coronary arteries (e.g. dissection, thrombus
formation) and to flushing (induction of ventricular fibrillation),
these events remain infrequent and the methods are safe in the
hands of experienced operators.14

In vivo assessment of vulnerable
plaque and clinical implications
Approximately two-thirds of lethal coronary thrombosis is attribu-
ted to ruptured TCFAs.15,16 Accordingly, intact TCFAs are by infer-
ence considered vulnerable plaques at high risk to rupture and
trigger acute coronary syndromes (ACS).15 In addition, superficial
erosion is increasingly recognized as the underlying mechanism in
a proportion of ACS.17 Because current modalities cannot differen-
tiate features of plaques prone to undergo superficial erosion, and
until we better understand the natural history of ‘erosion-prone’ le-
sions, interest continues to focus on the in vivo identification of
rupture-prone TCFAs. Intracoronary imaging modalities can detect
vulnerable plaques and predict subsequent clinical events to some
extent; whether these properties translate into improved clinical
outcomes is not yet established.

Intracoronary imaging for detection of
presumed vulnerable plaque
While current IC imaging modalities can evaluate indices of vulner-
able plaques in vivo fairly accurately, no single modality alone can
simultaneously assess cap thickness, necrotic core size, and the

Figure 1 Multimodality imaging of a distal left anterior descending artery lesion by angiography (A), grey-scale intravascular ultrasound (B), intra-
vascular ultrasound-virtual histology (C), and optical coherence tomography (D). The substantial proportion of necrotic core (red colour) with
confluence at the luminal site for .308 is consistent with an intravascular ultrasound-virtual histology thin-caped fibroatheroma (C). Optical co-
herence tomography shows a signal-rich layer and an underlying signal-poor region with high light attenuation, suggestive of lipid/necrotic core
with an overlying fibrous cap with minimal thickness 40 mm (arrow), consistent with a thin-caped fibroatheroma (D). In different lesions, optical
coherence tomography is capable of visualizing macrophage accumulations forming a line (arrows, E); microvessels (arrows, F); and a ruptured
thin-caped fibroatheroma with minor white thrombus on top of the fibrous cap flap (arrowhead, G). Intravascular ultrasound image of a lesion
containing a lipid pool, noted by the yellow colour in the surrounding circle (H ) and the corresponding chemogram by near-infrared spectroscopy
(I ).
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magnitude of inflammation, i.e. the combination of histological
TCFA characteristics.15,16 While necrotic core by IVUS-VH corre-
lates with human histology,8 characterization of TCFA phenotype
has not been validated and is inferential (defined as necrotic core
abutting the lumen) since critical cap thickness of ruptured autop-
sied plaques (,65 or ,54 mm16) is far below the resolution of
IVUS (≈200 mm). Only OCT is capable of measuring cap thickness;
however, cut-offs associated with rupture may differ from autopsy
due to plaque shrinkage in pathology specimens.18 Validation of
TCFA by OCT against histology has shown excellent sensitivity
(100%) and specificity (97%) but limited positive predictive value
(41%).19 Macrophage accumulations can be visualized by OCT as
signal-intense punctuate regions with strong signal attenuation11

(Figure 1E); quantification of macrophage accumulations within
fibroatheroma caps has shown good correlation with human hist-
ology.20 The specificity of detecting macrophages defined as ‘bright
spots’ (not necessarily with shadowing) at any location in the artery
wall is lower due to components seen elsewhere in the intima
that also appear as bright spots in OCT (e.g. cellular fibrous
tissue, calcium-fibrous tissue interfaces, micro-calcifications, choles-
terol crystals).21 Optical coherence tomography can also detect
microvessels (Figure 1F) which have been correlated with plaque
progression and vulnerability.22 The ability of NIRS to identify
fibroatheromas is modest and enhanced when combined with
IVUS23; NIRS can accurately detect lipid pools but cannot pinpoint
TCFAs in the absence of anatomical information. Moreover, IC
imaging can capture features of rupture-prone lesions including

positive remodelling24 and spotty calcification6 (IVUS); complex
plaque morphology with evidence of previous rupture (IVUS), as
well as plaque elasticity and deformability (IVUS palpography25).
Subclinical rupture is not infrequent in patients presenting with
ACS or stable CAD26; among ruptured lesions, IVUS and OCT cor-
relates of clinical manifestation as an ACS include larger plaque
burden, greater luminal narrowing, and more thrombus.26

Intracoronary imaging for prediction of
clinical events
The PROSPECT study using three-vessel IVUS in ACS patients
showed that non-culprit lesions combining plaque burden ≥70%,
minimal lumen area (MLA) ≤4 mm2, and TCFA phenotype by
IVUS-VH had an 11-fold higher risk of triggering subsequent major
adverse cardiovascular events (MACE) compared with lesions
without these characteristics.27 Intravascular ultrasound-virtual
histology TCFA phenotype alone was associated with a three-fold
higher risk than non-TCFA lesions to result in MACE, most com-
monly rehospitalization due to angina with very infrequent hard
endpoints.27 Consistent findings were reported by the single-centre
VIVA28 and ATHEROREMO-IVUS studies.29 It is notable that the
identified lesion-specific characteristics did not correlate with clas-
sical angiographic and clinical risk predictors, indicating incremental
prognostic benefit,30 but also that they were highly prevalent
(�40–50% of patients) and had high negative, but low positive pre-
dictive value for MACE prediction (Figure 2). Based on the high

Figure 2 Summary of the positive and negative predictive values of intracoronary imaging–derived variables for prediction of clinical outcomes
in the PROSPECT,27 ATHEROREMO-IVUS,29 PREDICTION,31 and ATHEROREMO-NIRS32 studies. ESS, endothelial shear stress; LCBI, lipid-
core burden index; MACE, major adverse cardiac events; MLA, minimal lumen area; PB, plaque burden; PCI, percutaneous coronary interventions.
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accuracy to exclude, but limited potential to predict future events
when using non-serial IC imaging, pre-emptive interventional treat-
ment of presumed high-risk lesions cannot be supported at this
stage. The PREDICTION study demonstrated the incremental value
of low baseline shear stress to predict clinically relevant lesion
progression requiring PCI.31 In ATHEROREMO-NIRS, a baseline
value of lipid-core burden index (LCBI, the ratio of yellow pixels
within the analysed segment divided by all viable pixels) above vs.
below the median was associated with four-fold higher risk of
MACE throughout 1 year, yet again with low positive predictive
value.32 Prospective OCT studies investigating the predictive merit
of minimal cap thickness and TCFA detection are currently not
available.

In addition to asymptomatic, non-culprit lesions, detection of
TCFA by IVUS-VH33 or lipid-core plaques by NIRS34 in lesions
planned for PCI can identify patients at high risk for periprocedural
complications [myocardial infarction (MI), distal embolization].
Preventive clinical strategies and dedicated embolic protection de-
vices35 have been proposed based on these imaging findings but
have not yet entered routine clinical practice. Moreover, identifica-
tion of plaque rupture vs. erosion by OCT as the triggering mech-
anism of ACS has been associated with worse clinical outcomes.36

These results, however, require confirmation considering the atyp-
ically high reported event rates36 as well as the inability of OCT
(despite its high resolution) to detect endothelial denudation and
absence of endothelial cells, i.e. defining characteristic of plaque ero-
sion. In vivo evidence of erosion remains indirect, based on the pres-
ence of thrombus and absence of fibrous cap rupture17—an
approach likely conducive to some imprecision.

Assessment of plaque progression/
regression by intracoronary
imaging

Evidence and determinants of plaque
volume regression by intravascular
ultrasound
Serial IVUS progression/regression studies are presented in Supple-
mentary material online, Tables S1 and S2. Among different mea-
sures of disease burden, change in per cent atheroma volume
(PAV, i.e. percentage of vessel wall volume occupied by atheroma)
is recommended due to smaller variability compared with other
endpoints that may be sensitive to pullback length differences.5

In patients treated with statins or other medications with anti-
atherosclerotic properties (ezetimibe; darapladip; reconstituted
HDL; antihypertensive drugs; insulin-sensitizers in diabetic patients),
IVUS studies have shown the absence of progression37 and even
modest regression with high-intensity statin therapy, documented
as PAV reduction by 21% with atorvastatin 80 mg38 and by 20.8
to 21.2% with rosuvastatin 40 mg.38 – 40 The finding of plaque
progression in one-fifth of patients despite LDL-cholesterol
(LDL-C) levels ,70 mg/dL41 and in at least one-third of patients
receiving high-intensity statin therapy38– 40 likely reflects the multi-
factorial nature of the disease as well as limitations of currently
available pharmacological treatments. Factors associated with

statin-mediated plaque regression include high baseline PAV, and
lower on-treatment levels of LDL-C and C-reactive protein.42

Clinical significance of plaque volume
regression
Large global atheroma burden by IVUS has been identified as a pre-
dictor of subsequent clinical events.43 The clinical significance of ser-
ial changes of PAV remains elusive. In a pooled analysis of six serial
IVUS studies including .4000 patients, PAV progression was an in-
dependent predictor of MACE, a finding that was driven by repeat
revascularizations (not clearly attributable to previously imaged seg-
ments) and not by MI or mortality.44 Although high-intensity statin
regimens can reverse the process of IVUS-defined anatomic plaque
growth, a clear association of plaque regression with improved clin-
ical outcomes has yet to be determined.

Intracoronary imaging to detect reversal
of plaque vulnerability
While statins effectively reversed high-risk plaque characteristics in
experimental and human histological studies,45 IVUS-VH studies
have shown stabilization, but no net reduction of necrotic core in
response to statins40,46 or non-statin agents.25 The absence of clin-
ical benefit with one regimen (darapladip)47 that was associated with
stabilization of necrotic core (a secondary endpoint of the IBIS-2
study)25 suggests that the use of IVUS-VH and other imaging-based
endpoints as surrogates of clinical outcomes requires caution. In
contrast, usual-dose atorvastatin resulted in fibrous cap thickening
and reduction of macrophage accumulations as assessed by serial
OCT48—with the methodological caveat of manual cap thickness
measurement. Similarly, maximal LCBI of obstructive lesions by
NIRS decreased in response to high-dose rosuvastatin49 (Figure 3).

Temporal evolution of vulnerable plaques
by intracoronary imaging
The ability not only to detect a presumed vulnerable plaque at a sin-
gle time-point but also to predict its subsequent biological behav-
iour is less well established, yet clinically highly relevant. The
temporal evolution of plaque morphology by IVUS-VH has been as-
sessed only in small patient cohorts and provided conflicting results.
One study with predominantly stable CAD patients reported that
75% of IVUS-VH TCFAs subsequently regressed to lower-risk phe-
notypes50; factors associated with persistent IVUS-VH TCFA
morphology included proximal localization, larger plaque burden
and lesion length.50 In contrast, other studies demonstrated tem-
poral stability of IVUS-VH lesion morphology,51 even in the pres-
ence of high-intensity statin therapy.40 In keeping with animal
models associating local haemodynamic factors—in particular, low
endothelial shear stress—with subsequent development of TCFAs
with highest risk characteristics,52,53 baseline shear stress has been
associated in humans with greater subsequent plaque progression31

and necrotic core expansion by IVUS-VH.54 Assessment of local
haemodynamics holds substantial promise for prediction of vascular
behaviour but is currently limited by the time-consuming and
labour-intensive processes involved.
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Intracoronary imaging for guiding
coronary interventions
While IC imaging for characterization of asymptomatic, non-culprit
lesions is currently a research tool with potential for clinical utility,
IVUS and OCT are used increasingly to assess angiographically am-
biguous lesions, guide and optimize PCI, and determine mechanisms
of stent failure (Figure 4).

Intracoronary imaging to enhance
decision-making in angiographically
ambiguous lesions
In daily interventional practice, operators are frequently confronted
with dilemmas when angiography alone is insufficient to establish
the clinical significance of a given lesion. Although these scenarios
are difficult to capture in scientific studies, IC imaging can be valu-
able for decision-making in clinically challenging, angiographically in-
conclusive cases. While there is no concrete evidence for direct
comparisons, OCT is at least equally valuable and often superior
to IVUS owing to its higher resolution55,56; however, the inability
of OCT probes to achieve sufficient flushing through severely sten-
otic vessels, to reach distal lesions, or to assess large-calibre seg-
ments (e.g. ostial left main lesions) also require consideration.
Figure 5 shows representative examples from daily clinical practice,
illustrating how IC imaging may affect the therapeutic strategy.

Intravascular ultrasound for assessment of
intermediate non-left main lesions
Defining the haemodynamic relevance of angiographically intermediate
lesions may be challenging. While an MLA ≥4 mm2 signifies non-left
main lesions where PCI may be safely deferred,57 substantially
different cut-offs have also been proposed.58 Currently, haemodynamic

assessment with fractional flow reserve (FFR) or non-invasive ischae-
mia testing, and not morphometric assessment by IVUS or OCT,59 is
preferred for evaluation of intermediate non-left main lesions.60

Intravascular ultrasound for evaluation of
left main lesions
Angiographic assessment of left main disease may be hampered by the
short length, absence of clear reference segment, and possible reverse
tapering. Angiographic evaluation of intermediate left main lesions is
associated with a high intra- and inter-observer variability, is frequently
unreliable in ostial lesions,61 and cannot accurately define circumferen-
tial and longitudinal plaque distribution in distal and bifurcation
lesions.62 The use of FFR is challenging in left main stenoses, as mea-
surements may be falsely raised due to dampened catheter pressure
(particularly in ostial lesions) or co-existing downstream disease (par-
ticularly in the LAD).63 Currently, IVUS assumes class IIa indication to
assess the severity of unprotected left main lesions.60 An MLA of
7.5 cm2 is the lower range for a normal left main stem.64 Minimal lu-
men area ,5.9 mm2 by IVUS correlated with FFR-defined ischaemia
in one study,65 although lower cut-offs (,4.8 mm2) best predicted
FFR ,0.80 among Asian patients—likely reflecting ethnicity-related
differences.66 Currently, an MLA .6 mm2 appears to be a safe cutoff
for deferring PCI.67 In distal left main and bifurcation lesions, IVUS can
define longitudinal plaque distribution; IVUS pullbacks from both the
LAD and LCX may be of additional value to plan the procedure.68

Intravascular ultrasound for percutaneous
coronary intervention guidance and
optimization
Prior to stenting, IVUS can assess reference lumen dimension at the
proximal and distal non-diseased reference sites, and also (unlike
OCT) the external elastic membrane area at the site of minimal

Figure 3 Representative examples of serial atheroma regression by grayscale intravascular ultrasound in the ASTEROID trial39 (A); no change of
necrotic core by intravascular ultrasound-virtual histology (B) in the IBIS-4 study40; increase of fibrous cap thickness (C) and macrophage signal
decrease by optical coherence tomography (D) in the EASY-FIT study48; and reduction of lipid-core burden index by near-infrared spectroscopy
(E) in the YELLOW trial49 associated with statin treatment.
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Figure 4 Schematic presentation of the current utility and potential implications of intracoronary imaging for guidance of coronary interventions and characterization of native atherosclerotic
plaque.
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lumen diameter. Information regarding lesion length, presence, and
extent of calcification can optimize selection of stent size and stent-
ing strategy. Following implantation, IVUS can detect correctable
abnormalities related to the stent and underlying vessel wall which
have been associated with the risk of restenosis or thrombosis in-
cluding stent underexpansion,69 malapposition, edge dissection,
and geographic plaque miss. Although different criteria have been
proposed, minimal stent area ,80%, the average proximal and distal
reference lumen area is a comprehensive, widely applied cut-off
for relevant underexpansion. Uniform, standardized criteria for
PCI optimization in relation to IVUS findings remain to be estab-
lished and currently represent a great unmet need.

In the era of bare-metal stents (BMS), IVUS guiding was associated
with reduced restenosis and lower revascularization rates with no ef-
fect on mortality.70 In the era of drug-eluting stents (DESs), some
underpowered studies showed no clinical benefit of IVUS guidance

despite larger post-intervention stent dimensions,71 suggesting that
the beneficial impact of IVUS guidance might be camouflaged by
the overall improved efficacy of PCI with DES. Earlier randomized
studies have not been able to demonstrate superiority of routine
IVUS guidance compared with angiography-guided PCI regarding
mortality, MACE, or stent thrombosis, likely because of small sample
sizes and the inclusion of patients with predictably low benefit from
IVUS guidance.71 – 73 Recently, however, the superiority of IVUS-
guided vs. angiography-guided PCI was shown in the IVUS-XPL
randomized trial including 1400 patients treated with DES for long
(≥28mm) coronary lesions.74 The study showed that the use of
IVUS-guided everolimus-eluting stent implantation resulted in a sig-
nificant reduction of MACE, a difference that was driven by a reduc-
tion in target lesion revascularization and not cardiac mortality or
MI.74 Along the same lines of the latter trial, observational studies
(with inherent biases and limitations) reported consistent reductions

Figure 5 Unclear angiographic findings unravelled by intracoronary imaging. (A) Angiography shows a ‘fold’ at the ostium of the left anterior des-
cending artery, only visible in one single angigoraphic protection, corresponding to an eccentric stenosis with significant lumen narrowing as evidenced
by optical coherence tomography. (B) Discrete haziness in the mid-left anterior descending artery in a 30-year-old male with ventricular fibrillation and
absence of ischemic ECG changes. Optical coherence tomography suggests the presence of erosion on top of a fibrous plaque, enabling the diagnosis of
acute coronary syndromes-induced ventricular fibrillation. (C) Diffuse haziness in the mid-left anterior descending artery of a 31-year-old male. The
multi-hole appearance in optical coherence tomography unravels recanalized thrombus. (D) Haziness in the right coronary artery suggestive of either
thrombus or calcium. Optical coherence tomography shows evidence of calcification protruding in the lumen. (E) Subtotal stenosis of a diagonal branch
in a 28-year-old female without coronary risk factors raised suspicion of spontaneous dissection or thrombo-embolic origin. Optical coherence
tomography, however, indicates the presence of atherosclerosis with a normal mid-left anterior descending artery (red inset) and a severely stenotic
thick-cap fibroatheroma in the diagonal branch. (F) Angiographic image of an intermediate ostial left main lesion (arrowhead, left) and corresponding
intravascular ultrasound at the ostium, showing an eccentric plaque with minimal lumen area 4.8 cm2 indicating relevant ostial stenosis.

Intracoronary imaging of coronary atherosclerosis 531

 by guest on February 22, 2016
http://eurheartj.oxfordjournals.org/

D
ow

nloaded from
 

http://eurheartj.oxfordjournals.org/


in ischemic outcomes,75 and meta-analyses of mainly observational
studies including .25 000 patients showed decrease in stent throm-
bosis, mortality, MI, and revascularization associated with IVUS-guided
PCI.76,77 Overall, current evidence (built mainly on observational stud-
ies and one randomized trial74) suggests greater benefit of IVUS- vs.
angiography-guided PCI in complex lesions and ACS patients—
although there are conflicting results regarding the latter.78 The
ongoing SYNTAX II trial (NCT02015832) investigates clinical out-
comes of FFR- and IVUS-guided PCI in three-vessel disease using a
newer-generation biodegradable polymer, everolimus-eluting stent.

Intravascular ultrasound-guided left main
percutaneous coronary intervention
The clinical value of IVUS-guided PCI appears particularly evident in
left main interventions. In a recent observational study of 1670 pa-
tients treated with DES, IVUS guidance was associated with reduced
cardiac death, MI, revascularization, and stent thrombosis through-
out 3 years.79 The observational MAIN-COMPARE study showed a
trend for lower mortality, but intriguingly no difference in MI or re-
vascularization associated with IVUS guidance, thereby not provid-
ing mechanistic explanation for the observed mortality benefit.80

Two randomized trials, EXCEL (NCT01205776) and NOBLE
(NCT01496651), are currently underway comparing PCI vs.
CABG in unprotected left main disease; IVUS guidance is recom-
mended per protocol and important insights are expected.

Optical coherence tomography-guided
percutaneous coronary intervention
Due to its high resolution, OCT is more accurate than IVUS for visu-
alizing subtle stent- or lumen-related morphologies including edge and
in-stent dissection, malapposition, residual thrombus, and tissue pro-
lapse. While small post-intervention stent area and irregular protrusion
have been associated with subsequent mid-term clinical outcomes,81

subtle abnormalities (malapposition with short strut-vessel distance,
minor edge dissection) are likely not significant and possibly do not re-
quire correction82 but this warrants definitive evaluation. Similar to
IVUS, standardized criteria for OCT-guided PCI optimization remain
to be defined. Only one observational study has compared OCT-
vs. angiography-guided PCI and reported reduced cardiac death and
MACE in patients interrogated with OCT83 on the background of rele-
vant methodological limitations.84 The non-randomized ILLUMIEN-I
study reported that pre- and post-stenting OCT changed the proced-
ural strategy in 57 and 27% of cases, respectively.85 One small rando-
mized study reported more underexpansion and greater residual
reference segment stenosis with OCT- vs. IVUS-guided PCI.86 The on-
going randomized OPINION trial (NCT01873027) directly compares
IVUS vs. OCT guidance with respect to clinical outcomes following PCI
with DES; preliminary results indicate comparable in-segment minimal
lumen diameter after PCI, and 1-year clinical outcomes are expected
soon (Prof. T. Akasaka, personal communication).

Intracoronary imaging to guide
percutaneous coronary intervention with
bioresorbable scaffolds
The role of IC imaging is particularly relevant with the use of bior-
esorbable scaffold (BRS). Meticulous attention to the implantation

technique appears to be more relevant compared with metallic
DES, potentially related to greater strut thickness, reduced radial
force, and less tolerance to post-dilatation.87 The use of IC imaging
may be a valuable adjunct for optimal scaffold size selection prior to
implantation and to identify sub-optimal expansion and apposition
or scaffold fracture after the implantation.88 Observational studies
confirmed that the use of imaging-assisted BRS implantation can
provide similar post-procedural results compared with metallic
DES.89 While appropriately designed studies are required to estab-
lish the role of IC imaging for BRS implantation, we believe that
routine use of IC imaging may be a reasonable strategy until
further improvements of BRS devices with greater procedural
flexibility and less rigorous performance standards become
available.90

Intravascular ultrasound and optical
coherence tomography for determining
the mechanism of stent failure
Intravascular ultrasound and OCT both assume class IIa indication
to assess mechanical stent problems responsible for in-stent resten-
osis or stent thrombosis.60 While restenosis rates have decreased
substantially with new-generation DES, the investigation of mechan-
isms causing stent or scaffold thrombosis is a subject of growing
interest. Intracoronary imaging studies consistently identified under-
expansion and large dissections as correlates of early (acute/
subacute) thrombosis,91 and malapposition and uncovered stent
struts—which can be visualized with OCT92—as mechanisms of
late and very late thrombosis.93 – 96 Malapposition can either be
persistent (i.e. implantation-related) or late acquired; a distinction
is impossible without serial imaging. While the role of late acquired
malapposition in triggering thrombotic events in not disputed, the
impact of persistent malapposition remains controversial,96 yet it
is unlikely that a relevant role is limited to the acquired category
only. Neoatherosclerosis, i.e. atherosclerosis formation in the nas-
cent neointima, has been documented in vivo using OCT and
IVUS-VH93,97; it correlates with native disease progression (thus
suggesting similar pathophysiological mechanisms)98; and has been
identified as an important cause of very late stent thrombosis.95 Fur-
ther insights are expected from PRESTIGE (NCT01300507), the lar-
gest European stent thrombosis registry to date. With the increasing
use of BRS, interest in the investigation of device failure is high as the
scaffold resorption process per se may entail new pathomechanisms
such as late scaffold disintegrity in the presence of insufficient scaf-
fold coverage by neointima.99

New developments and future
directions in intracoronary imaging

Combination of intravascular ultrasound/
optical coherence tomography with
near-infrared spectroscopy in a single
catheter
Combined structural imaging with IVUS and plaque composition
assessment with NIRS has been suggested to enhance coronary pla-
que characterization.100 A hybrid IVUS–NIRS catheter is clinically
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available and showed greater accuracy than IVUS or NIRS alone for
the detection of plaques containing necrotic cores or large lipid
pools.23 A combined OCT-NIRS catheter with similar characteris-
tics as current OCT technology has been proposed,101 and first
human use of IC OCT-NIRS is expected in the near future.

Combination of optical coherence
tomography and intravascular ultrasound
in a single catheter
Intravascular ultrasound and OCT are, in many aspects, comple-
mentary for coronary plaque characterization (Table 1). The use
of two separate catheters requires a time-consuming image
co-registration process that may be subject to inaccuracies. A
dual-modality OCT–IVUS catheter was introduced,102 combining
high resolution for cap thickness measurement while preserving
deep penetration for necrotic core and plaque volume measure-
ment ex vivo in human coronary arteries and in vivo in animal
models.103 Remaining challenges for clinical use of the device
include conformation of the imaging rate of IVUS to the higher
speed of second-generation OCT, image fusion and display, and
configuration of catheter size and mechanical properties for safe
use in humans.

Advanced optical coherence tomography
imaging technology
Novel approaches for polarization sensitive OCT (PS-OCT) ca-
theters can provide measures of tissue birefringence and light
depolarization in the context of microstructural morphological
OCT images. In cadaver coronary arteries, PS-OCT assessed
microstructural arrangement of fibrous cap collagen104—a critical
determinant of lesion stability.15 Studies validating PS-OCT are
currently ongoing. In addition, spectroscopic OCT (SOCT) has
been proposed for depth-resolved detection of lipid from OCT
data.105

One-micron resolution imaging
Our current understanding of human CAD has been limited by
an inability to observe cellular and extracellular components
in vivo. One-micron resolution OCT (mOCT) uses a very broad
bandwidth light source (i.e. 650 – 950 mm), common path
spectral-domain OCT and relatively large numerical aperture,
yielding an axial and spatial resolution of 1 and 2 mm, respective-
ly.106 In cadaver human coronary arteries, mOCT enables
clear visualization and quantification of in situ macrophages and
cholesterol crystals (Figure 6A), as well as smooth muscle cells,
platelet aggregation, and micro-calcifications.106 The develop-
ment of mOCT for in vivo human use is currently ongoing, with
an expectation of first-in-man use of a first-generation probe in
the near future.

Combination of optical coherence
tomography with near-infrared
fluorescence in a single catheter
The use of exogenous agents (e.g. indocyanine green) allows standa-
lone near-infrared fluorescence (NIRF) to detect plaque

Figure 6 (A) One-micron optical coherence tomography image
of a cadaver fibroatheromatous coronary plaque showing crystals
in the necrotic core, seen as highly reflecting linear structures (red
arrows). Inset (×3 magnification) demonstrates a macrophage
(yellow arrow) phagocytosing a crystal (cyan arrow). (B) Dual-
modality optical coherence tomography-near-infrared autofluor-
escence ex vivo imaging of a human coronary artery. Near-infrared
autofluorescence is visualized as a ring around the grey-scale optic-
al coherence tomography image, using a colour map from blue
(low signal) to white (high near-infrared autofluorescence signal).
An area of high optical coherence tomography signal attenuation
(asterisk) suggests the presence of a fibroatheroma with rupture
of the thin fibrous cap (red arrow), confirmed by the matching
H&E stained slide showing co-localization of the elevated near-
infrared autofluorescence signal with the necrotic core location
(C). (D) Intravascular ultrasound/intravascular photoacoustics im-
aging of human coronary artery ex vivo. Elevated intravascular
photoacoustic signal is observed from a lipid deposit at 3–6
o’clock position, corresponding to intimal lipid accumulation (E
and F ). (G) Co-registered intravascular ultrasound and multispec-
tral autofluorescence lifetime imaging data of a thick-capped fi-
broatheroma and corresponding CD68-stained section (H ).
Lowering of fluorescence lifetime measurements is observed
over the fibroatheroma cap rich in macrophages. Adapted with
permission from Wang et al.110 (B and C ); Wang et al.111 (D–F);
and Fatakdawala et al.112 (G, H ).
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inflammation and enzymatic activity in vivo.107 To overcome the lack
of structural information, an all-optical system for dual-modality
OCT and NIRF with the same size and characteristics as a clinical
OCT catheter was recently used for in vivo imaging of coronary-
sized vessels in animal models.108 Targeted molecular imaging in
human patients is expected to be feasible with NIRF in the near
future. Near-infrared autofluorescence (NIRAF) is an endogenous
signal that was elevated in human aortic and coronary cadaver
plaques with necrotic cores.109 A clinical OCT-NIRAF system
has been developed and enabled the acquisition of OCT images
synchronized with plaque autofluorescence ex vivo (Figure 6B
and C ).110

Combination of intravascular ultrasound
with intravascular photoacoustics
Intravascular photoacoustics (IVPA) can assess light absorption
properties of tissue, providing information about its chemical com-
position in a depth-resolved, cross-sectional image format. Recent
ex vivo studies suggested the ability to determine plaque compos-
ition (e.g. lipid) and, through the use of exogenous contrast agents,
inflammation (Figure 6D–F ).111 Further developments (e.g. increas-
ing IVPA imaging speed) are required for this hybrid modality to be
used clinically and exogenous agents (i.e. IVPA nanoparticles) for
human use are currently under evaluation.

Combination of intravascular ultrasound
with autofluorescence lifetime imaging in
a single catheter
Multispectral autofluorescence lifetime imaging (FLIm) allows the
assessment of compositional aspects of the artery wall (collagen, elas-
tin, cholesterol) with a penetration depth of �200 mm (Figure 6G
and H ).112 An IVUS–FLIm catheter was recently designed.112 The
strength of this technology to quantify multiple relevant plaque con-
stituents makes it a promising technology for plaque imaging, although
several issues need to be addressed for clinical use.

Conclusions and future
perspectives in intracoronary
imaging
Intracoronary imaging of native atherosclerosis can quantify in vivo
the global burden of CAD and identify individual lesions with pre-
sumed high-risk morphology. However, the high prevalence of
imaging-defined TCFAs (with a usually uncomplicated long-term
course) inevitably raises the question how vulnerable plaque detec-
tion can shift the paradigm to guiding patient management. Current-
ly, more evidence is needed to assess whether the information
obtained by existing as well as emerging IC imaging adds incremen-
tally and cost-effectively to clinical and non-invasively derived vari-
ables for improvement of clinical outcomes. Because no single
modality is likely to acquire the entire spectrum of processes that
contribute to adverse coronary events, we believe that the greatest
promise for attaining sufficient predictive ability to justify pre-
emptive coronary interventions in asymptomatic lesions lies with

the development of multimodality imaging technologies. In the
next 3 years we expect the results of two studies [PROSPECT II
(NCT02171065) and Lipid Rich Plaque (NCT02033694)] currently
evaluating a strategy of prophylactic interventions in high-risk pla-
ques. Within the same timeframe we foresee that in-depth morpho-
logic plaque characterization using advanced and hybrid modalities
(IVUS-OCT, OCT-NIRS, mOCT) will be feasible in human patients,
and the clinical relevance of the expected imaging insights will be
tested with regard to prognostication and possibly patient
management.

Regarding interventional procedures, IVUS currently assumes class
IIa and OCT a class IIb indication to optimize stent implantation in se-
lected patients; real-life penetration ranges from 5 to 10% in Europe to
.70% in Japan.66,113 Previous randomized trials established the ability
of IVUS to improve procedural results but failed to demonstrate sig-
nificant improvement of clinical outcomes, whereas a recent landmark
trial was able to show the superiorty of IVUS- over angiography-
duided PCI for reduction of one-year target-lesion revascularization.74

Due to the ease of use and interpretation of stent-related findings, we
believe that OCT is likely to be the favourable technique in future
trials. Until recent favorable evidence74 is corroborated by subsequent
trials and likely integrated into official recommendations, IC imaging
will be indicated to facilitate decision-making in patients with unclear
angiographic findings, guide-selected interventions and optimize the fi-
nal PCI result particularly with left main or complex bifurcation lesions,
BRS implantation and possibly high-risk ACS patients (Table 2). Des-
pite the increasing appreciation of the incremental value of IC imaging
over angiography for PCI optimization, the Achilles heel of catheter-
based imaging currently is that the relevance of imaging findings
when left uncorrected is not always clearly defined; therefore, criteria
for corrective measures remain in part subjective and are left to the
discretion of the individual operator. Future studies need to focus
on determining specific criteria (e.g. thresholds of malapposition dis-
tance or dissection length) with proven efficacy to improve procedural
and longer-term clinical PCI outcomes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Summary of clinical scenarios where the use
of intracoronary imaging is more likely to be useful

Diagnostic evaluation
† Detection of stent-related mechanical problems60

† Assessment of mechanisms of stent failure60

† Unclear angiographic findings
† Left main stenoses60

† Complex bifurcation lesions

PCI guidance and optimization in selected patients60

† Unprotected left main lesions60

† High-risk acute coronary syndromes
† Insufficient angiographic image acquisition (e.g. obesity, extreme

angulations etc.)
† Implantation of bioresorbable scaffolds

Indications are supported by current guidelines when applicable, or otherwise
reflect the authors’ views in the absence of sufficient evidence to support definitive
recommendations.
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