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Summary

In the present paper, we describe new robust methods of estimating cell shape and
orientation in 3D from sections. The descriptors of 3D cell shape and orientation
are based on volume tensors which are used to construct an ellipsoid, the Miles
ellipsoid, approximating the average cell shape and orientation in 3D. The estimators
of volume tensors are based on observations in several optical planes through sampled
cells. This type of geometric sampling design is known as the optical rotator. The
statistical behaviour of the estimator of the Miles ellipsoid is studied under a flexible
model for 3D cell shape and orientation. In a simulation study, the lengths of the
axes of the Miles ellipsoid can be estimated with CVs of about 2% if 100 cells are
sampled. Finally, we illustrate the use of the developed methods in an example,
involving neurons in the medial prefrontal cortex of rat.

1 Introduction

Robust methods for estimating cell shape and orientation are a prerequisite for the
detailed analysis of the architecture of biological tissue. As shown recently in [12],
volume tensors provide a concise set of descriptors of cell shape and orientation in
3D as well as cell size and position. These tensors can, in contrast to scalar shape
measures, describe anisotropic structures, e.g. cells being elongated in a specific
direction in 3D.

The volume tensor of rank 0 is simply the volume of the cell, while a normalized
version of the volume tensor of rank 1 is the centre of gravity. By combining the
volume tensors of rank 0, 1 and 2, an ellipsoidal approximation to the cell can be
constructed that summarizes its shape and orientation in 3D, see [12].

When studying cell populations by microscopy, an extra challenge is that cells
might not be observable directly, but only via sections. An important contribution in
[12] is the development of estimators of volume tensors that combine observations in
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several optical planes through sampled cells, but avoid observations in the peripheral
parts of the cells. This type of geometric sampling design, called the optical rotator,
was already introduced in [10] for estimation of cell volume and surface area. The
estimators developed in [12] are local stereological estimators, since measurements
on a sampled cell are relative to a reference point of the cell, typically the nucleus
of the cell. See [1] for a general introduction to stereology and [6] for details on local
stereology.

In the simpler situation where the spatial structure under study can be observed
directly and not only via sections, volume tensors, or more generally Minkowski
tensors, have already been used succesfully in material science as shape descriptors
([3], [4], [8], [9]) and also to some extent in the biosciences ([2]). In [11], shape and
orientation of 2D sections of neurons are analyzed, without relating the results to
the analogous quantities in 3D.

The principal purpose of this paper is to describe the robust estimation of volume
tensors from optical microscopy images, making these methods available to scientists
working in microscopy. For cell populations, the 3D shape and orientation of the
typical cell will be described by the so-called Miles ellipsoid ([12]) which can be
estimated from the volume tensors of a sample of cells. (The Miles ellipsoid is named
after Roger Miles who was amongst the first to introduce geometric sampling theory
in stereology.) If all cells have the same shape and orientation, then the Miles ellipsoid
can be regarded as an ellipsoidal approximation to such a cell. In the more general
situation where cells have varying shape and orientation, the Miles ellipsoid contains
information about the average cell shape and orientation.

As a new contribution in the present paper, we study the statistical behaviour
of the estimator of the Miles ellipsoid under a flexible model for 3D cell shape
and orientation. The simulation study shows that the estimator is well-behaved. In
particular, the lengths of the axes of the Miles ellipsoid can be estimated with CVs
of about 2% if 100 cells are sampled. Finally, we illustrate the use of the developed
methods in an example, involving neurons in the medial prefrontal cortex of rat.

In the remaining part of the paper, we will refer to ‘particles’ instead of ‘cells’,
to emphasize that the methods are generally applicable. The paper is organized as
follows. In Section 2, volume tensors are presented. Section 3 shows how the volume
tensors can be estimated, using the optical rotator design. In Section 4, inference for
particle populations is discussed, using a design-based or a model-based approach,
and the example is presented in Section 5. Perspectives are discussed in Section 6,
while some derivations are deferred to an Appendix.

2 Volume tensors

Let K be a particle (compact subset of R3). We can associate to K a collection of
volume tensors. We will focus on the volume tensors of rank 0, 1 and 2.

The volume tensor T0(K) of rank 0 is simply the volume v(K) of K while a
normalized version of the volume tensor T1(K) of rank 1 is the centre of gravity
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of K. More specifically, the volume tensor of rank 1 is the point in R3 defined by

T1(K) =

∫

K

x dx.

Here, x = (x1, x2, x3) and the integration is to be understood coordinate-wise. The
ith coordinate of T1(K) is thus

T1(K)i =

∫

K

xi dx1 dx2 dx3,

i = 1, 2, 3. The centre of gravity of K is c(K) = T1(K)/T0(K).
Information about the shape and orientation of K can be obtained by combining

T0(K) and T1(K) with the volume tensor T2(K) of rank 2 which is the following
3× 3 matrix

T2(K) =
1

2

∫

K

x2 dx.

Here, x2 is the symmetric tensor of rank 2 induced by x, i.e. the 3 × 3 matrix
with entries (x2)i,j = xixj, i, j = 1, 2, 3. Again, the integration is to be understood
coordinate-wise such that the (i, j)th entry of T2(K) is

T2(K)i,j =
1

2

∫

K

xixj dx1 dx2 dx3,

i, j = 1, 2, 3.
The volume tensors T0(K), T1(K) and T2(K) can be used to construct an ellip-

soidal approximation toK of the form c(K)+e(K), where e(K) is a centred ellipsoid
with the same volume as K, which captures shape and orientation properties of K,
see Figure 1. If K is actually an ellipsoid, then K = c(K) + e(K).

Figure 1: 2D illustration of the ellipsoidal approximation to a particle K. Here, c(K) is
the centre of gravity and e(K) is a centred ellipsoid, approximating K − c(K). If K is an
ellipsoid, K = c(K) + e(K).

The ellipsoid e(K) depends on the volume of K and the volume tensor of rank 2
of K − c(K)

T2(K − c(K)) = T2(K)− T1(K)2

2T0(K)
.

Let
T2(K − c(K)) = BΛBT
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be the spectral decomposition of T2(K−c(K)) where B is an orthogonal matrix and
Λ is a diagonal matrix with diagonal elements λi, i = 1, 2, 3. (Since T2 is positive
semi-definite, λi ≥ 0.) Then, the directions of the semi-axes of e(K) are the columns
of B and the lengths of the semi-axes of e(K) are proportional to

√
λi, i = 1, 2, 3.

The size of e(K) is determined by the requirement that K and e(K) have the same
volume.

3 Estimation using the optical rotator

The volume tensors of K may be estimated unbiasedly using an optical rotator
design, see [10, 12]. An optical rotator is an optical slice of thickness 2t, say, centred
at a reference point of the particle, taken here to be the origin O, see Figure 2.
The slice is uniformly rotated around a fixed axis passing through the reference
point O in the midplane. In the literature, see e.g. [10], the axis is called the vertical
axis (VA), although the axis need not be vertical. Accordingly, the optical slice is
called a vertical optical rotator. The slice is subsampled by a systematic set of optical
planes parallel to the slice and the planar profiles are subsequently subsampled by
line grids placed alternatingly parallel and perpendicular to VA, see Figure 2.

Figure 2: (Upper) The particle K is sectioned by an optical vertical random slice of
thickness 2t, obtained by a uniform rotation around the vertical axis VA passing through
the reference point O in the midplane (dark plane). The slice is subsampled by a systematic
set (1, 2, 3) of optical planes parallel to the slice. (Lower) In the planes with known distance
z to O, the planar profiles are subsampled, using line grids placed alternatingly parallel
and perpendicular to VA. The coordinates (x, y, z) of the intersection points P (indicated
by •) between the boundary of K and each line is recorded. In the illustration, the vertical
axis (stippled) passing through the projection of O onto the planes is also shown.

Now, let P be the notation used for an intersection point between the boundary
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of K and a line within a plane in the optical slice through K. Let the intersection
between K and such a line consist of a collection of line segments [Pk−, Pk+]. Then,
the volume tensors of rank 0, 1 and 2 can be estimated unbiasedly as

T̃0(K) = a
∑

k

[g0(Pk+)− g0(Pk−)], (3.1)

T̃1(K) = a
∑

k

[g1(Pk+)− g1(Pk−)], (3.2)

T̃2(K) = a
∑

k

[g2(Pk+)− g2(Pk−)], (3.3)

see the Appendix and [12]. Here, a is the area associated with one line, i.e. the prod-
uct of the distance between neighbour planes and the distance between neighbour
lines within a plane. Below, we give the g-functions for a point P with coordinates
(x, y, z) in the coordinate system where the y-axis is the ‘vertical axis’, the x-axis
is parallel to the slice and the z-axis is perpendicular to the slice. More details are
given in the Appendix.

Lines parallel to the vertical axis. The g-functions depend here on the function F1,1

which is the distribution function of the beta-distribution with parameters α = β =
1/2. More specifically,

F1,1(u) =





0 if u < 0,
2
π

arcsin(
√
u) if 0 ≤ u ≤ 1,

1 if u > 1.

We have

g0(x, y, z) = F1,1

(
t2

x2 + z2

)−1
y, (3.4)

g1(x, y, z) = F1,1

(
t2

x2 + z2

)−1
(xy, 1

2
y2, yz), (3.5)

g2(x, y, z) =
1

2
F1,1

(
t2

x2 + z2

)−1


yx2 1

2
y2x xyz

1
2
y2x 1

3
y3 1

2
y2z

xyz 1
2
y2z yz2


 . (3.6)

Lines perpendicular to the vertical axis. In this case, the g-functions depend on a
function of two variables

fs(x, z) =

∫ x

0

usF1,1

(
t2

u2 + z2

)−1
du,

where the index s may take the values s = 0, 1, 2. This function cannot be integrated
explicitly, but numerical integration can be used. We have

g0(x, y, z) = f0(x, z), (3.7)
g1(x, y, z) = (f1(x, z), f0(x, z)y, f0(x, z)z), (3.8)

g2(x, y, z) =
1

2



f2(x, z) f1(x, z)y f1(x, z)z
f1(x, z)y f0(x, z)y

2 f0(x, z)yz
f1(x, z)z f0(x, z)yz f0(x, z)z

2


 . (3.9)
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Note that the estimators of the volume obtained by using the g0-functions already
appeared in [10], but with a different notation. Thus, the formulae for the case of
lines parallel to the vertical axis, appearing in [10, (4a), (4b)], are obtained by
replacing y in (3.4) by d1 and x2 + z2 by d22, while the formulae for the case of lines
perpendicular to the vertical axis, appearing in [10, (5a), (5b), (5c)], are obtained
by replacing x in (3.7) by d1.

4 Inference for particle populations

4.1 Design-based approach

4.1.1 The displacement vector c̄ and the Miles ellipsoid ē

Let the particle population consist of N particles K1, . . . , KN . We assume that we
can associate a reference point x(K) ∈ K to each particle K. The reference point
x(K) will be used as the origin of K. We let

T̄k =
1

N

N∑

i=1

Tk(Ki − x(Ki)), k = 0, 1, 2,

be the mean particle volume tensor of rank k, where each particle Ki enters with its
own reference point x(Ki) as origin. For k = 0, we get the mean particle volume v̄ =
T̄0 while the vector c̄ = T̄1/T̄0, called the displacement vector, contains information
about the difference between the centre of gravity and the reference point for a
typical particle, see Figure 3.

Likewise, we can construct an approximating ellipsoid c̄ + ē that contains in-
formation about particle shape and orientation of the typical particle. Here, ē is a
centred ellipsoid that can be constructed from T̄0, T̄1 and T̄2, using exactly the same
procedure as the one used for constructing e(K) from T0(K), T1(K) and T2(K). The
ellipsoid ē is called the Miles ellipsoid. If all particles Ki are translates of the same
particle K0, say, then ē = e(K0).

Interpretations of the Miles ellipsoid are also illustrated in Figure 3 where the four
rows show different situations: particles with (A) identical position of the reference
point relative to the centre of gravity, and identical shape and orientation, (B)
displacement vector equal to the origin, and identical shape and orientation, (C)
identical position of the reference point relative to the centre of gravity, identical
shape, but varying orientation, and (D) identical position of the reference point
relative to the centre of gravity, varying shape, but identical orientation.

4.1.2 Sampling of particles

In order to estimate the mean particle volume, the displacement vector and the
Miles ellipsoid, we need to collect a uniform random sample of particles where each
particle has the same probability of being sampled.

A well-established approach in microscopy is to cut the region of interest, con-
taining the particles, into m blocks, say, and from each of these blocks select a

6



Figure 3: Interpretation of the displacement vector c̄ and the Miles ellipsoid ē. The left
column shows elliptic particles with their centre of gravity indicated by an open circle
and their reference point by a closed circle. The middle column shows the displacement
vector c̄, i.e. the average vector pointing from the reference point to the centre of gravity.
The right column shows the Miles ellipse ē, i.e. the average shape and orientation of the
particles shown to the left.
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systematic stack of parallel vertical uniform random thick sections. Systematic ran-
dom sampling of particles is performed within each sampled thick section, using
optical disectors, see e.g. [1, Chapter 10 and 12] and references therein. A particle
is sampled if its reference point appears within the quadratic counting frame of the
disector. Measurements on each sampled particle are performed, using an optical
rotator, as described in Section 3.

Since the displacement vector and the Miles ellipsoid must be specified in a
specific coordinate system, it is important to keep track of the sampling such that
the local coordinate system centred at the reference point of a sampled particle
can be translated into the same coordinate system for all sampled particles. This
requirement may be relaxed if the particles can be modelled by a random particle
process obeying certain invariance properties, see Section 4.2 below on the model-
based approach. A procedure for keeping track of local coordinate systems is sketched
in Figure 4.

Figure 4: (Upper) The cylinder containing the particles are cut into three blocks (1, 2, 3).
Their relative position is indicated by the stippled vertical line. (Lower) A systematic stack
of parallel vertical uniform random thick sections is cut within each block. The sections are
all parallel to a vertical plane rotated an angle θ where θ = 20o, 80o, 140o for blocks 1, 2,
3, respectively. The first angle has been chosen uniform randomly in the interval [0o, 60o)
and the subsequent angles are then chosen systematically.

4.1.3 Estimation of v̄, c̄ and ē

Let S ⊂ {1, . . . , N} be the random sample of particles of size n, say. Then,

T̂k =
1

n

∑

i∈S
T̃k(Ki − x(Ki))

is a ratio-unbiased estimator of the mean particle volume tensor of rank k, T̄k. The
mean particle volume can then be estimated by v̂ = T̂0 and the displacement vector
by ĉ = T̂1/T̂0. Finally, an estimator ê of the Miles ellipsoid can be constructed from
T̂0, T̂1 and T̂2, using exactly the same procedure as the one used in Section 2 for
constructing e(K) from T0(K), T1(K) and T2(K).

When applying these estimators in a concrete situation, an important question
is how many particles need to be sampled in order to obtain a given precision of the
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estimators. The answer to this question depends of course on the distribution of the
particles in the containing space.

In order to get some insight into this problem, a simulation study was conducted
where all particles were translates of the same particleK0 which was an ellipsoid with
axes parallel to the coordinate axes and lengths of semi-axes equal to a = 8, b = 4,
c = 3. The coordinates of the displacement vector were (−1.7, 1.7, 1.0). The optical
rotator was designed so that the distance between planes and lines, respectively,
imitated the ones used in the example discussed in Section 5.

Table 1 shows the mean and CV of the estimated semi-axes lengths of the Miles
ellipsoid, based on measurements in optical rotators through n = 5, 10, 20, 50 sam-
pled particles. A total of 100000 independent optical rotators were simulated so the
number of simulations of measurements from n particles was 100000/n. Already for
n = 10 particles, the biases are negligable. The CVs are less than 10% if at least 20
particles are sampled.

n 5 10 20 50

a 7.815 (0.181) 7.903 (0.125) 7.951 (0.087) 7.981 (0.054)
b 4.074 (0.057) 4.034 (0.042) 4.016 (0.031) 4.006 (0.020)
c 2.985 (0.055) 2.994 (0.036) 2.997 (0.025) 2.998 (0.015)

Table 1: Mean (and CV) of the estimated semi-axes lengths of the Miles ellipsoid, based
on measurements in optical rotators through n sampled particles. The true Miles ellipsoid
is parallel to the coordinate axes and has a = 8, b = 4, c = 3. The vertical axis was in this
coordinate system spanned by u = (0.224, 0.919, 0.324). The thickness of the slice used in
the optical rotators was 2t with t = 2.5, the slice was subsampled by three planes and the
distance between neighbour lines within a plane was 4.

These results should be handled with care. The particle population consists of
particles that all are translates of the same ellipsoid K0. Therefore, parallel optical
rotators through sampled particles contain the same information. Usually, in optical
microscopy, all optical rotators within a block are parallel. Accordingly, the number
of independent optical rotators is equal to the number of blocks. In such a sampling
situation, the results in Table 1 should refer to n blocks rather than n particles, as
confirmed by simulation (not shown here).

The simulation results may also be used to emphasize that the estimators (3.1)–
(3.3) of volume tensors for a single particle K are unbiased, but may have large
variances in real practical sampling designs. As a consequence, the resulting estima-
tors of the centre of gravity c(K) and the approximating ellipsoid e(K) for a single
particle K may have a non-negligible bias since the operations needed for calculating
these quantities from the volume tensors are non-linear.

This is indeed the case as confirmed by the simulation study. For each of the
100000 simulated optical rotators, estimates of the lengths of the semi-axes were
calculated from T̃0, T̃1 and T̃2 given at (3.1)-(3.3). They had mean and CV as
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follows
ā = 8.592, CV = 0.43,

b̄ = 4.841, CV = 0.20,

c̄ = 3.129, CV = 0.18.

In Figure 5, histograms of the estimates of a, b and c are shown.

Histogram of a
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Figure 5: Histograms of estimates of a, b and c based on observations from 100000 vertical
optical rotators. The true values are a = 8, b = 4 and c = 3. For more details, see text.

The estimators of the semi-axis lengths are biased by 7%, 21% and 4%, respec-
tively. This bias can be reduced by increasing the slice thickness t of the optical
rotator, but this is typically not feasible in optical microscopy due to overprojec-
tion. As a consequence, the simulation study indicates that in real practical sampling
designs it is not likely that we can get precise information about c(K) and e(K) for
a single particle K. This phenomenon is well-known from local stereological estima-
tion of particle volume. It is usually not possible to get a precise estimate of the
volume v(K) of a single particle K.

4.2 Model-based approach

In some applications, it is impossible to take a purely design-based approach because
the involved random sampling is impracticable, e.g. because the observer looses track
of the structure under the devised random sampling.

In such cases, the estimators developed above may still be used on a sample of
particles in an arbitrary 3D sampling window if the particles can be regarded as part
of a realization of a stationary particle process with a particle distribution, invariant
under rotation around a fixed axis L1. Then, it is not needed to uniformly rotate
optical rotators around this axis. The Miles ellipsoid is under this restricted isotropy
assumption an ellipsoid of revolution around L1, called the vertical axis. For more
details about the model-based approach, see [12, p. 824-827].

We have investigated by simulation the statistical properties of an estimator of
the Miles ellipsoid for the case of restricted isotropy. Under this invariance assump-
tion, it can be shown that

T̄2 −
(T̄1)

2

2T̄0
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has a spectral decomposition of the form BΛBT where B is known and the diagonal
elements λ2 and λ3 of Λ are equal, λ2 = λ3 = λ23, say. The parameters λ1 and λ23
can be estimated by minimizing the Frobenius norm

∥∥∥∥∥∥
T̂2 −

(T̂1)
2

2T̂0
−B



λ1 0 0
0 λ23 0
0 0 λ23


BT

∥∥∥∥∥∥

2

with respect to λ1 and λ23. The estimated Miles ellipsoid is an ellipsoid of revo-
lution around the vertical axis with volume T̂0, semi-axis length along the vertical
axis proportional to λ̂1/21 and semi-axis lengths perpendicular to the vertical axis
proportional to λ̂1/223 .

In the simulation study, we used the flexible stochastic particle model developed
in [12, p. 824-826]. The particles are random deformations of a fixed particle K0.
They are star-shaped with respect to their reference points and have radial functions
R relative to their reference points of the form

R(u) = M(u)ε(u), u ∈ S2. (4.1)

Here, R(u) is the distance from the reference point to the boundary of the particle
in direction u, represented as a point on the unit sphere S2. Furthermore, M is
the radial function of the fixed star-shaped set K0 and ε is a so-called Lévy-based
isotropic random field on S2, see [12, p. 825]. The parameters of the random field ε
are chosen such that the mean particle volume is equal to the volume of the fixed
particle K0.

Particles simulated from this model as deformations of a prolate ellipsoid K0

are shown in Figure 6. The ellipsoid is shown to the left, followed by five random
deformations. Since such a K0 is invariant under rotation around its longest axis,
the particle distribution is also invariant under rotation around this axis. It can be
shown that the Miles ellipsoid is equal to K0.

Figure 6: Particles simulated under the stochastic particle model (4.1) as random defor-
mations of a prolate ellipsoid with longest axis in direction (0.987,−0.162, 0) and semi-axis
lengths 5.866 and 4.968, respectively. The displacement vector is (−0.111,−0.224, 0.069).
The ellipsoid is shown to the left, followed by five random deformations.

In Table 2, the mean and CV of the semi-axis lengths of the estimated Miles
ellipsoid, determined from estimated mean volume tensors T̂0, T̂1 and T̂2 based on
n = 10, 20, 50, 100 particles in 5000 simulations, are shown. A CV of about 2% is
obtained when 100 particles are sampled. Note that since the particle distribution
is invariant under rotation around the vertical axis, the total number of sampled
particles is the determining factor for the precision of the estimates. However, it is
important to estimate the Miles ellipsoid under the restricted isotropy assumption.
If it is attempted to estimate a general ellipsoid, using optical rotators with as few
as 2 rotation angles, the resulting estimator is not well-behaved.
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n 10 20 50 100

a 5.882 (0.083) 5.878 (0.060) 5.871 (0.039) 5.870 (0.028)
b = c 4.956 (0.066) 4.958 (0.048) 4.965 (0.031) 4.966 (0.022)

Table 2: Mean (and CV) of the semi-axis lengths of the estimated Miles ellipsoid, de-
termined from estimated mean volume tensors T̂0, T̂1 and T̂2 based on n simulated par-
ticles. The true Miles ellipsoid is a prolate ellipsoid with semi-axis lengths a = 5.866,
b = c = 4.968. Estimation is done under the assumption of restricted isotropy minimizing
the Frobenius matrix norm.

5 Example

In this example, we illustrate the developed methods, using samples of neurons from
layer III of the medial prefrontal cortex (mPFC).

Volume tensor estimation was performed in two mature rats. For each rat, a tissue
block containing the mPFC region was embedded in glycol methacrylate (GMA) and
cut coronally into parallel 140 µm thick plastic sections. The thick sections were
stained with thionin, using the following procedure: first the sections were stained
free floating in 10% thionin for 60 min to obtain uniform staining through the whole
section, then sections were immersed in distilled water (10 min), thionin (10 min),
96% alcohol (3 min), 99% alcohol (10 min), xylene (15 min) and finally mounted on
glass slides and covered with 110 µm thick coverslips.

Two thick sections were selected systematic uniform randomly for further analy-
sis. Each section was analyzed with a systematic set of disectors, resulting in about
100 sampled neurons in each section. The nucleolus of a neuron was used as reference
point in the sampling. Figure 7 illustrates the collection of measurements for one
sampled neuron. The direction of the vertical axis perpendicular to the surface of
the mPFC region is marked as a green line through the nucleolus, see Figure 7a.

Figure 7: (a) shows the focal plane through the reference point (nucleolus) of a sampled
neuron. The reference point is the + in the middle. The green line passing through the
reference point is parallel to the vertical axis. The two extreme +’s on this green line
indicate the extent of the neuron in this direction. (b)–(d) show the subsampling of the
neuron with three systematic planes with distance 1.67 µm between neighbour planes. The
distance between pairs of test lines within a plane is 5 µm. The intersection points between
the boundary of a neuron and the test lines are indicated by +. The length of the scale
bar to the right is 5 µm.
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The data have been analyzed under the assumption that the neurons in the
mPFC region can be regarded as part of a stationary particle process and the dis-
tribution of the neurons is invariant under rotations around an axis perpendicular
to the surface of the mPFC region. In Table 3, we show for each rat and section
the estimated mean particle volume v̂, the length ‖ĉ‖ of the estimated displacement
vector and the lengths of the semi-axes of the estimated Miles ellipsoid ê. Recall
that, because of the restricted isotropy assumption, ê is an ellipsoid of revolution
around the vertical axis.

Note that the displacement is rather small compared to the size of the neurons,
indicating that the nucleolus of a neuron is centrally positioned within the neuron.
Note also that the estimated ellipsoids are elongated in the direction of the vertical
axis. As explained in Section 4, the volume of the estimated Miles ellipsoid is equal
to the estimated mean particle volume.

The similarity of the estimates obtained on the two sections in a rat gives reason
to believe that the assumption of restricted isotropy is reasonable, at least approxi-
mately. The hypothesis of isotropy, implying a spherical Miles ellipsoid, was rejected
at level 5% by the non-parametric test developed in [12, Section 4.5]

rat 1 rat 2

parameter section 1 section 2 section 1 section 2

volume (µm3) 473 477 815 710
displacement (µm) 0.19 0.22 0.51 0.22
parallel semi-axis (µm) 5.24 5.17 6.16 5.61
perpendicular semi-axes (µm) 4.64 4.69 5.62 5.50

Table 3: For each rat and section, the table shows the estimated mean particle volume,
the length of the estimated displacement vector and the lengths of the semi-axes of the
estimated Miles ellipsoid. For more details, see text.

6 Discussion

The developed methods are sensitive to tissue shrinkage. For light microscopy, we
usually have four different embedding media: plastic and paraffin to be cut on a
microtome, freezing to be cut on a cryostat and agar to be cut on a vibratome. Each
of these media have different physical characteristics and will therefore also have dif-
ferent properties with regard to tissue deformation ([5]), which may affect the tensor
estimation. Plastic (derivatives of methacrylate) sections, as used in the example in
Section 5, are typically subjected to minor tissue deformation in the range of 0–10%
shrinkage on a volume basis. This may therefore only have little effect on the tensor
estimation, but it is important to keep track of the tissue deformation during infiltra-
tion/embedding, cutting and staining. Paraffin sections typically shrink a dramatic
50–60% on a volume basis and to a different degree in the x-, y- and z-axis. It is
therefore challenging to try to estimate tensors if such an embedding media is used.
Both frozen and vibratome (agar embedding) sections are hardly deformed in the x-
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and y-axis but can easily be subjected to 50% shrinkage in the z-axis. If the blocks
have been cut on a calibrated cryostat/vibratome and the local section thickness
measured, it is possible to correct for the relatively large z-axis tissue shrinkage.

The data for tensor estimation are collected using optical rotators. In contrast
to e.g. the spatial rotator design ([7]), this design only uses measurements from the
central part of the cells. This is an advantage because in optical microscopy it is
often difficult to observe the peripheral parts of the cell due to overprojection effects.

In the application, it was assumed that the distribution of the neurons in the
mPFC region is invariant under rotation around an axis perpendicular to the surface
of the mPFC region. This assumption made it possible to use the coronal sections
in the analysis. However, the data could not give us any information, concerning the
orientation of the neurons relative to this axis.

The particle models used in the two simulation studies were qualitatively different
with the second model having a similar appearance as the data example considered
in Section 5. In the first case, all particles were translates of the same particle.
As a consequence, parallel optical rotators through sampled particles contain the
same information. Accordingly, it was important to generate a sufficient number
of independently rotated vertical slices. Particles generated by the second particle
model have a distribution that is invariant under rotation around the vertical axis
so here it is not needed to uniformly rotate the optical slices around the vertical
axis. A precise estimate of the Miles ellipsoid was obtained based on samples of
100 particles indicating that this number of particles should be sufficient to obtain
reliable estimates also in the data example.
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Appendix

In this Appendix, we indicate how the g-functions (3.4)-(3.9) can be derived.
In [12], it is shown that a design-unbiased estimator of Tk(K) is

T̃k(K) =
1

k!

∫

K∩S2

xkF1,1

(
t2

d(x, L1)2

)−1
dx,

k = 0, 1, 2, where S2 is the optical rotator slice, L1 is the vertical axis, chosen to
pass through O, and d(x, L1) is the distance between x and L1.

The slice S2 is now subsampled with a uniformly translated systematic grid of
planes, parallel to the central plane L2 of the slice and with distance ∆1, say, between
neighbour planes. Each such plane is of the form L2 + δv, where δ ∈ [−t, t] and v is
a unit vector perpendicular to L2. The contribution to T̃k(K) from each such plane
is

∆1

k!

∫

K∩(L2+δv)

xkF1,1

(
t2

d(x, L1)2

)−1
dx.

These integrals are discretized by a uniformly translated systematic grid of lines in
L2 + δv with distance ∆2, say, between neighbour lines.
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Let us first consider the case where the lines are parallel to L1. Such a line is
of the form L1 + δv + τw where w ∈ L2 is a unit vector perpendicular to L1. The
contribution from such a line to T̃k(K) becomes

∆1∆2

k!

∫

K∩(L1+δv+τw)

xkF1,1

(
t2

d(x, L1)2

)−1
dx.

In [12], this integral has been determined explicitly forK∩(L1+δv+τw) an arbitrary
line segment [b−, b+].

In the other case, the lines in L2 + δv are perpendicular to L1 and of the form
span{w}+ δv + τu. The contribution to T̃k(K) from such a line is

∆1∆2

k!

∫

K∩(span{w}+δv+τu)
xkF1,1

(
t2

d(x, L1)2

)−1
dx.

In the case where K ∩ (span{w} + δv + τu) is a line segment, this integral is also
simplified in [12].

The g-functions (3.4)-(3.9) can now be derived by using these results for w =
(1, 0, 0), u = (0, 1, 0) and v = (0, 0, 1). Note that a = ∆1∆2.
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