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Abstract 

 

A series of N6-bicyclic and N6-(2-hydroxy)cyclopentyl derivatives of adenosine were synthesized as novel 

A1R agonists and their A1R/A2R selectivity assessed using a simple yeast screening platform. We observed 

that the most selective, high potency ligands were achieved through N6-adamantyl substitution in 

combination with 5’-N-ethylcarboxamido or 5’-hydroxymethyl groups. In addition, we determined that 5’-

(2-fluoro)thiophenyl derivatives all failed to generate a signaling response despite showing an interaction 

with the A1R.  Some selected compounds were also tested on A1R and A3R in mammalian cells revealing 

that four of them are entirely A1R-selective agonists. By using in silico homology modeling and ligand 

docking, we provide insight into their mechanisms of recognition and activation of the A1R. We believe 

that given the broad tissue distribution, but contrasting signaling profiles, of adenosine receptor subtypes 

these compounds might have therapeutic potential. 
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Introduction 

Adenosine receptors (ARs) belong to the family of G protein-coupled receptors (GPCRs) and exist 

as four different subtypes, A1, A2A, A2B and A3. All subtypes respond to the purinergic nucleoside adenosine, 

but they have a wide and varying tissue distribution. Many ARs have been linked to cardiovascular, 

respiratory and inflammatory disorders.1 Furthermore, in the central nervous system they have been 

implicated in acute pathological conditions such as epilepsy, hypoxia and ischemia,2,3 and chronic 

neurodegenerative disorders, such as Parkinson’s, Alzheimer’s and Huntington’s diseases.4 In human cells, 

the A1R and A3R predominantly couple to the Gαi family of G proteins, inhibiting the production of cAMP, 

while the A2R subtypes couple to the Gαs subunit, stimulating adenylate cyclase to elevate cAMP levels. 

Given their common ligands, diametrically opposed effects and overlapping tissue distribution the ARs 

have been the focus of extensive research to discover subtype selective ligands. However, limitations of 

mammalian systems can hinder the testing and development of these compounds. For instance, the A1R can 

signal through the Gαi1, Gαi3 and Gαo
5 but it is currently difficult to differentiate between these effectors in 

an in vivo mammalian cell-based assay. 

Most of the known AR agonists are based on the adenosine scaffold and receptor subtype selectivity 

can be achieved by substituting the purine ring of the nucleoside at positions C-2 and/or N6 with appropriate 

functional groups. For instance, substitution of the N6-position with bulky cycloalkyl- and bicycloalkyl 

groups has resulted in A1R-selective agonists.6-10 Introduction of a wide range of N6-substituents is 

conveniently achieved by nucleophilic aromatic substitution of the corresponding 6-chloro purine precursor 

with primary or secondary amines. The ribose moiety, in particular at the C-2’, C-3’ and C-5’ positions, 

have also been the subject of many modifications which can influence A1R affinity, selectivity and 

efficacy.8,11,12 5’-Carboxamido adenosine derivatives, such as the prototypical AR agonist 5’-N-

ethylcarboxamidoadenosine (NECA), among many other examples, are known to be potent activators. 

More bulky groups, such as substituted 5’-thioaryl and 5’-oxoaryl moieties have also been explored and 

these studies have provided novel A1R-selective and potent agonists.13,14 In light of this, we designed a 
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series of adenosine analogues that feature different cyclic and bicyclic substituents at the N6 of the purine 

ring and various functional groups at the C-5’ of the ribose in order to assess the effect of these 

modifications on AR activity and subtype selectivity. 

We15-20 and others5,21-23 have previously described the use of modified Saccharomyces cerevisiae 

strains containing chimeric (yeast-human) G protein alpha subunits to functionally couple heterologously 

expressed GPCRs. Specifically, the chimeric G proteins enable mammalian GPCRs to functionally couple 

to the yeast-mating pathway. This pathway includes a reporter (FUS1-lacZ) gene providing a quantitative 

assay for GPCR activation.16 The yeast platform provides a simple, affordable and robust assay with which 

to identify novel GPCR ligands and their interactions with a single effector.17,24,25 This system has also been 

established to study A1R, A2AR and A2BR in a number of G protein backgrounds,5,18,21-23 although evidence 

of functional couplings of the A3R has not been reported. 

In this study we exploit the yeast system to characterize novel synthetic adenosine derivatives for 

their agonist activity against the A1R, A2AR and A2BR. We explored subtype selectivity further at the A1R 

and A3R in mammalian CHO-K1 cells for the compounds that were active against the A1R in the yeast 

screen. Moreover, we use homology modeling and docking to gain insight into the binding of our agonists 

at the A1R. Our yeast-based screen and mammalian cell assays have identified novel adenosine nucleosides 

exhibiting interesting A1R selective profiles. Hence, they constitute valuable tool compounds for cellular 

studies and might have therapeutic potential. 

 

Results and Discussion 

Chemistry 

Known compounds 5,26 627 and 728 have previously been shown to be selective for the A1R with 

respect to their binding affinity. These analogues were prepared for assessment using our yeast-based assay. 

Bulky bicyclic groups have been highlighted as beneficial for A1R selectivity,7-10 so we also prepared novel 
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compound 9. Intermediate 2 was required for efficient generation of the analogues (Scheme 1). This was 

synthesized according to the procedure adopted by Kotra et al.,29 with minor experimental modifications. 

 

Scheme 1. Synthesis of Adenosine Derivativesɑ 

 

ɑ Reagents and conditions: (a) procedures according to reference 29; (b) R-NH2, Et3N or DIPEA, EtOH, 

reflux, 18 h to 5 days (for specific conditions and yields see Experimental Section); (c) K2CO3, MeOH, rt, 

3 h, 99%; (d) 4, Pd(OH)2, cyclohexene, ethanol, reflux, 18 h, 99%; (e) (1R,3r,5S)-9-methyl-9-

azabicyclo[3.3.1]nonan-3-amine, DIPEA, EtOH, reflux, 18 h, 54%; (f) K2CO3, MeOH, rt, 3 h, 99%. 

 

Aromatic substitution of the N6-chloro group with 1-adamantylamine or (1R,2R)-1-amino-2-

benzyloxycyclopentane was carried out in the presence of triethylamine or Hünig’s base. This resulted in 

partial deacetylation to give the monoacetylated products (3 and 4), which could be attributed to the use of 

excess base. The presence of the acetyl on the primary alcohol was confirmed using 1H NMR and was then 

removed using potassium carbonate in methanol to give 5 and 6 in quantitative yield. The choice of base 

did not appear to have an effect on the reaction. Attempts to directly remove the benzyl group from 6 using 

hydrogenolysis returned unreacted starting material. However, treatment of monoprotected 4 with 

Pearlman’s catalyst and cyclohexene afforded 7. Interestingly, aromatic substitution with (1R,3r,5S)-9-
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methyl-9-azabicyclo[3.3.1]nonan-3-amine (granatanamine) using less base did not result in deacetylation 

and afforded the expected product 8. Deprotection was again carried out with potassium carbonate and 

methanol. Granatanamine was prepared according to a procedure previously developed in our group.30 

Despite the widespread use of 5’-N-ethylcarboxamidoadenosine (NECA) as an A1R agonist we 

found that the analogous cyclopentyl (21) and adamantyl (16) congeners were novel compounds and to the 

best of our knowledge untested at the A1R. This is possibly a consequence of the non-selective nature of 

NECA at the AR subtypes.31 In this case intermediate 10 was required to allow generation of novel 

analogues (Scheme 2). 

 

Scheme 2. Synthesis of Novel NECA Derivativesɑ 

 

ɑ Reagents and conditions: (a) procedures according to reference 32; (b) R-NH2, Et3N or DIPEA, EtOH, 

reflux, 18 h to 5 days (for specific conditions and yields see Experimental Section); (c) acetic acid, water, 

80 °C, 18 h, 99%; (d) tert-butyl-9-azabicyclo[3.3.1]nonan-3-yl carbamate (22), DIPEA, EtOH, reflux, 18 
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h, 85%; (e) acetic acid, water, 80 °C, 18 h, 99%; (f) formic acid, formaldehyde (37% aq.), reflux, 18 h, 

63%; (g) 20, Pd(OH)2, cyclohexene, ethanol, reflux, 18 h, 99%. 

 

The amide building block 10 was prepared from 1 as previously reported by Middleton et al..32 

Displacement of the chloride in 10 with the appropriate amine in the presence of either Hünig’s base or 

triethylamine gave intermediates 11–15. This reaction proceeded with ease in refluxing ethanol overnight 

in the case of 13–15, however all 1-adamantyl analogues required one week at reflux to generate sufficient 

quantities of desired compounds. Interestingly, the 2-adamantylamine reaction was complete within one 

day. Acetonide deprotection was achieved by heating overnight in acetic acid and water to generate 16–20 

with quantitative yields observed. Removal of the benzyl protecting group from 20 with palladium 

hydroxide and cyclohexene to generate 21 proceeded in quantitative yield. We decided to prepare analogues 

24 and 25 with the alternative bicyclic architecture to allow us to probe the necessity for a secondary amine 

at the adenine N6 position. Chloride 10 was reacted with granatyl secondary amine 22, which was prepared 

according to a literature protocol.33 Like the adamantyl analogues, this reaction was very slow and required 

reflux for one week to generate sufficient quantities of product to give 23. Concomitant deprotection of the 

acetonide and Boc group occurred on treatment with acetic acid and water to give 24. The dimethylamine 

25 was then prepared using formic acid and formaldehyde. 

Given the prior studies on CVT-3619 (37) showing that it is a specific partial agonist at the A1R
14 

we prepared this compound for assessment using our yeast-based assay and planned to prepare new 

analogues with the 2-fluorothiophenol group at the C-5’ position of the ribose ring. In alignment with our 

strategy for adenosine and NECA analogues we required chloride 27, which would allow efficient 

generation of analogues with various cyclic groups at the N6 position of the adenine (Scheme 3). Primary 

chloride 27 was prepared from protected 26 using Appel conditions according to the previously reported 

procedure.34 Treatment with 2-fluorothiophenol and sodium hydride gave 28 in 48% yield and subsequent 

chlorination with our previously adopted conditions of thionyl chloride and DMF gave 29 in 88% yield. 
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Introduction of the cyclic component was accomplished by reacting with the appropriate primary amine in 

the presence of DIPEA or triethylamine to give 30–33. Again, preparation of the adamantyl analogue 

required one week at reflux to obtain the product in sufficient yield. Initial attempts to directly remove the 

benzyl protecting group from 32 with palladium hydroxide and cyclohexene to generate 37 were 

unsuccessful. However, 6-chloropurine 29 reacted readily with (1R,2R)-2-aminocyclopentanol to generate 

the desired product directly. Acetonide deprotection with acetic acid and water at reflux generated final 

compounds 34–37 in excellent yields. 

 

Scheme 3. Synthesis of CVT-3619 and New Derivativesɑ 

 

ɑ Reagents and conditions: (a) CCl4, PPh3, DMF, rt, 18 h, 53%; (b) 2-fluorothiophenol, NaH, DMF, 0 °C to 

rt, 3 h, then chloride 27, DMF, rt, 18 h, 48%; (c) SOCl2, DMF, DCM, 50 °C, 5 h, 88%; (d) R-NH2, Et3N or 

DIPEA, EtOH, reflux, 18 h to 3 days (for specific conditions and yields see Experimental Section); (e) 

acetic acid, water, 80 °C, 18 h, 99%. 
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Biological Activity 

We expressed all four AR subtypes, under the control of the constitutive GAPDH promoter, in a 

panel of transplant yeast strains engineered to contain chimeric Gα-subunits in which the 5 C-terminal 

amino acids of Gpa1p have been replaced with those mammalian Gαq, Gα12, Gαo, Gαi1/2, Gαi3, Gαz and Gαs. 

Efficient trafficking of the A1R, A2AR and A2BR to the cell surface in yeast cells was confirmed using 

modified receptors engineered to contain a GFP fluorophore at the C-terminus (Figure 1A). NECA is a non-

subtype selective AR agonist and was used to determine through which Gα-subunits each receptor signaled. 

Yeast cells were exposed to 100 µM NECA for 16 hours and reporter gene activity (as measured through 

β-galactosidase production) was determined (Figure 1B-D). 

 

 

Figure 1. NECA-activated yeast-mating pathway via specific AR/Gα protein chimeras. (A) A C-terminal 

GFP tag was engineered onto the A1R, A2AR and A2BR and expression at the plasma membrane was 

confirmed using fluorescence microscopy. Scale bar = 5 μm. (B-D) Yeast strains expressing the human (B) 
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A1R, (C) A2AR (D) A2BR were stimulated with 0 or 100 μM NECA for 16 h and assayed for the activation 

of the FUS1-lacZ reporter gene as previously described.15-17,19 β-galactosidase units (mU) are expressed as 

the ratio of o-nitrophenol product to cell density (determined colorimetrically; see Experimental Section). 

Data are the mean of 5 independent experiments ± SEM. Data were determined as significantly different 

from the non-ligand response using Student's t-test where *, p < 0.05, **, p < 0.01, ***, p < 0.001. 

 

Consistent with previous reports5,22 the A1R generated significant (p < 0.05) responses in strains expressing 

G protein chimeras corresponding to Gαo, Gαi1 and Gαi3 (Figure 1B). In addition, we also report for the first 

time, functional coupling of the A1R signaling through the GPA1/Gαz transplant. Signaling was not 

observed via GPA1/Gαq, GPA1/Gα12 or GPA1/Gαs or the unmodified Gpa1p (n ≥ 16 isolates screened for 

functionality). Further, we observed that the A2AR and A2BR (Figure 1C and 1D) signaled through both 

GPA1/Gαs and GPA1/Gαi1 but we failed to identify any functional coupling for the A3R in our panel of 

strains (Supplementary Figure S1). Moreover, we report that, the A2AR displayed significantly elevated 

levels of ligand-independent signaling which is consistent with previous observations in yeast.18 While we 

have observed that these GPCRs can couple to a number of different Gpa1p chimeras, we have chosen to 

focus on the ones that are widely reported to be the most physiologically relevant in mammalian cells. 

Consequently, the A1R-GPA1/Gαi1, A2AR-GPA1/Gαs and A2BR-GPA1/Gαs strains were chosen for further 

compound characterization. 

 

Subtype Selectivity of Adenosine Derivatives in Yeast. Having identified yeast strains that 

functionally express the A1R, A2AR and A2BR, we sought to validate their pharmacology in response to a 

range of agonists. Dose-response curves were determined for NECA, adenosine, 2-chloro-N6-

cyclopentyladenosine (CCPA) and CGS-21680 (Figure 2) using the yeast reporter assay. Sigmoidal dose-

response curves were observed allowing the maximum response (Emax) and potency (pEC50) to be 

determined (Table 1). NECA, adenosine and CCPA are full agonists at the A1R (Emax compared with NECA 

by one-way ANOVA, p > 0.05) but have differing potencies (Table 1). This generates a rank order of 
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potency for the ligands of CCPA > NECA > adenosine. CGS-21680 had a much lower potency than the 

other ligands (pEC50 = 3.2 ± 0.1) and failed to reach a maximal response. While the overall potency values 

are lower than observed in mammalian cells, the rank order of the ligands is conserved between yeast and 

mammalian systems.35 Application of the operational model of pharmacological agonism36 enabled 

calculation of the ligand binding affinity (pKA) and efficacy (τ) (Table 2). In comparison to NECA, both 

adenosine and CCPA have a greater pKA and a reduced τ. 

 

 

Figure 2. AR agonists display receptor subtype selectivity. Dose-response curves for various AR agonists 

were generated from yeast strains expressing (A) A1R, (B) A2AR and (C) A2BR following stimulation for 

16 h with (●) NECA, (○) adenosine, (■) CCPA or (□) CGS-21680. Activation of the reporter gene was 

calculated and is expressed as the percentage of the maximum response achieved when cells were 

stimulated with the reference agonist NECA. (D-F) Receptor selectivity was calculated as the change in log 

(τ/KA), relative to NECA, for the data in A-C. Data were determined as statistically different (**, p < 0.01, 

***, p < 0.001) from NECA, using a one-way ANOVA with Bonferroni's post-test. All data are mean of 5-

8 independent experiments ± SEM.  
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Table 1. Potency (pEC50) and Maximal Response (Emax) of Reference Compounds and Synthetic 

Adenosine Derivatives at A1R, A2AR and A2BR as measured in Yeasta 

 

Compd R1 R2 
A1R A2AR A2BR 

pEC50
b Emax

c pEC50
b Emax

c pEC50
b Emax

c 

NECA -CONHEt -NH2 6.0 ± 0.1 100 ± 2.4 6.47 ± 0.2 100 ± 2.0* 4.83 ± 0.1 100 ± 3.8 

Adenosine -CH2OH -NH2 5.6 ± 0.1* 91.4 ± 2.8 5.24 ± 0.8 65.9 ± 1.7** 4.29 ± 0.1 70.4 ± 2.9** 

CCPA - - 6.7 ± 0.1*** 80.9 ± 2.2 5.00 ± 0.2 74.7 ± 4.9 4.14 ± 0.1 30.6 ± 2.0*** 

CGS-21680 - - 3.2 ± 0.1*** 91.3 ± 14.1 4.70 ± 0.1* 121.7 ± 4.1 2.20 ± 0.6*** 59.1 ± 2.8*** 

5 -CH2OH 

 

4.8 ± 0.1*** 98.5 ± 4.1  N.R.d N.R. 

6 -CH2OH 

 

5.8 ± 0.1 89.8 ± 1.8 N.R. N.R. 

7 -CH2OH 

 

6.2 ± 0.1 83.7 ± 4.4 N.R. 

 

N.R. 

9 -CH2OH 

 

 N.D.e N.R. N.R. 

16 -CONHEt 

 

5.4 ± 0.0*** 104.4 ± 1.3 N.R. N.R. 

17 -CONHEt 

 

4.0 ± 0.1*** 100 ± 23.7 N.R. N.R. 

18 -CONHEt 

 

4.8 ± 0.0*** 107.7 ± 3.0 N.R. N.R. 

19 -CONHEt 

 

N.D. N.R. N.R. 

20 -CONHEt 

 

6.0 ± 0.1 99.3 ± 0.3 4.8 ± 0.3* 115.0 ± 13.0 3.9 ± 0.3 32.2 ± 11.4*** 

21 -CONHEt 

 

6.5 ± 0.1** 99.0 ± 2.8 5.24 ± 0.3 77.7 ± 4.6 3.48 ± 0.3* 49.2 ± 0.4*** 

24 -CONHEt 

 

N.R. N.R. N.R. 

25 -CONHEt 

 

N.R. N.R. N.R. 
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34 
  

N.R. N.D. N.R. 

35 
 

 

N.R. N.R. N.R. 

36 
  

N.R. N.R. N.R. 

37 
  

N.R. N.R. N.R. 

 

Values are the mean ± SEM from 5-8 independent repeats.  

aA1R and A2R receptors in GPA1/Gαi1 and GPA1/Gαs yeast transplants, respectively. 

bNegative logarithm of the agonist concentration required to induce a half-maximal response. 

cThe maximal response to a ligand expressed as a percentage of that obtained for NECA. 

dN.R., no response. 

eN.D., not determined. Full dose-response curve was not feasible. 

Statistical significance compared to NECA (*, p < 0.05, **, p < 0.01, ***, p < 0.001) was determined by 

one-way ANOVA with Dunnett’s post-test. 
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Table 2. Ligand Affinity (pKA) and Efficacy (log τ) of Reference Compounds and Synthetic Adenosine 

Derivatives at A1R, A2AR and A2BR expressed in Yeasta 

Compd 
A1R  A2AR  A2BR 

pKA
b

 log τc
  pKA

b
 log τc

  pKA
b

 log τc
 

NECA 4.4 ± 0.1 1.5 ± 0.1  5.9 ± 0.2 0.5 ± 0.1  4.2 ± 0.1 0.6 ± 0.1 

Adenosine 4.6 ± 0.2 0.9 ± 0.1  5.6 ± 0.2 0.0 ± 0.3  3.8 ± 0.1 0.3 ± 0.1 

CCPA 6.1 ± 0.1 0.6 ± 0.1  4.7 ± 0.3 -0.1 ± 0.1  4.4 ± 0.1 3.5 ± 0.1*** 

CGS-21680 2.1 ± 0.9* 1.1 ± 0.9  4.9 ± 0.1 -0.3 ± 0.0  3.4 ± 0.1 -0.2 ± 0.0 

5 3.0 ± 1.1 1.8 ± 1.1  N.R.d  N.R. 

6 4.9 ± 0.1 0.5 ± 0.1  N.R.  N.R. 

7 5.5 ± 0.1 0.7 ± 0.1  N.R.  N.R. 

9 N.R.  N.R.  N.R. 

16 4.2 ± 0.3 1.2 ± 0.3  N.R.  N.R. 

17 3.5 ± 0.1 1.0 ± 0.1  N.R.  N.R. 

18 2.4 ± 0.1* 2.4 ± 0.0  N.R.  N.R. 

19 N.R.  N.R.  N.R. 

20 4.3 ± 0.5 1.6 ± 0.5  3.9 ± 0.7** 0.5 ± 0.5  3.5 ± 0.6 0.1 ± 0.5 

21 4.8 ± 0.5 1.6 ± 0.5  4.6 ± 0.4 0.3 ± 0.1  4.2 ± 0.1 -0.2 ± 0.1 

24 N.R.  N.R.  N.R. 

25 N.R.  N.R.  N.R. 

34 N.R.  N.D.e  N.R. 

35 N.R.  N.R.  N.R. 

36 N.R.  N.R.  N.R. 

37 N.R.  N.R.  N.R. 

 

Values are the mean ± SEM from 5-8 independent repeats. 

aA1R and A2R in GPA1/Gαi1 and GPA1/Gαs yeast transplants, respectively.  

bNegative logarithm of the relative equilibrium disassociation constant for each compound generated 

through use of the operational model of agonism.36 

cThe coupling efficiency parameter (τ), generated by comparison to NECA. 

dN.R., no response. 

eN.D., not determined. Full dose-response curve was not feasible. 

Statistical significance compared to NECA (*, p < 0.05, **, p < 0.01, ***, p < 0.001) was determined by 

one-way ANOVA with Dunnett’s post-test. 
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We next sought to investigate the pharmacological properties of the A2AR expressed in our 

GPA1/Gαs expressing strains. Both CGS-21680 and NECA displayed strong agonism at the A2AR, while 

adenosine and CCPA showed weak partial agonism (Figure 2B). Further, all ligands assayed display weak 

potency at the A2BR, (rank ligand potencies, NECA > adenosine = CCPA >> CGS-21680) with CGS-21680 

failing to generate a maximal response at the ligand concentrations assayed. Thus, in our strains, CGS-

21680 would appear to be largely A2AR selective and this is consistent with mammalian cell affinity 

data.31,35 

We next sought to compare the selectivity/preference that ligands may possess for each of the ARs. 

Expression of the ARs in yeast generates a clean, robust assay, with no competing signaling machinery, so 

enabling the proportioning of receptor responses to individual signaling pathways. We have previously used 

the methods developed by Figuero et al.37 to quantify ligand bias for receptors expressed in yeast.19,20 Here 

we report the adaptation of the equimolar method of comparison37 to quantify a ligands selectivity for a 

given receptor (see Experimental Section for more details). Since NECA is a full agonist for all three ARs 

expressed in yeast, it can be used as a reference ligand. By calculating the change in log (τ/KA), for an 

agonist relative to NECA, for each AR subtype we have generated a quantitative means of comparing 

receptor selectivity for all our agonists (Figure 2D-F). Adenosine and CCPA are A1R-selective but also 

preferentially activate A2BR over A2AR. In contrast, CGS-21680 is A2R subtype-selective with an overall 

preference for the A2AR. 

Bulkier N6-adamantyl agonists have previously been shown to be A1R selective with respect to 

binding affinity at rat receptors.26 Therefore we extended our studies to include novel AR agonists 

containing an adamantyl group. 5, 16-18 were derived from adenosine and NECA respectively (Schemes 

1-2). These compounds appeared to be A1R selective full agonists compared with NECA, with no 

significant response detected at the A2AR and A2BR (p > 0.05) (Figure 3A-C). However, 5, 16-18 displayed 

reduced potency to the A1R compared to their precursors and cyclopentyl variants (Table 1). Furthermore, 

pKA values suggested this might be a consequence of reduced ligand binding affinities (Table 2). 
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A1R agonists derived from adenosine with substituted cyclopentyl groups at the adenine N6 position 

have been reported previously (e.g. GR79236, N-[(1S,2S)-(2-hydroxy)cyclopentyl]adenosine).38 We found 

that N6-cyclopentyl derivatives 6, 7, 20 and 21 mainly signal through the A1R, but for the latter two 

compounds minimal responses were also detected at A2AR and A2BR (Table 1, Figure 4).  

 

 

 

Figure 3. N6-adamantyl derivatives selectivity at the human A1R. Yeast strains expressing (A) A1R, (B) 

A2AR and (C) A2BR were stimulated with N6-adamantyl derivatives (▼) 5, () 16, () 17, (●) 18 and () 

34 for 16 h and reporter gene activity determined. Data are expressed as the percentage of the maximum 

response achieved when cells were stimulated with the reference agonist NECA (grey dotted line). All data 

are mean of 5-8 independent experiments ± SEM. 

 

Adenosine derivative 6 was highly A1R selective but failed to produce a maximal signal. In a patent in 

201127 6 was described as an A1R-selective agonist for reducing elevated intraocular pressure in the 

treatment of glaucoma or ocular hypertension and this compound was assessed for selectivity with respect 

to binding affinity (Ki) at human subtypes A1, A2A and A3.
27 In accordance with our results it was shown, 

using a radioligand displacement assay, that 6 binds with greater than 250-fold affinity at the A1 over the 

A2A subtype. In the yeast-based assays the novel NECA analogues 20 and 21 have equal or higher potency, 

respectively, than the parent compound NECA at the A1R. However, in contrast to the N6-cyclopentyl 

adenosine derivatives 6 and 7, N6-cyclopentyl NECA derivatives 20 and 21 are non-selective and signal 
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through the A1R, A2AR and A2BR (Table 1). Calculation of selectivity factors confirm that 21 preferentially 

signals A1R > A2BR > A2AR. 

As described above, the N6-adamantyl derivatives only induced a detectable response in A1R-

expressing yeast strains, suggesting that bulky N6-substituents promote total A1R/A2R selectivity. To 

explore this further we created a series of ligands containing an N6-azabicyclo (granatane) moiety. 

Compounds 9, 19, 24 and 25 were screened for activity; however, no significant response was detected for 

these compounds via the A1R, A2AR or A2BR (p > 0.05, one-way ANOVA). Some minimal response was 

observed for 9 and 19 at very high concentration (100 μM) but it was not feasible to generate full dose-

response curves (Table 1). 

 

 

 

 

Figure 4. N6-(2-Hydroxy)cyclopentyl derivatives of both adenosine and NECA display bias towards the A1 

receptor. Yeast strains expressing the A1R (A and D), the A2AR (B and E) and the A2BR (C and F) were 

stimulated for 16 h with N6-(2-hydroxy)cyclopentyl derivatives (▲) 7 and () 21 or N6-(2-
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benzyloxy)cyclopentyl derivatives (□) 6, (■) 20 and (○) 36 and assayed for activation of the FUS1> lacZ 

reporter gene. Data are expressed as the percentage of the maximum response achieved when cells were 

stimulated with the reference agonist NECA (grey dotted line). Data are mean of at least five independent 

experiments ± SEM. 

 

Replacement of the 5’-ethyl carboxamide or 5’-hydroxy group with a 2-fluorothiophenyl moiety, 

as in adenosine analogues 34-37, resulted in compounds that failed to produce any detectable response in 

the A1R, A2AR and A2BR strains (Table 1). In fact, 34 was only able to activate the A2AR but at 

concentrations of greater than 100 μM. These results were somewhat surprising since the N6-

hydroxycyclopentyl congener 37 (CVT-3619, later named GS 9667) has previously been described as a 

selective, partial agonist of the A1R, with reported Ki values of 113 nM and 1.1 μM when challenged with 

the antagonist [3H]CPX, binding in hA1R-expressing DDT1MF-2 and CHO cells, respectively.14 To 

determine if the lack of functional activity for 34, 36 and 37 in our yeast assays resulted from the compounds 

failing to cross the membrane, we performed a competition assay between 34, 36 and 37 and either NECA, 

adenosine or CCPA at the A1R (Supplementary Figure S2). 

In line with the previously reported data,14 we confirmed 37 does appear to compete with all three 

ligands at the A1R (pA2 = 5.3 ± 0.4). Interestingly, despite the fact that 37 interacts with the A1R, in our 

experimental system, it appears unable to induce a measurable response. It is worth noting that, A1R agonist 

activity of 37 (CVT-3619) was previously demonstrated in rat adipocytes where it reduced cAMP content 

and consequently lipolysis14 although it is entirely possible that the observed response in these cell lines 

resulted from “off-target activation” of other receptors. Despite entering clinical trials where it was 

evaluated for its efficacy to lower lipids and thus improve glycemia, CVT-3619 (37) showed inadequate 

pharmacokinetics and it was discontinued.39 Furthermore, some recent studies suggest that the A1R may 

not play a significant role in hepatic regulation of lipid metabolism.40 Similar to 37, close analog 36 also 
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acted as a competitive antagonist at A1R (pA2 = 6.4 ± 0.2, Supplementary Figure S2) but 34 did not appear 

to bind to the A1R at all. 

Determining A1R versus A3R Selectivity in Mammalian Cells. Traditionally, many compounds that 

display selectivity for the A1R compared to the A2Rs frequently also display activity to the A3R. However, 

as described previously, we were unable to obtain functional coupling of the A3R to the yeast pheromone-

response pathway (Supplementary Figure S1). Thus, to provide a complete characterization of the A1R-

selective compounds isolated in the yeast screen, we utilized mammalian CHO-K1 cells transiently 

transfected with either the A1R or the A3R. CHO-K1 are an established cell line frequently used to assay 

the activity of adenosine receptors.41,42 Both the A1R and the A3R couple to the inhibitory G protein family 

(Gαi) thereby reducing the cellular concentration of cAMP. 

 Using CHO-A1R cells (CHO-K1 cells expressing the A1R) we first confirmed that NECA, 

adenosine and CCPA were able to inhibit forskolin-stimulated cAMP production (Figure 5A) generating 

pIC50 values (Table 3) equivalent to those previously reported.41,42 Further, all compounds (5, 6, 7, 16, 17, 

18, 20 and 21) identified in the yeast as eliciting a functional A1R response displayed full agonist activity 

against the A1R in the mammalian cells, but with varying potencies (Figure 5B, Table 3). Significantly, 

when these compounds were assayed against the CHO-A3R cells (Figure 5C and 5D, Table 3) only 7, 17, 

20 and 21 were able to inhibit forskolin-stimulated cAMP production. Thus, taken together these data 

suggest that, at concentrations ≤ 1μM, 5, 6, 16 and 18 display A1R-selectivity. Intriguingly, 2-adamantyl 

derivative 18 is almost as potent an agonist of A1R as NECA but completely A1R-selective. 
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Table 3. Potency (pIC50) and response range of reference ligands and putative A1R selective 

compounds at the A1R and A3R as measured in transfected CHO-K1 cells. 

Compd 

A1R A3R 

pIC50
a Response 

Rangeb 

n  pIC50
a Response 

Rangeb 

n 

NECA 9.68±0.16 -73.4±5.8 6  9.31±0.17 -44.1±3.0 8 

Adenosine 8.63±0.11* -66.4±3.7 6  8.94±0.14 -38.7±2.4 5 

CCPA 9.30±0.15 -71.4±4.3 6  7.95±0.13** -46.6±4.8 8 

5 7.72±0.20** -61.0±6.1 5  N.R N.R 8 

6 9.17±0.15 -55.28±3.6 4  N.R. N.R. 6 

7 8.36±0.17* -60.0±4.4* 6  7.56±0.11** -35.1±2.2 5 

16 8.54±0.3* -52.15±6.0* 6  N.R N.R. 6 

17 7.43±0.19 -39.3±3.9** 4  7.1±0.12** -32.7±2.2* 6 

18 9.40±0.34 -51.07±7.9 6  N.R N.R 6 

20 10.53±0.28* -48.35±5.6* 4  6.57±0.15*** -38.0±4.0 5 

21 8.21±0.2* -47.67±4.3* 4  8.64±0.08 -37.9±1.2 5 

 

Data are the mean ± SEM of n individual sets. 

aThe negative logarithm of the agonist concentration required to produce a half-maximal response. 

bThe response range of the agonists expressed as a percentage of total forskolin range (0-100%). 

Statistical significance compared to NECA (*, p < 0.05, ** p < 0.01, *** p < 0.001) was determined by 

one-way ANOVA with Dunnett’s post-test. 
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Figure 5. Determining the A1R-selectivity of compounds isolated in the yeast screen against the A1R and 

A3R expressed in mammalian cells. CHO-K1 cells transiently transfected with A1R (A, C and E) or A3R 

(B, D and F) were stimulated with (●) NECA, (○) adenosine, (■) CCPA (A and B) or the compounds 

determined to be active at the A1R from the yeast screen (▲) 7, () 17, (■) 20, () 21 (C and D) (▼) 5, 
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(□) 6, () 16, (●) 18 (E and F). In panels (C-F) NECA dose-inhibition curve is shown as grey dashed line 

with grey symbols. All cells were assayed for inhibition of 10 μM forskolin-stimulated cAMP. Data are 

expressed as the percentage of the maximum response achieved when cells were stimulated with 10 μM 

forskolin. Data are mean of 4-8 independent repeats ± SEM. 

 

Molecular simulation of agonist docking into the A1R 

Based on the pharmacological experimental findings that most of our N6-substituted 5’-N-

ethylcarboxamido and 5’-hydroxymethyl derivatives activated the A1R, but all the 5’-(2-fluoro)thiophenyl 

derivatives failed to do so, we used a molecular modeling approach to dock all our synthetic adenosine 

derivatives into a homology model of the human A1R. The recently solved crystal structure of the human 

A2AR complexed with the agonist UK-432097 (PDB ID: 3QAK)43 served as the template for this homology 

model. We reasoned that the bound agonist UK-432097 has a large N6-substituent (Figure 6A) as is the case 

for our synthetic adenosine analogues. 

In order to validate the utility of this A2AR crystal structure as a template for generating the A1R 

homology model we docked compounds 20, 21 and 34, that also showed activity at the A2AR in our assays, 

into the A2AR crystal structure. Indeed, the proposed positions and side chain interactions for these 

compounds (Figure 6C and Supplementary Figure S3A and S3B) are very similar to known agonists bound 

to the A2AR (Figure 6A and 6B). 

Furthermore, after closely inspecting the crystal structures of the adenosine-, NECA- (Figure 6B) 

and UK-432097-bound (Figure 6A) human A2AR (PDB IDs: 2YDO, 2YDV and 3QAK, respectively)43,44  

we would argue that hydrogen bond formation between the ligand and the homologous Thr-913.36, Asn-

2546.55, Thr-2777.42 and His-2787.43 (superscript: Ballesteros-Weinstein numbering45) in the A1R is important 

to stabilize the active conformation of the receptor.43,44 These residues are highly conserved across the AR 

family. Taking this into consideration (details see Experimental Section) the docking yielded ligand 



23 
 

orientations for 5-7, 16-18, 20 and 21 (Figure 6D and Supplementary Figure S3C-I) that closely resemble 

the orientations of UK-432097- and NECA-bound to the human A2AR (Figure 6A and 6B). In this distinct 

position the ribose moiety binds deeply into the binding pocket potentially forming hydrogen bonds with 

Thr-913.36, Asn-1845.42, Thr-2777.42 and His-2787.43. The purine ring π-stacks against Phe-171ECL2 and can 

form hydrogen bonds with Asn-2546.55, whereas the bulky N6-substitutes are located near the exit of the 

binding pocket. We found experimentally that all these compounds were agonists at the A1R in our yeast-

based functional assay. Intriguingly, 6 and 20 were docked before they were tested, and based on our model, 

predicted to be active agonists, which indeed was the case. 

The predicted binding positions for granatane derivatives 9 and 19 are somewhat similar, however, 

the purine ring is further away from Asn-2546.55 so that no hydrogen bonds are suggested (Figure 6E and 

Supplementary Figure S3J). At very high concentration, 9 and 19 were able to partially activate the A1R, 

but it was experimentally not possible to obtain full dose response curves. 

Docking of both inactive compounds 24 and 34 yielded binding positions where the purine ring 

adopts a syn-conformation with respect to the ribose (Figure 6F and Supplementary Figure S3K). It is also 

noticeable that 24 is not in close contact with Trp-2476.48, a residue which is highly conserved across the 

AR family and in a recent molecular dynamics simulation was shown to act as a conformational toggle 

switch in the receptor activation mechanism.46 The docking simulations with adenosine derivatives 25, 35-

37, all of which failed to activate the A1R, did not return any binding positions for our model. 
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A B C 

   

D E F 

   

 

Figure 6. Docking of N6-substituted adenosine derivatives into an A1R homology model. (A) Crystal 

structures of human A2AR bound with agonist UK-432097 (gold, PDB ID: 3QAK) and (B) with agonist 

NECA (yellow, PDB ID: 2YDV) for comparison, indication key binding residues and interactions. 

Representative examples of proposed binding poses of N6-substituted adenosine derivatives in the A2AR 

crystal structure and in the A1R homology model. (C) 21 (orange) docked into A2AR crystal structure. (D) 

16 (light green), (E) 9 (light blue) and (F) 24 (pink) docked into A1R homology model. Black dotted lines 

represent potential hydrogen bonds. Numbering of residues in (A-C) according to P29274 (hA2AR) and of 

homologous residues in (D-F) according to P30542 (hA1R). Ballesteros-Weinstein (BW) numbering: T88 

(A2A), T91 (A1): BW 3.36; F168 (A2A), F171 (A1): BW ECL2; E169 (A2A), E172 (A1): BW ECL2; N181 

(A2A), N184 (A1): BW 5.42; W246 (A2A), W247 (A1): BW 6.48; H250 (A2A), H251 (A1): BW 6.52; N253 
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(A2A), N254 (A1): BW 6.55; T270 (A1): BW 7.35; Y271 (A2A), Y271 (A1): BW 7.36; S277 (A2A), T277 

(A1): BW 7.42; H278 (A2A), H278 (A1): BW 7.43. For activities of docked compounds see Table 1. 

Proposed binding poses for the remaining compounds are shown in Figure S3 (Supporting Information). 

 

Conclusions 

Herein, we report the synthesis of a series of adenosine derivatives that were modified at the N6- 

position of the purine ring and the C-5’ positions of the ribose moiety. These compounds were evaluated 

using a yeast-based and mammalian cell-based assay for quantifying their AR subtype selectivity. Our 

biological data show that compounds bearing a granatane azabicyclic moiety at N6 and/or a 5’-(2-

fluorothiophenyl) substituent at the ribose fail to produce responses in A1R, A2AR or A2BR cells. 

Conversely, N6-adamantyl adenosine and NECA congeners were completely A1R selective. Moreover, it 

emerged that N6-(2-hydroxy)cyclopentyl and N6-(2-benzyloxy)cyclopentyl derivatives are potent agonists, 

preferentially activating A1R over the other subtypes. It is worth noting that novel NECA derivative 20 

exhibited higher potency and A1R selectivity than its parent compound. Further, we present an A1R 

homology model that corroborates our experimental findings. Notably, adenosine derivatives 5 and 6, and 

novel NECA analogs 16 and 18 are completely A1R-selective, potent agonists. Therefore they should 

represent useful tool compounds in purinergic signaling research and warrants further assessment of their 

therapeutic potential. 

 

Experimental Section 

General Chemistry.  All reactions were performed under an inert argon atmosphere. Anhydrous 

tetrahydrofuran (THF), toluene and dichloromethane (DCM) were obtained by filtration through a system 

of alumina columns under a positive pressure of argon. Anhydrous dimethylformamide (DMF) was 

purchased as dry over molecular sieves from Sigma-Aldrich. Solvents were evaporated under reduced 
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pressure at approximately 45 ºC using a Buchi Rotavapor or under high vacuum on a schlenk line. Reagents 

were purchased from Sigma-Aldrich, Acros, Alfa Aesar, Fischer Scientific or Hänseler and used without 

further purification. Reactions were monitored by thin layer chromatography (TLC) using aluminium sheets 

pre-coated with silica (Macherey-Nagel ALUGRAM Xtra SII, G/UV254). Detection was under UV light 

source (λmax 254 nm) or through staining with potassium permanganate solution (5%), vanillin spray or 

ninhydrin, with subsequent heating. Flash column chromatography was carried out using silica gel from 

Sigma-Aldrich (pore size 60Å, 230–400 mesh particle size) as the stationary phase. 

Proton nuclear magnetic resonance spectra (1H NMR) were recorded using a Bruker Avance 300 

or an Avance II 400 spectrometer. Chemical shifts (δH) are reported in parts per million (ppm) and are 

referenced to the residual solvent peak. The order of citation in parentheses is (1) number of equivalent 

nuclei (by integration), (2) multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m 

(multiplet) etc), (3) coupling constants (J) in Hertz (Hz) and (4) assignment. Carbon nuclear magnetic 

resonance spectra (13C NMR) were recorded using a Bruker Avance 300 or an Avance II 400 spectrometer. 

Chemical shifts are quoted in parts per million (ppm) and are referenced to the residual solvent peak. The 

assignment is quoted in parentheses. COSY, HSQC and DEPT were routinely used to assign peaks in 1H 

and 13C NMR spectra. Addition of D2O was used to confirm the assignment of OH and NH peaks. Mass 

spectra and high resolution mass spectra (HRMS) were recorded on a ThermoScientific LTQ Orbitrap XL 

spectrometer consisting of a linear ion trap (LTQ) featuring a HCD collision cell, coupled to the Orbitrap 

mass analyzer, equipped with a nanoelectrospray ion source (NSI). MS and HRMS spectra were determined 

by the Mass Spectrometry Group at the Department of Chemistry and Biochemistry, University of Bern 

(PD Dr. S. Schürch). 

The purity of the compounds was determined with UPLC-MS on a Dionex Ultimate 3000 using a 

reversed-phase column Dionex Acclain RSLC, 120C18, 3 x 50 mm, 2.2 μm, 120Å pore size, flow 1.2 

mL/min. The gradient used was 100%A to 100%D over 7 min, with A (water with 0.1% TFA) and D (10% 
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H2O/90% ACN+0.1% TFA). Purity was determined by total absorbance at 254 nm. All tested compounds 

were ≥95% pure, except 17 which was 94% pure. 

Established Adenosine Agonists. 5’-N-ethylcarboxamidoadenosine (NECA), 2-chloro-N6-

cyclopentyladenosine (CCPA), CGS-21680, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and SLV-320 

were purchased from R & D Systems (Bristol, UK). Where possible, compounds were prepared as 10mM 

stocks in DMSO. 

Chemical Synthesis. Intermediates 2,29 10,32 26,32 and 2734 were synthesised as described in the 

literature with only slight experimental modifications. (3-endo)-9-Methyl-9-azabicyclo[3.3.1]nonan-3-

amine was synthesised as described previously by our group.30 tert-Butyl-9-azabicyclo[3.3.1]nonan-3-

ylcarbamate (22) was synthesised as described previously.33 Intermediate 2947 is known but was obtained 

with different methodology. Intermediate 28 is a novel compound. Further details on the synthesis and 

characterisation of these intermediates are available in the Supporting Information. 3-Amino-1-

adamantanol and (1R,2R)-2-aminocyclopentanol hydrochloride were prepared as described in the 

Supporting Information. 

General Procedure A for the Synthesis of Intermediates 3, 4, 8, 11–15, 23, 30–33. The 

appropriate chloride was dissolved in ethanol (20 mL/mmol). The amine and trimethylamine or DIPEA 

were then added and the reaction mixture was refluxed until TLC analysis indicated completion. The 

solvent was removed in vacuo and the resultant material was purified with column chromatography. The 

choice of base did not appear to have an effect on the yield or reaction time. In the case of compounds 4, 8, 

13–15 and 31–33 the reaction was complete after 18 h, whereas sterically hindered 3, 11, 12, 23 and 30 

required 5 days refluxing at 120 °C to obtain sufficient amounts of product. In cases where the amine is a 

hydrochloride salt this was first stirred for 20 min with the base, before addition of the appropriate chloride 

in ethanol. For specific purification conditions see individual compounds.  
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General Procedure B for the Synthesis of Compounds 16–20, 24, 34–37. Acetonide protected 

compounds 11–15, 23 or 30–33 were dissolved in water and acetic acid and stirred at 80 °C overnight. The 

water was removed in vacuo and the resultant crude material was purified with column chromatography. 

General Procedure C for the Synthesis of Compounds 7 and 21. Benzyl protected compounds 

4 and 20 were dissolved in ethanol (8 mL/mmol). Cyclohexene and Pd(OH)2/C were added and refluxed at 

100 °C until TLC indicated completion. The reaction mixture was allowed to cool to room temperature and 

filtered through celite. The crude material was purified with column chromatography.  

General Procedure D for the Synthesis of Compounds 5, 6 and 9. Acetyl protected compounds 

3, 4 and 8 were dissolved in methanol (20 mL/mmol). Potassium carbonate was added and stirred 

vigorously for 3 h. The solvent was removed in vacuo and the crude material was purified with column 

chromatography. 

6-N-(1-Adamantyl)-5’-O-acetyladenosine (3). 3 was synthesised according to the general 

procedure A, using chloride 2 (0.2 g, 0.48 mmol), amantadine hydrochloride (0.14 g, 0.72 mmol) and 

DIPEA (0.84 mL, 4.80 mmol). After purification with column chromatography (methanol/DCM, 2–6%) 

monoacetylated 3 was obtained as a white solid as the major product (0.13 g, 62% yield). 1H NMR (300 

MHz, DMSO-d6) δ 8.31 (1H, s, adenine H), 8.22 (1H, s, adenine H), 6.61 (1H, s, NH), 5.89 (1H, d, J 5.1, 

1’-H), 5.56 (1H, d, J 5.7, 2’-OH), 5.37 (1H, d, J 5.4, 3’-OH), 4.67 (1H, dd, J 10.5, 5.2, 2’-H), 4.32 (1H, dd, 

J 11.8, 3.7, 5’-HH), 4.26 (1H, dd, J 10.5, 5.4, 3’-H), 4.16 (1H, dd, J 11.8, 6.1, 5’-HH), 4.07 (1H, m, 4’-H), 

2.21 (6H, m, 6 x adamantyl H), 2.08 (3H, m, 3 x adamantyl H), 2.00 (3H, s, CH3), 1.68 (6H, m, 6 x 

adamantyl H); 13C NMR (100 MHz, DMSO-d6) δ 170.1, 154.4, 151.9, 148.4, 139.5, 119.9, 87.9, 81.5, 72.8, 

70.3, 63.9, 52.1, 41.0, 36.0, 29.0, 20.6; HRMS (ESI+) m/z calcd for C22H30N5O5 [MH]+ 444.2241, found 

444.2229; purity UPLC-MS 99%, retention time = 2.92 min. 

6-N-((1R,2R)-2-(Benzyloxy)cyclopentyl)-5’-O-acetyladenosine (4). 4 was synthesised according 

to the general procedure A, using chloride 2 (0.20 g, 0.48 mmol), (1R,2R)-1-amino-2-
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benzyloxycyclopentane (0.13 mL, 0.72 mmol) and triethylamine (0.19 mL, 1.34 mmol). After purification 

with column chromatography (methanol/DCM, 1–4%) monoacetylated product 4 was obtained as a pale 

yellow solid as the major product (0.12 g, 52% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.34 (1H, s, adenine 

H), 8.25 (1H, br s, adenine H), 7.90 (1H, m, NH), 7.33-7.18 (5H, m, 5 x phenyl H), 5.93 (1H, d, J 5.1, 1’-

H), 5.57 (1H, d, J 5.7, 2’-OH), 5.37 (1H, d, J 5.3, 3’-OH), 4.68 (1H, dd, J 10.4, 5.1, 2’-H), 4.63-4.51 (3H, 

m, CH2Ph and 1-H), 4.33 (1H, dd, J 11.8, 3.6, 5’-HH), 4.27 (1H, dd, J 10.4, 5.3, 3’-H), 4.18 (1H, dd, J 11.8, 

6.2, 5’-HH), 4.09 (1H, m, 4’-H), 4.01 (1H, m, 2-H), 2.13-1.90 (5H, m, 2 x cyclopentyl H and CH3), 1.80-

1.55 (4H, m, 4 x cyclopentyl H); 13C NMR (100 MHz, DMSO-d6) δ 170.1, 154.2, 152.5, 139.4, 138.9, 

128.1, 127.3, 127.1, 114.5, 87.8, 84.1, 81.5, 72.9, 70.3, 70.1, 63.9, 56.4, 30.2, 21.4, 20.6; HRMS (ESI) 

calcd for C24H30O5N6 [MH]+ 484.2191, found 484.2172; purity UPLC-MS 99%, retention time = 2.55 min. 

6-N-(1-Adamantyl)adenosine (5).48 5 was synthesised according to the general procedure D, using 

3 (0.03 g, 0.06 mmol) and potassium carbonate (0.005 g, 0.04 mmol). After purification with column 

chromatography (methanol/DCM, 4%) product 5 was obtained as a white solid (0.03 g, 99% yield). 1H 

NMR (300 MHz, DMSO-d6) δ 8.35 (1H, s, adenine H), 8.21 (1H, s, adenine H), 6.65 (1H, s, NH), 5.87 (1H, 

d, J 6.1, 1’-H), 5.44 (1H, d, J 6.1, 2’-OH), 5.37 (1H, dd, J 7.1, 4.6, 5’-OH), 5.19 (1H, d, J 4.6, 3’-OH), 4.62 

(1H, dd, J 11.1, 6.1, 2’-H), 4.15 (1H, m, 3’-H), 3.97 (1H, m, 4’-H), 3.69 (1H, m, 5’-HH), 3.55 (1H, m, 

5’HH), 2.23 (6H, m, 6 x adamantyl H), 2.10 (3H, m, 3 x adamantyl H), 1.69 (6H, m, 6 x adamantyl H); 13C 

NMR (100 MHz, DMSO-d6) δ 154.5, 151.6, 148.2, 139.6, 120.1, 88.0, 85.8, 73.4, 70.6, 61.6, 52.2, 41.0, 

36.0, 29.0; HRMS (ESI+) m/z calcd for C20H28N5O4 [MH]+ 402.2136, found 402.2137; purity UPLC 99%, 

retention time = 2.66 min. 

6-N-((1R,2R)-2-(Benzyloxy)cyclopentyl)adenosine (6).49 6 was synthesised according to the 

general procedure D, using 4 (0.01 g, 0.02 mmol) and potassium carbonate (0.01 g, 0.07 mmol). After 

purification with column chromatography (methanol/DCM, 2–3%) product 6 was obtained as a white solid 

(0.01 g, 99% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.37 (1H, s, adenine H), 8.24 (1H, br s, adenine H), 

7.94 (1H, m, NH), 7.33-7.19 (5H, m, 5 x phenyl H), 5.89 (1H, d, J 6.1, 1’-H), 5.46-5.37 (2H, m, 2’-OH and 
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5’-OH), 5.19 (1H, d, J 4.6, 3’-OH), 4.68-4.50 (4H, m, 1-H, 2’-H and CH2Ph), 4.15 (1H, dd, J 7.8, 4.6, 3’-

H), 4.05-3.94 (2H, m, 2-H and 4’-H), 3.68 (1H, dt, J 12.0, 4.1, 5’-HH), 3.56 (1H, m, 5’-HH), 2.14-1.89 

(2H, m, 2 x cyclopentyl H), 1.77-1.56 (4H, m, 4 x cyclopentyl H); 13C NMR (100 MHz, DMSO-d6) δ 154.2, 

152.2, 139.6, 138.9, 128.1, 127.3, 127.1, 87.9, 85.8, 84.1, 73.5, 70.6, 70.1, 61.6, 30.1, 21.4; HRMS (ESI) 

calcd for C22H28O5N5 [MH]+ 442.2085, found 442.2097; purity UPLC-MS 98%, retention time = 2.30 min. 

6-N-((1R,2R)-2-(Hydroxy)cyclopentyl)adenosine (7).28 7 was synthesised according to the 

general procedure C, using 4 (0.03 g, 0.06 mmol), cyclohexene (0.25 mL, 2.43 mmol) and Pd(OH)2/C (20 

wt. %, 0.01 g). After purification with column chromatography (methanol/DCM, 2–8%) product 7 was 

obtained as a white solid (0.02 g, 95% yield). Minor quantities of the monoacetylated product were also 

isolated. 1H NMR (300 MHz, DMSO-d6) δ 8.37 (1H, s, adenine H), 8.20 (1H, br s, adenine H), 7.74 (1H, 

d, J 6.8, NH), 5.89 (1H, d, J 6.1, 1’-H), 5.48-5.36 (2H, m, 2’-OH and 5’-OH), 5.19 (1H, d, J 4.6, 3’-OH), 

4.87 (1H, m, 2-OH), 4.62 (1H, app. dd, J 11.3, 6.1, 2’-H), 4.29 (1H, br s, 1-H), 4.15 (1H, m, 3’-H), 4.06 

(1H, m, 2-H), 3.97 (1H, m, 4’-H), 3.68 (1H, dt, J 11.9, 3.9, 5’-HH), 3.55 (1H, m, 5’-HH), 2.07 (1H, m, 1 x 

cyclopentyl H), 1.88 (1H, m, 1 x cyclopentyl H), 1.74-1.59 (2H, m, 2 x cyclopentyl H), 1.59-1.45 (2H, m, 

2 x cyclopentyl H); 13C NMR (100 MHz, DMSO-d6) δ 154.7, 152.2, 139.6, 87.9, 85.9, 76.0, 73.5, 70.6, 

61.6, 58.8, 32.3; HRMS (ESI) calcd for C15H22O5N5 [MH]+ 352.1615, found 352.1616; purity UPLC-MS 

99%, retention time = 1.46 min. 

Tri-O-acetyl-6-N-[(3-endo)-9-methyl-9-azabicyclo[3.3.1]non-3-yl]adenosine (8). 8 was 

synthesised according to the general procedure A, using chloride 2 (0.3 g, 0.73 mmol), (3-endo)-9-methyl-

9-azabicyclo[3.3.1]nonan-3-amine (0.45 g, 2.91 mmol) and DIPEA (0.15 mL, 0.88 mmol). After 

purification with column chromatography (methanol/DCM, 5–10%) product 8 was obtained as a white solid 

(0.21 g, 54% yield). 1H NMR (400 MHz, MeOD-d4) δ 8.30 (1H, br s, adenine H), 8.25 (1H, s, adenine H), 

6.24 (1H, d, J 5.3, 1’-H), 6.03 (1H, t, J 5.3, 2’-H), 5.73 (1H, dd, J 5.3, 4.8, 3’-H), 4.83 (1H, br s, 3-H), 4.49-

4.37 (3H, m, 4’-H and 5’-H2), 3.44-3.42 (2H, m, 1- and 5-H), 2.77 (3H, s, NCH3), 2.70-2.61 (2H, m, 2 x 

granatyl H), 2.20-2.03 (12H, m, 3 x CH3 and 3 x granatyl H), 1.77-1.61 (3H, m, 3 x granatyl H), 1.43-1.40 
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(2H, m, 2 x granatyl H); 13C NMR (100 MHz, MeOD-d4) δ 172.2, 171.4, 171.2, 155.6, 154.3, 140.9, 87.9, 

81.6, 74.3, 72.0, 64.2, 54.0, 41.7, 40.0, 32.6, 25.7, 20.6, 20.4, 20.2, 14.0; HRMS (ESI+) m/z calcd for 

C25H35N6O7 531.2562 [MH]+, found 531.2553; purity UPLC-MS 96%, retention time = 2.14 min. 

6-N-[(3-endo)-9-Methyl-9-azabicyclo[3.3.1]non-3-yl]adenosine (9). 9 was synthesised according 

to the general procedure D, using 8 (0.05 g, 0.10 mmol) and potassium carbonate (0.005 g, 0.03 mmol). 

The crude product was dissolved in acetone and passed through filtered paper to give 9 as a white solid 

(0.04 g, 99% yield). 1H NMR (300 MHz, MeOH-d4) δ 8.24 (1H, s, adenine H), 8.21 (1H, br s, adenine H), 

5.95 (1H, d, J 6.5, 1’-H), 4.77 (1H, br s overlapping, 3-H), 4.74 (1H, dd, J 6.4, 5.2, 2’-H), 4.32 (1H, dd, J 

5.1, 2.5, 3’-H), 4.17 (1H, app q, J 2.4, 4’-H), 3.89 (1H, dd, J 12.6, 2.4, 5’-HH), 3.74 (1H, dd, J 12.6, 2.6, 

5’-HH), 3.13-3.10 (2H, m, 1- and 5-H), 2.60-2.50 (5H, m, NCH3 and 2 x granatyl H), 2.16-1.98 (3H, m, 3 

x granatyl H), 1.58-1.45 (3H, m, 3 x granatyl H), 1.16-1.12 (2H, m, 2 x granatyl H); 13C NMR (100 MHz, 

MeOH-d4) δ 153.7, 141.4, 128.5, 91.4, 88.3, 75.5, 72.7, 63.6, 52.7, 42.7, 40.8, 33.4, 25.8, 15.0; HRMS 

(ESI) calcd for C19H29O4N6 [MH]+ 405.2245, found 405.2243; purity UPLC-MS 99%, retention time = 1.41 

min. 

6-N-(1-Adamantyl)-5’-ethylamino-2’,3’-O-isopropylidene-5’-oxo-5’-deoxyadenosine (11). 11 

was synthesised according to the general procedure A, using chloride 10 (0.3 g, 0.82 mmol), amantadine 

hydrochloride (0.46 g, 2.45 mmol) and DIPEA (2.61 mL, 15.01 mmol). After purification with column 

chromatography (methanol/DCM, 2%) product 11 was obtained as a white solid (0.28 g, 72% yield). 1H 

NMR (300 MHz, DMSO-d6) δ 8.27 (1H, s, adenine H), 8.17 (1H, s, adenine H), 7.51 (1H, t, J 5.6, amide 

NH), 6.62 (1H, s, amine NH), 6.34 (1H, d, J 1.5, 1’-H), 5.41 (1H, dd, J 6.1, 1.5, 2’-H), 5.38 (1H, dd, J 6.1, 

1.8, 3’-H), 4.53 (1H, d, J 1.8, 4’-H), 2.80 (2H, m, CH2CH3), 2.21 (6H, m, 6 x adamantyl H), 2.09 (3H, m, 

3 x adamantyl H), 1.68 (6H, m, 6 x adamantyl H), 1.54 (3H, s, CH3), 1.35 (3H, s, CH3), 0.62 (3H, t, J 7.2, 

CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ 168.1, 154.4, 151.8, 148.0, 139.9, 119.6, 112.9, 89.5, 85.8, 

83.2, 83.0, 52.1, 41.0, 36.0, 33.0, 29.0, 26.7, 25.0, 13.8; HRMS (ESI+) m/z calcd for C25H35N6O4 [MH]+ 

483.2714, found 483.2718. 
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6-N-(3-Hydroxy-1-adamantyl)-5’-ethylamino-2’,3’-O-isopropylidene-5’-oxo-5’-

deoxyadenosine (12). 12 was synthesised according to the general procedure A, using chloride 10 (0.07 g, 

0.19 mmol), 3-amino-1-adamantanol (0.05 g, 0.29 mmol) and triethylamine (0.5 mL, 3.6 mmol). After 

purification with column chromatography (methanol/DCM, 2–5%) product 12 was obtained as a white solid 

(0.07 g, 78% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.26 (1H, s, adenine H), 8.16 (1H, s, adenine H), 

7.49 (1H, t, J 5.6, amide NH), 6.74 (1H, s, amine NH), 6.33 (1H, d, J 1.1, 1’-H), 5.43-5.35 (2H, m, 2’-H 

and 3’-H), 4.53 (2H, s, 4’-H and OH), 2.81 (2H, m, CH2CH3), 2.18-2.01 (8H, m, 8 x adamantyl H), 1.65-

1.43 (9H, m, 6 x adamantyl H and CH3), 1.34 (3H, s, CH3), 0.62 (3H, t, J 7.2, CH2CH3); 
13C NMR (100 

MHz, DMSO-d6) δ 168.1, 154.3, 151.7, 148.1, 140.0, 119.6, 112.9, 89.5, 85.6, 83.2, 83.0, 67.5, 54.6, 48.9, 

44.2, 34.9, 33.0, 30.1, 26.7, 25.0, 13.8; HRMS (ESI+) m/z calcd for C25H35N6O5 499.2663 [MH]+, found 

499.2650; purity UPLC-MS 99%, retention time = 2.62 min. 

6-N-(2-Adamantyl)-5’-ethylamino-2’,3’-O-isopropylidene-5’-oxo-5’-deoxyadenosine (13). 13 

was synthesised according to the general procedure A, using chloride 10 (0.02 g, 0.06 mmol), 2-

adamantylamine hydrochloride (0.03 g, 0.18 mmol) and DIPEA (0.05 mL, 0.27 mmol). After purification 

with column chromatography (methanol/DCM, 2%) product 13 was obtained as a white solid (0.02 g, 69% 

yield). 1H NMR (300 MHz, DMSO-d6) δ 8.29 (1H, s, adenine H), 8.17 (1H, br s, adenine H), 7.48 (1H, t, J 

5.7, amide NH), 7.05 (1H, br s, NH), 6.34 (1H, s, 1’-H), 5.45-5.36 (2H, m, 2’- and 3’-H), 4.53 (1H, s, 4’-

H), 4.36 (1H, br s, adamantyl H), 2.80 (2H, m, CH2CH3), 2.11-2.05 (4H, m, 4 x adamantyl H), 1.84 (6H, 

m, 6 x adamantyl H), 1.72 (2H, m, 2 x adamantyl H), 1.53-1.50 (5H, m, 2 x adamantyl H and CH3), 1.34 

(3H, s, CH3), 0.59 (3H, t, J 7.2, CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ 168.1, 154.1, 152.3, 140.3, 

112.9, 89.5, 85.9, 83.2, 83.1, 37.1, 36.9, 36.8, 33.0, 30.9, 26.7, 26.6, 25.0, 13.8; HRMS (ESI) calculated for 

C25H35N6O4 [MH]+ 483.2714, found 483.2707; purity UPLC-MS 94%, retention time = 3.12 min. 

6-N-[(3-endo)-9-Methyl-9-azabicyclo[3.3.1]non-3-yl]-5’-ethylamino-2’,3’-O-isopropylidene-

5’-oxo-5’-deoxyadenosine (14). 14 was synthesised according to the general procedure A, using chloride 

10 (0.1 g, 0.27 mmol), (3-endo)-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine (0.17 g, 1.09 mmol) and 
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DIPEA (0.06 mL, 0.33 mmol). After purification with column chromatography (methanol/DCM, 5–10%) 

product 14 was obtained as a white solid (0.11 g, 85% yield). 1H NMR (300 MHz, MeOD-d4) δ 8.21 (2H, 

m, 2 x adenine H), 6.35 (1H, d, J 1.0, 1’-H), 5.63 (1H, dd, J 6.1, 1.8, 3’-H), 5.51 (1H, m, 2’-H), 4.77 (1H, 

br s, 3-H), 4.64 (1H, d, J 1.7, 4’-H), 3.27-3.23 (1H, m, 1- and 5-H), 2.85 (2H, m, CH2CH3), 2.67-2.50 (5H, 

m, NCH3 and 2 x granatyl H), 2.20-2.00 (3H, m, 3 x granatyl H), 1.65-1.51 (6H, m, CH3 and 3 x granatyl 

H), 1.42 (3H, s, CH3) 1.34-1.19 (2H, m, 2 x granatyl H), 0.63 (3H, t, J 7.3, CH2CH3); 
13C NMR (75 MHz, 

CDCl3) 171.6, 155.6, 154.1, 142.0, 114.9, 92.4, 88.7, 85.3, 85.2, 53.3, 42.2, 40.4, 34.7, 33.1, 27.1, 25.8, 

25.3, 14.6, 14.0; HRMS calculated for C24H36O4N7 [MH]+ 486.2823, found 486.2810; purity UPLC-MS 

99%, retention time = 1.97 min. 

6-N-((1R,2R)-2-(Benzyloxy)cyclopentyl)-5’-ethylamino-2’,3’-O-isopropylidene-5’-oxo-5’-

deoxyadenosine (15). 15 was synthesised according to the general procedure A, using chloride 10 (0.2 g, 

0.54 mmol), (1R,2R)-1-amino-2-benzyloxycyclopentane (0.15 mL, 0.82 mmol) and triethylamine (0.21 

mL, 1.51 mmol). Following removal of the solvent from the reaction mixture, the residue was dissolved in 

ethyl acetate (100 mL) and washed with water (2 x 50 mL). The organic phase was then dried over 

anhydrous Na2SO4 and the solvent was removed in vacuo. After purification with column chromatography 

(methanol/DCM, 1–3%) product 15 was obtained as a pale yellow solid (0.22 g, 79% yield). 1H NMR (300 

MHz, DMSO-d6) δ 8.27 (1H, s, adenine H), 8.20 (1H, br s, adenine H), 7.91 (1H, m, amine NH), 7.51 (1H, 

t, J 5.7, amide NH), 7.33-7.20 (5H, m, 5 x phenyl H), 6.34 (1H, s, 1’-H), 5.43-5.36 (2H, m, 2’- and 3’-H), 

4.66-4.49 (4H, m, 4’-H, CH2Ph and 1-H), 4.01 (1H, m, 2-H), 2.81 (2H, m, CH2CH3), 2.12-1.89 (2H, m, 2 

x cyclopentyl H), 1.80-1.56 (4H, m, 4 x cyclopentyl H), 1.54 (3H, s, CH3), 1.34 (3H, s, CH3), 0.61 (3H, t, 

J 7.2, CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ 168.1, 154.1, 152.4, 148.2, 139.9, 138.9, 128.1, 127.3, 

127.1, 112.9, 89.5, 85.8, 84.0, 83.2, 83.1, 70.1, 56.4, 33.0, 30.2, 26.7, 25.0, 21.3, 13.8; HRMS (ESI) 

calculated for C27H35O5N6 [MH]+ 523.2663, found 523.2649; purity UPLC-MS 99%, retention time = 3.08 

min. 
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6-N-(1-Adamantyl)-5’-ethylamino-5’-oxo-5’-deoxyadenosine (16). 16 was synthesised 

according to the general procedure B, using 11 (0.10 g, 0.21 mmol), acetic acid (10 mL) and water (3 mL). 

After purification with column chromatography (methanol/DCM, 2–6%) product 16 was obtained as a 

white solid (0.09 g, 96% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.89 (1H, t, J 5.5, amide NH), 8.39 (1H, 

s, adenine H), 8.27 (1H, s, adenine H), 6.77 (1H, s, amine NH), 5.95 (1H, d, J 7.7, 1’-H), 5.75 (1H, d, J 3.8, 

3’-OH), 5.56 (1H, d, J 6.2, 2’-OH), 4.61 (1H, m, 2’-H), 4.30 (1H, d, J 1.2, 4’-H), 4.14 (1H, m, 3’-H), 3.22 

(2H, m, CH2CH3), 2.23 (6H, m, 6 x adamantyl H), 2.09 (3H, m, 3 x adamantyl H), 1.68 (6H, m, 6 x 

adamantyl H), 1.08 (3H, t, J 7.2, CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ 169.1, 154.6, 151.6, 148.0, 

140.4, 120.4, 87.9, 84.7, 73.1, 71.9, 52.2, 41.0, 36.0, 33.2, 29.0, 14.7; IR [cm-1] 3218, 2905, 2847, 1644; 

HRMS (ESI+) m/z calcd for C22H31N6O4 [MH]+ 443.2401, found 443.2393; purity UPLC 99%, retention 

time = 3.06 min. 

6-N-(3-Hydroxy-1-adamantyl)-5’-ethylamino-5’-oxo-5’-deoxyadenosine (17). 17 was 

synthesised according to the general procedure B, using 12 (0.01 g, 0.02 mmol), acetic acid (3.6 mL) and 

water (1.2 mL). After purification with column chromatography (methanol/DCM, 1–5%) product 17 was 

obtained as a white solid (0.007 g, 78% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.88 (1H, t, J 5.5, amide 

NH), 8.40 (1H, s, adenine H), 8.27 (1H, s, adenine H), 6.89 (1H, s, amine NH), 5.95 (1H, d, J 7.6, 1’-H), 

5.74 (1H, d, J 4.2, 3’-OH), 5.57 (1H, d, J 6.4, 2’-OH), 4.61 (1H, m, 2’-H), 4.55 (1H, s, adamantyl OH), 

4.30 (1H, d, J 1.2, 4’-H), 4.14 (1H, m, 3’-H), 3.21 (2H, m, CH2CH3), 2.20-2.05 (8H, m, 8 x adamantyl H), 

1.66-1.43 (6H, m, 6 x adamantyl H), 1.08 (3H, t, J 7.2, CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ 169.1, 

154.5, 151.6, 148.0, 140.4, 120.3, 87.8, 84.7, 73.1, 72.0, 67.5, 54.7, 48.8, 44.2, 34.9, 33.3, 30.1, 14.7; 

HRMS (ESI+) m/z calcd for C22H31N6O5 [MH]+ 459.2350, found 459.2346; purity UPLC 94%, retention 

time = 2.18 min. 

6-N-(2-Adamantyl)-5’-ethylamino-5’-oxo-5’-deoxyadenosine (18). 18 was synthesised 

according to the general procedure B, using 13 (0.02 g, 0.04 mmol), acetic acid (1.6 mL) and water (0.4 

mL). After purification with column chromatography (methanol/DCM, 3–10%) product 18 was obtained 
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as a white solid (0.02 g, 99% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.86 (1H, m, amide NH), 8.43 (1H, 

s, adenine H), 8.27 (1H, s, adenine H), 7.15 (1H, br s, amine NH), 5.97 (1H, d, J 7.5, 1’-H), 5.74 (1H, d, J 

4.3, 3’-OH), 5.54 (1H, d, J 6.4, 2’-OH), 4.62 (1H, m, 2’-H), 4.37 (1H, br s, adamantyl H), 4.30 (1H, d, J 

1.4, 4’-H), 4.14 (1H, m, 3’-H), 3.21 (2H, m, CH2CH3), 2.13-2.08 (4H, m, 4 x adamantyl H), 1.85 (6H, m, 

6 x adamantyl H), 1.73 (2H, m, 2 x adamantyl H), 1.56-1.52 (2H, m, 2 x adamantyl H), 1.08 (3H, t, J 7.2, 

CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ 169.1, 154.3, 152.3, 140.6, 114.5, 87.8, 84.6, 73.1, 71.9, 37.2, 

36.9, 33.3, 30.9, 26.8, 14.7; HRMS (ESI) calcd for C22H31N6O4 [MH]+ 443.2401, found 443.2392; purity 

UPLC-MS 99%, retention time = 2.69 min. 

6-N-[(3-endo)-9-Methyl-9-azabicyclo[3.3.1]non-3-yl]-5’-ethylamino-5’-oxo-5’-

deoxyadenosine (19). 19 was synthesised according to the general procedure B, using 14 (0.03 g, 0.06 

mmol), acetic acid (4.8 mL) and water (1.2 mL). After purification with column chromatography 

(methanol/DCM, 5–10%, with an additional 1% aqueous ammonia) product 19 was obtained as a white 

solid (0.03 g, 99% yield). 1H NMR (300 MHz, MeOD-d4) δ 8.30 (1H, br s, adenine H), 8.27 (1H, s, adenine 

H), 6.01 (1H, d, J 7.7, 1’-H), 4.81 (1H partially behind solvent signal, m, 3-H), 4.75 (1H, dd, J 7.6, 4.8, 2’-

H), 4.47 (1H, d, J 1.5, 4’-H), 4.31 (1H, dd, J 4.8, 1.4, 3’-H), 3.37 (2H, m, CH2CH3), 3.28 (2H partially 

behind solvent signal, m, 1- and 5-H), 2.69-2.56 (5H, m, NCH3 and 2 x granatyl H), 2.21-2.04 (3H, m, 3 x 

granatyl H), 1.68-1.56 (3H, m, 3 x granatyl H), 1.30 (2H, m, 2 x granatyl H), 1.21 (3H, t, J 7.3, CH2CH3); 

13C NMR (100 MHz, MeOD-d4) δ 172.1, 155.8, 153.9, 142.1, 90.5, 86.5, 75.0, 73.4, 53.5, 42.1, 40.2, 35.1, 

33.0, 25.7, 15.0, 14.4; HRMS (ESI) calcd for C21H32N7O4 [MH]+ 446.2510, found 446.2523; purity UPLC-

MS 99%, retention time = 1.62 min. 

6-N-((1R,2R)-2-(Benzyloxy)cyclopentyl)-5’-ethylamino-5’-oxo-5’-deoxyadenosine (20). 20 

was synthesised according to the general procedure B, using 15 (0.01 g, 0.02 mmol), acetic acid (1.6 mL) 

and water (0.4 mL). After purification with column chromatography (methanol/DCM, 2–4%) product 20 

was obtained as a white solid (0.01 g, 99% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.90 (1H, t, J 5.6, 

amide NH), 8.41 (1H, s, adenine H), 8.30 (1H, br s, adenine H), 8.03 (1H, m, amine NH), 7.33-7.20 (5H, 
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m, 5 x phenyl H), 5.98 (1H, d, J 7.6, 1’-H), 5.73 (1H, d, J 4.3, 3’-OH), 5.53 (1H, d, J 6.5, 2’-OH), 4.67-

4.53 (4H, m, 2’-H, CH2Ph and 1-H), 4.32 (1H, d, J 1.5, 4’-H), 4.15 (1H, m, 3’-H), 4.03 (1H, m, 2-H), 3.23 

(2H, m, CH2CH3), 2.08 (1H, m, 1 x cyclopentyl H), 1.96 (1H, m, 1 x cyclopentyl H), 1.79-1.60 (4H, m, 4 

x cyclopentyl H), 1.09 (3H, t, J 7.2, CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ 169.1, 154.3, 152.3, 

140.4, 138.9, 128.1, 127.3, 127.1, 120.1, 87.8, 84.7, 84.1, 73.1, 72.0, 70.1, 56.4, 33.2, 30.2, 21.4, 14.7; 

HRMS (ESI) calcd for C24H31O5N6 [MH]+ 483.2350, found 483.2339; purity UPLC-MS 98%, retention 

time = 2.59 min. 

 6-N-((1R,2R)-2-(Hydroxy)cyclopentyl)-5’-ethylamino-5’-oxo-5’-deoxyadenosine (21). 21 was 

synthesised according to the general procedure C, using 20 (0.08 g, 0.17 mmol), cyclohexene (0.66 mL, 

6.55 mmol) and Pd(OH)2/C (20 wt. %, 0.02 g). After purification with column chromatography 

(methanol/DCM, 2–8%) product 21 was obtained as a white solid (0.07 g, 99% yield). 1H NMR (300 MHz, 

DMSO-d6) δ 8.91 (1H, t, J 5.4 Hz, amide NH), 8.41 (1H, s, adenine H), 8.26 (1H, br s, adenine H), 7.84 

(1H, m, amine NH), 5.97 (1H, d, J 7.6, 1’-H), 5.75 (1H, d, J 4.3, 3’-OH), 5.55 (1H, d, J 6.5, 2’-OH), 4.86 

(1H, m, 2-OH), 4.62 (1H, m, 2’-H), 4.31 (2H, m, 1-H and 4’-H), 4.14 (1H, m, 3’-H), 4.06 (1H, m, 2-H), 

3.23 (2H, m, CH2CH3), 2.10 (1H, m, 1 x cyclopentyl H), 1.90 (1H, m, 1 x cyclopentyl H), 1.74-1.42 (4H, 

m, 4 x cyclopentyl H), 1.09 (3H, t, J 7.2, CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ 169.1, 154.8, 152.2, 

140.3, 87.8, 84.6, 76.0, 73.1, 72.0, 58.8, 33.3, 32.3, 20.4, 14.7; HRMS (ESI) calcd for C17H25O5N6 [MH]+ 

393.1881, found 393.1873; purity UPLC-MS 99%, retention time = 2.21 min. 

6-N-[(3-endo)-3-tert-Butyloxycarbonylamino-9-azabicyclo[3.3.1]non-3-yl]-5’-ethylamino-

2’,3’-O-isopropylidene-5’-oxo-5’-deoxyadenosine (23). 23 was synthesised according to the general 

procedure A, using chloride 10 (0.03 g, 0.08 mmol), tert-butyl-9-azabicyclo[3.3.1]nonan-3-ylcarbamate 

(22) (0.04 g, 0.16 mmol) and triethylamine (0.41 mL, 2.94 mmol). Following removal of the solvent from 

the reaction mixture, the residue was dissolved in ethyl acetate (100 mL) and washed with water (2 x 50 

mL). The organic phase was then dried over anhydrous Na2SO4 and the solvent was removed in vacuo. 

After purification with column chromatography (methanol/DCM, 1–2%) product 23 was obtained as a pale 
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yellow solid (0.03 g, 67% yield). 1H NMR (300 MHz, MeOD-d4) δ 8.18 (1H, s, adenine H), 8.13 (1H, m, 

adenine H), 6.33 (1H, s, 1’-H), 6.16 (1H, m, 1- or 5-H), 5.61 (1H, m, 2’-H), 5.49 (1H, m, 3’-H), 5.42 (1H, 

m, 1- or 5-H), 4.62 (1H, d, J 1.7, 4’-H), 3.29 (1H, m, granatyl H), 2.85 (2H, m, CH2CH3), 2.42-2.16 (3H, 

m, 3 x granatyl H), 1.79-1.34 (22H, m, 2 x CH3, -C(CH3)3 and 7 x granatyl H), 0.66 (3H, dt, J 14.7, 7.2, 

CH2CH3); 
13C NMR (75 MHz, CDCl3) 171.8, 155.4, 153.7, 140.6, 117.1, 115.0, 93.0, 88.9, 85.5, 85.3, 45.1, 

44.1, 35.0, 33.6, 33.2, 32.5, 31.8, 30.9, 28.9, 27.2, 25.5, 15.0, 14.3; HRMS calculated for C28H42O6N7 [MH]+ 

572.3191, found 572.3187. 

6-N-[(3-endo)-3-Amino-9-azabicyclo[3.3.1]non-3-yl]-5’-ethylamino-5’-oxo-5’-

deoxyadenosine (24). 24 was synthesised according to the general procedure B, using 23 (0.02 g, 0.03 

mmol), acetic acid (1.5 mL) and water (0.5 mL). The crude product was purified by prep-LC, with an eluent 

gradient of 100% A to 60% D in 40 minutes. The fractions were collected and dried by lyophilization and 

product 24 was obtained as a white solid as the TFA salt (0.03 g, 99% yield). 1H NMR (400 MHz, MeOD-

d4) δ 8.34 (1H, s, adenine H), 8.28 (1H, s, adenine H), 6.35 (1H, br s, 1- or 5-H), 6.03 (1H, d, J 7.6, 1’-H), 

5.59 (1H, br s, 1- or 5-H), 4.74 (1H, dd, J 7.5, 4.8, 2’-H), 4.48 (1H, d, J 1.6, 4’-H), 4.30 (1H, dd, J 4.8, 1.5, 

3’-H), 3.36 (2H, q, J 7.3, CH2CH3), 3.00 (1H, ddd, J 18.3, 12.2, 5.8, 3-H), 2.57 (2H, m, 2 x granatyl H), 

2.18 (1H, m, 1 x granatyl H), 1.87-1.64 (7H, m, 7 x granatyl H), 1.20 (3H, t, J 7.3, CH2CH3); 
13C NMR 

(100 MHz, MeOD-d4) δ 172.2, 155.2, 152.6, 150.7, 141.1, 121.8, 90.6, 86.4, 75.0, 73.5, 45.1, 35.1, 31.0, 

15.0, 14.7; 19F NMR (376 MHz, DMSO-d6) δ -77.3; HRMS (ESI) calcd for C20H30O4N7 [MH]+ 432.2354, 

found 432.2343; purity UPLC-MS 99%, retention time = 1.80 min. 

6-N-[(3-endo)-3-Aminodimethyl-9-azabicyclo[3.3.1]non-3-yl]-5’-ethylamino-5’-oxo-5’-

deoxyadenosine (25). Formic acid (0.02 mL) and formaldehyde (37% aq. solution, 0.04 mL) were added 

to 24 (0.01 g, 0.02 mmol) and stirred at 90 °C overnight. Additional formic acid (0.02 mL) and 

formaldehyde (37% aq. solution, 0.04 mL) were added and stirred at 105 °C for 3 h. The reaction mixture 

was allowed to cool to room temperature and made alkaline with 1M NaOH solution. This was then 

thoroughly extracted with ethyl acetate (3 x 100 mL) and the combined organic extracts were washed with 
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sat. aq. NaHCO3 (50 mL), water (50 mL) and brine (50 mL), dried over anhydrous Na2SO4 and the solvent 

removed in vacuo to give 25 as white solid (0.006 g, 67% yield). 1H NMR (300 MHz, MeOH-d4) δ 8.27 

(1H, s, adenine H), 8.21 (1H, s, adenine H), 6.26 (1H, br s, 1- or 5-H), 6.01 (1H, d, J 7.6, 1’-H), 5.49 (1H, 

br s, 1- or 5-H), 4.78 (1H, dd, J 7.7, 4.8, 2’-H), 4.46 (1H, d, J 1.4, 4’-H), 4.30 (1H, dd, J 4.8, 1.4, 3’-H), 

3.38 (2H, m, CH2CH3), 2.45 (9H, m, 2 x CH3 and 3 x granatyl H), 2.18 (1H, m, 1 x granatyl H), 1.77-1.58 

(7H, m, 7 x granatyl H), 1.20 (3H, t, J 7.3, CH2CH3); 
13C NMR (100 MHz, DMSO-d6) δ  172.1, 155.1, 

153.3, 151.5, 140.8, 121.6, 90.4, 86.4, 75.0, 73.2, 58.6, 41.8, 35.1, 30.8, 15.1, 14.9; HRMS (ESI) calcd for 

C22H34O4N7 [MH]+ 460.2667, found 460.2661; purity UPLC-MS 99%, retention time = 1.87 min. 

6-N-(1-Adamantyl)-5’-(2-fluorophenylthio)-2’,3’-O-isopropylidene-5’-deoxyadenosine (30). 

30 was synthesised according to the general procedure A, using chloride 29 (0.1 g, 0.23 mmol), amantadine 

hydrochloride (0.13 g, 0.69 mmol) and DIPEA (0.18 mL, 1.03 mmol). After purification with column 

chromatography (methanol/DCM, 0.5%) product 30 was obtained as a white solid (0.09 g, 69% yield). 1H 

NMR (300 MHz, DMSO-d6) δ 8.29 (1H, s, adenine H), 8.23 (1H, s, adenine H), 7.38 (1H, td, J 7.8, 1.6, Ar 

H), 7.31-7.07 (3H, m, 3 x Ar H), 6.67 (1H, s, amine NH), 6.17 (1H, d, J 2.2, 1’-H), 5.51 (1H, dd, J 6.2, 2.2, 

2’-H), 5.05 (1H, dd, J 6.2, 2.7, 3’-H), 4.20 (1H, td, J 6.9, 2.5, 4’-H), 3.25 (2H overlapping with solvent 

signal, m, 5’-H2), 2.22 (6H, m, 6 x adamantyl H), 2.09 (3H, m, 3 x adamantyl H), 1.75-1.63 (6H, m, 6 x 

adamantyl H), 1.49 (3H, s, CH3), 1.31 (3H, s, CH3); 
13C NMR (100 MHz, DMSO-d6) δ 161.3, 158.9, 154.4, 

151.9, 147.7, 139.8, 131.1, 128.5 (d, J 7.9), 124.9 (d, J 3.6), 121.8 (d, J 17.1), 119.9, 115.6 (d, J 21.9), 

113.2, 89.5, 85.1, 83.4, 83.2, 52.2, 41.0, 36.0, 34.4, 29.0, 26.8, 25.1; 19F NMR (376 MHz, DMSO-d6) δ -

110.4; HRMS (ESI+) m/z calcd for C29H35N5O3FS [MH]+ 552.2439, found 552.2425. 

6-N-[(3-endo)-9-Methyl-9-azabicyclo[3.3.1]non-3-yl]-5’-(2-fluorophenylthio)-2’,3’-O-

isopropylidene-5’-deoxyadenosine (31). 31 was synthesised according to the general procedure A, using 

chloride 29 (0.1 g, 0.23 mmol), (3-endo)-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine  (0.14 g, 0.92 mmol) 

and DIPEA (0.04 mL, 0.28 mmol). After purification with column chromatography (methanol/DCM, 5–

10%) product 31 was obtained as a pale yellow solid (0.08 g, 61% yield). 1H NMR (400 MHz, CDCl3) δ 



39 
 

8.33 (1H, s, adenine H), 7.76 (1H, s, adenine H), 7.36 (1H, m, Ar H), 7.20 (1H, m, Ar H), 7.04-6.97 (2H, 

m, 2 x Ar H), 6.01 (1H, d, J 2.0, 1’-H), 5.54 (1H, dd, J 6.3, 1.9, 2’-H), 5.52 (1H overlapping with 2’-H 

signal, br s, NH), 5.10 (1H, dd, J 6.3, 2.8, 3’-H), 4.75 (1H, br s, 3-H), 4.37 (1H, td, J 7.2, 2.8, 4’-H), 3.25 

(H, dd, J 13.7, 7.6, 5-HH), 3.17 (1H, dd, J 13.7, 6.5, 5-HH), 3.11 (2H, m, 1- and 5-H), 2.65-2.52 (2H, m, 2 

x granatyl H), 2.50 (3H, s, NCH3), 2.04-1.91 (3H, m, 3 x granatyl H), 1.56 (3H, s, CH3), 1.53 (1H, m, 

granatyl H), 1.37 (3H, s, CH3), 1.35-1.29 (2H, m, 2 x granatyl H), 1.02 (2H, m, 2 x granatyl H); 13C NMR 

(75 MHz, CDCl3) 163.5, 160.2, 154.6, 153.5, 139.3, 133.3, 129.2 (d, J 8.0), 124.5 (d, J 3.8), 122.0 (d, J 

17.5), 115.9 (d, J 22.5), 114.3, 91.3, 86.6, 84.2, 84.1, 51.4, 40.3, 36.2, 33.6, 27.1, 25.4, 24.2, 14.4; 19F NMR 

(376 MHz, DMSO-d6) δ -108.4; HRMS calculated for C28H36O3N6FS [MH]+ 555.2548, found 555.2548; 

purity UPLC-MS 93%, retention time = 2.88 min. 

6-N-((1R,2R)-2-(Benzyloxy)cyclopentyl)-5’-(2-fluorophenylthio)-2’,3’-O-isopropylidene-5’-

deoxyadenosine (32). 32 was synthesised according to the general procedure A, using chloride 29 (0.05 g, 

0.11 mmol), (1R,2R)-1-amino-2-benzyloxycyclopentane (0.03 mL, 0.17 mmol) and triethylamine (0.04 

mL, 0.31 mmol). After purification with column chromatography (methanol/DCM, 2%) product 32 was 

obtained as a sticky yellow oil (0.06 g, 99% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.32 (1H, s, adenine 

H), 8.26 (1H, br s, adenine H), 7.96 (1H, m, amine NH), 7.39 (1H, td, J 7.8, 1.6, Ar H), 7.32-7.06 (8H, m, 

8 x Ar H), 6.19 (1H, d, J 2.1, 1’-H), 5.51 (1H, dd, J 6.2, 2.1, 2’-H), 5.07 (1H, dd, J 6.2, 2.6, 3’-H), 4.67-

4.47 (3H, m, 1-H and CH2Ph), 4.21 (1H, td, J 7.1, 2.6, 4’-H), 4.01 (1H, m, 2-H), 3.25 (2H overlapping with 

solvent signal, m, 5’-H2), 2.13-1.89 (2H, m, 2 x cyclopentyl H), 1.79-1.57 (4H, m, 4 x cyclopentyl H), 1.49 

(3H, s, CH3), 1.31 (3H, s, CH3);
 13C NMR (100 MHz, DMSO-d6) δ 161.3, 158.9, 154.2, 152.5, 147.9, 139.8, 

138.9, 131.1, 128.5 (d, J 7.9), 128.1, 127.3, 127.1, 124.9 (d, J 3.5), 121.8 (d, J 17.1), 115.6 (d, J 22.0), 

113.2, 89.4, 85.2, 84.0, 83.4, 83.2, 70.1, 56.5, 34.4, 30.1, 26.8, 25.1, 21.4; 19F NMR (376 MHz, DMSO-d6) 

δ -110.4; HRMS (ESI) calculated for C31H35O4N5FS [MH]+ 592.2388, found 592.2378; purity UPLC-MS 

94%, retention time = 3.98 min. 
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6-N-((1R,2R)-2-(Hydroxy)cyclopentyl)-5’-(2-fluorophenylthio)-2’,3’-O-isopropylidene-5’-

deoxyadenosine (33). 33 was synthesised according to the general procedure A using chloride 29 (0.05 g, 

0.11 mmol), (1R,2R)-2-aminocyclopentanol hydrochloride (0.02 g, 0.14 mmol) and triethylamine (0.04 mL, 

0.31 mmol). After purification with column chromatography (methanol/DCM, 2%) product 33 was 

obtained as a white solid (0.04 g, 73% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.31 (1H, s, adenine H), 

8.22 (1H, br s, adenine H), 7.76 (1H, m, NH), 7.39 (1H, td, J 7.8, 1.6, Ar H), 7.31-7.07 (3H, m, 3 x Ar H), 

6.18 (1H, d, J 2.1, 1’-H), 5.51 (1H, dd, J 6.2, 2.1, 2’-H), 5.06 (1H, dd, J 6.2, 2.7, 3’-H), 4.86 (1H, m, 2-

OH), 4.27 (1H, br s, 1-H), 4.21 (1H, td, J 7.1, 2.6, 4’-H), 4.06 (1H, m, 2-H), 3.26 (2H overlapping with 

solvent signal, m, 5’-H2), 2.06 (1H, m, 1 x cyclopentyl H), 1.89 (1H, m, 1 x cyclopentyl H), 1.72-1.60 (2H, 

m, 2 x cyclopentyl H), 1.60-1.43 (5H, m, 2 x cyclopentyl H and CH3), 1.32 (3H, s, CH3); 
13C NMR (100 

MHz, DMSO-d6) δ 161.3, 158.9, 154.7, 152.5, 139.8, 131.1, 128.6 (d, J 7.9), 124.9 (d, J 3.5), 121.8 (d, J 

17.1), 115.6 (d, J 22.0), 113.2, 89.5, 85.1, 83.4, 83.2, 76.0, 58.9, 34.4, 32.3, 26.8, 25.1, 20.4; 19F NMR (376 

MHz, DMSO-d6) δ -110.4; HRMS (ESI) calculated for C24H29O4N5FS [MH]+ 502.1919, found 502.1912; 

purity UPLC-MS 99%, retention time = 3.14 min. 

6-N-(1-Adamantyl)-5’-(2-fluorophenylthio)-5’-deoxyadenosine (34). 34 was synthesised 

according to the general procedure B, using 30 (0.01 g, 0.02 mmol), acetic acid (3.2 mL) and water (0.8 

mL). After purification with column chromatography (methanol/DCM, 1–3%) product 34 was obtained as 

a white solid (0.004 g, 40% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.32 (1H, s, adenine H), 8.21 (1H, s, 

adenine H), 7.46 (1H, td, J 7.8, 1.6, Ar H), 7.29-7.12 (3H, m, 3 x Ar H), 6.60 (1H, s, NH), 5.87 (1H, d, J 

5.7, 1’-H), 5.51 (1H, d, J 6.1, 2’-OH), 5.37 (1H, d, J 5.0, 3’-OH), 4.82 (1H, dd, J 11.1, 5.7, 2’-H), 4.22 (1H, 

dd, J 8.7, 4.9, 3’-H), 4.00 (1H, m, 4’-H), 3.42 (1H, dd, J 13.8, 5.5, 5’-HH), 3.31 (1H overlapping with 

solvent signal, m, 5’-HH), 2.23 (6H, m, 6 x adamantyl H), 2.10 (3H, m, 3 x adamantyl H), 1.68 (6H, m, 6 

x adamantyl H); 13C NMR (100 MHz, DMSO-d6) δ 161.1, 158.7, 154.4, 151.9, 148.5, 139.7, 130.5, 128.1 

(d, J 7.9), 125.0 (d, J 3.4), 122.6 (d, J 17.1), 119.9, 115.5 (d, J 21.8), 87.7, 82.8, 72.7, 72.5, 52.1, 41.0, 36.0, 
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34.6, 29.0; 19F NMR (376 MHz, DMSO-d6) δ -110.78; HRMS (ESI+) m/z calcd for C26H31N5O3FS [MH]+ 

512.2126, found 512.2130. 

6-N-[(3-endo)-9-Methyl-9-azabicyclo[3.3.1]non-3-yl]-5’-(2-fluorophenylthio)-5’-

deoxyadenosine (35). 35 was synthesised according to the general procedure B, using 31 (0.01 g, 0.02 

mmol), acetic acid (3.2 mL) and water (0.8 mL). After purification with column chromatography 

(methanol/DCM, 1–10%, with an additional 1% aqueous ammonia) product 35 was obtained as a white 

solid (0.005 g, 50% yield). 1H NMR (400 MHz, MeOD-d4) δ 8.24 (1H, s, adenine H), 8.17 (1H, s, adenine 

H), 7.45 (1H, m, Ar H), 7.21 (1H, m, Ar H), 7.07-7.01 (2H, m, 2 x Ar H), 5.95 (1H, d, J 5.2, 1’-H), 4.84 

(1H, 2’-H under solvent signal as determined by COSY analysis), 4.83 (1H, br s, 3-H, partially hidden by 

solvent signal), 4.37 (1H, m, 3’-H), 4.20 (1H, m, 4’-H), 3.40 (2H, m, CH2CH3), 3.31 (2H, 1- and 5-H under 

solvent signal as determined by COSY analysis), 2.70-2.57 (5H, m, NCH3 and 2 x granatyl H), 2.16-2.04 

(3H, m, 3 x granatyl H), 1.69-1.59 (3H, m, 3 x granatyl H), 1.32-1.29 (2H, m, 2 x granatyl H); 13C NMR 

(100 MHz, MeOD-d4) δ 163.8, 155.6, 154.0, 140.9, 133.2, 129.7 (d, J 7.9), 125.7 (d, J 3.7), 116.5 (d, J 

22.5), 90.1, 85.0, 74.7, 74.1, 53.7, 40.2, 36.5, 32.9, 25.7, 14.3, 7.6; 19F NMR (376 MHz, DMSO-d6) δ -

111.5; HRMS (ESI+) m/z calcd for C25H32N6O3FS [MH]+ 515.2235, found 515.2240; purity UPLC-MS 

99%, retention time = 2.24 min. 

6-N-((1R,2R)-2-(Benzyloxy)cyclopentyl)-5’-(2-fluorophenylthio)-5’-deoxyadenosine (36).47 36 

was synthesised according to the general procedure B, using 32 (0.02 g, 0.03 mmol), acetic acid (3.2 mL) 

and water (0.8 mL). After purification with column chromatography (methanol/DCM, 1–3%) product 36 

was obtained as a pale yellow solid (0.02 g, 99% yield). 1H NMR (300 MHz, DMSO-d6) δ 8.35 (1H, s, 

adenine H), 8.24 (1H, br s, adenine H), 7.89 (1H, m, amine NH), 7.46 (1H, m, Ar H), 7.33-7.10 (8H, m, 8 

x Ar H), 5.90 (1H, d, J 5.6, 1’-H), 5.52 (1H, d, J 6.0, 2’-OH), 5.38 (1H, d, J 5.1, 3’-OH), 4.81 (1H, dd, J 

11.1, 5.6, 2’-H), 4.68-4.50 (3H, m, 1-H and CH2Ph), 4.21 (1H, dd, J 8.7, 4.8, 3’-H), 4.00-3.97 (2H, m, 4’-

H and 2-H), 3.42 (1H, dd, J 13.8, 5.5, 5’-HH), 3.32 (1H overlapping with solvent signal, m, 5’-HH) 2.14-

1.91 (2H, m, 2 x cyclopentyl H), 1.77-1.58 (4H, m, 4 x cyclopentyl H); 13C NMR (100 MHz, DMSO-d6) δ 
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161.1, 158.7, 154.2, 152.5, 139.6, 139.0, 130.5, 128.1, 128.0, 127.3, 127.1, 125.0 (d, J 3.4), 122.6 (d, J 

17.2), 155.5 (d, J 21.9), 87.6, 84.1, 82.8, 72.7, 72.6, 70.1, 56.4, 34.6, 30.2, 21.4; 19F NMR (376 MHz, 

DMSO-d6) δ -110.8; HRMS (ESI) calcd for C28H31O4N5FS [MH]+ 552.2075, found 552.2071; purity UPLC-

MS 99%, retention time = 3.14 min. 

6-N-((1R,2R)-2-(Hydroxy)cyclopentyl)-5’-(2-fluorophenylthio)-5’-deoxyadenosine (37).14 37 

was synthesised according to the general procedure B, using 33 (0.01 g, 0.02 mmol), acetic acid (3.2 mL) 

and water (0.8 mL). After purification with column chromatography (methanol/DCM, 1–5%) product 37 

was obtained as a white solid (0.005 g, 56% yield). The O-acetylated product was also isolated in small 

quantities. 1H NMR (300 MHz, DMSO-d6) δ 8.34 (1H, s, adenine H), 8.21 (1H, br s, adenine H), 7.69 (1H, 

d, J 7.1, amine NH), 7.47 (1H, td, J 7.8, 1.6, Ar H), 7.31-7.10 (3H, m, 3 x Ar H), 5.89 (1H, d, J 5.7, 1’-H), 

5.54 (1H, d, J 6.0, 2’-OH), 5.40 (1H, d, J 5.0, 3’-OH), 4.87 (1H, d, J 4.0, 2-OH), 4.80 (1H, dd, J  10.9, 5.6, 

2’-H), 4.30 (1H, br s, 1-H), 4.21 (1H, dd, J 8.6, 4.7, 3’-H), 4.09-3.95 (2H, m, 4’-H and 2-H), 3.42 (1H, dd, 

J 13.7, 5.5, 5’-HH), 3.32 (1H, m, 5’-HH), 2.07 (1H, m, 1 x cyclopentyl H), 1.90 (1H, m, 1 x cyclopentyl 

H), 1.72-1.42 (4H, m, 4 x cyclopentyl H); 13C NMR (100 MHz, DMSO-d6) δ 161.1, 158.7, 154.6, 152.4, 

139.6, 130.5 (d, J 1.7), 128.1 (d, J 7.9), 125.0 (d, J 3.4), 122.6 (d, J 17.1), 115.5 (d, J 21.8), 87.6, 82.8, 76.1, 

72.7, 72.6, 58.8, 34.6, 32.3, 20.4; 19F NMR (376 MHz, DMSO-d6) δ -110.8; HRMS (ESI) calcd for 

C21H25O4N5FS [MH]+ 462.1606, found 462.1590; purity UPLC-MS 95%, retention time = 2.35 min. 

Biology Materials. Yeast extract and yeast nitrogen base were purchased from Difco (Franklin 

Lakes, NJ). All other reagents were purchased from Sigma-Aldrich (St. Louis, MO). 

Constructs and DNA Manipulation. p426-GPD-A1R was kindly provided by Professor Arthur 

Christopoulos and Dr. Lauren May (Monash University, Australia). Mammalian expression vectors 

containing the A1R, A2AR, A2BR and A3R were purchased from Missouri S&T cDNA Resource Center 

(http://cdna.org) (Rolla, MO). DNA manipulations were performed using standard techniques. 

Oligonucleotides were supplied by Invitrogen and PCR amplification performed using FastStart Taq 
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polymerase (Roche Diagnostics, Burgess Hill, UK). All constructs generated by PCR were sequenced by 

GATC (GATC Biotech, London, UK) prior to use. 

General Yeast Methods. General yeast procedures were performed as described previously.16 Cells 

were routinely cultured in YPDA (yeast, peptone, dextrose and adenine). Yeast transformations were 

achieved using the lithium acetate/single-stranded DNA/polyethylene glycol method as previously 

described.50 Cells were selected for uracil biosynthesis and routinely cultured in synthetic dropout media 

lacking uracil (SD-URA). 

Yeast Strain Construction. The production of the dual reporter strains expressing chimeras of five 

C-terminal amino acids of human Gα protein with the yeast Gpa1p, 1-467 (GPA1/Gα) has been described 

previously.16 Mammalian GPCRs were introduced into the yeast strains (MMY12, MMY14, MMY19, 

MMY22, MMY23, MMY25 and MMY28) using the p426-GPD expression plasmid. Positive isolates were 

selected upon their ability to generate β-galactosidase activity above basal when stimulated with 100 μM 

NECA. For chimeric strains that did not initially appear to functionally couple (n ≥ 16 isolates) to the ARs, 

expression and membrane localization were confirmed using fluorescence microscopy. 

Yeast Reporter Gene Assay. Yeast cells were treated with compounds as described in Dowell and 

Brown.16 Initially cells were cultured overnight in SD-URA at 30°C. Cells were diluted 1:10 in SD-URA 

and allowed to grow for 8 hours at 30°C. Finally cell density was adjusted to an OD600 of 0.02 and treated 

with 1% (v/v) of the appropriate compound dissolved in DMSO in a 96-well plate for 16 hours at 30°C. 

For compounds dissolved in other solvents the media was supplemented with 1% (v/v) DMSO prior to 

treatment. To compensate for an elevated basal signal, the A2AR was routinely cultured in SD-URA lacking 

histidine (SD-URA-HIS) and treatment media supplemented with 5mM 3-amino-triazole. All strains used 

in this study contain the lacZ gene under the control of the pheromone-responsive FUS1 promoter. To 

assess β-galactosidase activity cells were lysed as previously described.19,51-53 2-Nitrophenyl β-D-

galactopyranoside (ONPG) was used as a chromogenic substrate for β-galactosidase and detected by OD430. 

Absorbance was measured using a Mithras LB940 microplate reader (Berthold Technologies, Harpenden, 

UK). The strains are Δfar1 and are therefore incapable of cell cycle arrest induced by the pheromone-
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response. Consequently, these cells grow throughout treatment. To compensate for variability in cell 

number and bleed through from the chromogenic reporter, cell density was measured by OD620 and a 

response calculated as (OD430-OD620)/OD620. 

Confocal Microscopy of Yeast. To visual receptor expression C-terminal in-frame fusion constructs 

between the A1R, A2AR and A2BR and GFP was generated using the two-step cloning method described by 

Ladds et al.54 These receptors were expressed in yeast using p426-GPD vector consistent with their un-

tagged counterparts. Isolates were cultured for 24 h in SD-URA. 100 μL cells were harvested by 

centrifugation, washed in PBS and briefly sonicated. Cells were imaged using a True Confocal Scanner 

Leica TCS SP5 microscope (Leica Microsystems Ltd., Milton Keynes, UK) and were processed using 

ImageJ as described previously.55 

Mammalian Cell Culture and Transfection. CHO-K1 cells, provided by Dr Ewan St. John Smith 

(University of Cambridge), were routinely cultured in Hams-F12, supplemented with 10% fetal bovine 

serum (FBS), and maintained at 37°C, in humidified air with 5% CO2. Cells were transfected with 2 μg 

DNA using FuGene® 6 at a 3:1 (w:v) DNA:FuGene 6 ratio. Cells were harvested 48 h post transfection for 

assaying. 

cAMP Accumulation Assay. Transfected cells were washed with PBS and resuspended in 

stimulation buffer (PBS containing 0.1% BSA and 25 μM rolipram). Cells were seeded at 2500 cells per 

well in 384-well white Optiplates. Cells were then simultaneously incubated with 10 μM forskolin (to 

stimulate cAMP production) and adenosine receptors ligands (ranging between 1 μM to 10 pM) for 30 min 

at room temperature. Cells were then lysed and the extent of cAMP accumulation measured using a 

LANCE® cAMP Detection Kit (PerkinElmer). Plates were read using a Mithras LB 940 multimode plate 

reader (Berthold Technologies).  

Data Analysis. Data were analyzed using Prism 6.0e (Graphpad Software, San Diego, CA). 

Concentration response curves were fitted using the three-parameter logistic equation to obtain EC50 and 

Emax. Schild analysis was performed in Prism as described by Motulsky and Christopoulos.56 Non-linear 

regression of the operational model of pharmacological agonism36 was used to obtain values for efficacy 
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(log τ) and the equilibrium dissociation constant (log KA). These values were then used to quantify signaling 

bias as the change in log (τ/KA) relative to NECA.37 We have used this method previously to enable 

quantification of G protein bias19,20 but here we have extended the analysis to include receptor selectivity. 

Since the receptors are expressed in the same cell background, and that NECA is a full potent agonist 

against all receptor subtypes, we reasoned that changes in log (τ/KA) for a given ligand, relative to NECA 

for each AR would provide a quantitative means of comparing receptor selectivity. Statistically significant 

differences were detected using one-way ANOVA with Bonferroni’s or Dunnett’s multiple comparison 

tests or Student T-tests as appropriate and a probability (p) < 0.05 was considered significant. 

Homology Modeling and Docking. The protein sequence of the human A1R (accession number 

P30542) was aligned with an agonist (UK-432097)-bound human A2AR template (PDB ID: 3QAK) using 

PSI-Coffee57 (Figure S4). MODELLER v9.1458 was used to build 500 models and the best model selected 

according to the inbuilt molecular probability function. The ligands were constructed ab initio in Chem3D 

Pro v14.0 (PerkinElmer, Waltham, MA) and energy-minimised using the included MM2 force field. For 

each ligand a library of 200 conformers was generated using OMEGA v2.5 (OpenEye Scientific Software, 

Santa Fe, NM). FRED RECEPTOR v2.2.5 (OpenEye Scientific Software) was utilized to generate a 

docking template whereas the binding site was defined as a box of V = 9486 Å3 around the bound UK-

432097 agonist. For predicting the binding poses, the ligands were docked into this binding site template 

using FRED v2.1 (OpenEye Scientific Software) that utilizes an exhaustive process to position and score 

all conformers of a ligand at all possible positions within the defined binding site. Binding poses that did 

not form a hydrogen bond with either Thr-913.36, Asn-2546.55 or Thr-2777.42 were discarded (hA1R 

numbering according to P30542, superscript: Ballesteros-Weinstein numbering45). Ten docking poses were 

generated for each ligand, ranked using the inbuilt Chemgauss3 scoring function and visualized with 

PyMOL v1.7 (Schrödinger LLC, Portland, OR). 
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Supporting Information 

Synthesis procedures and spectral data for synthetic intermediates, reproduction of 1H and 13C NMR 

spectra, purity assessment for final compounds, Schild analysis of compounds 36 and 37, functional 

assessment of A3R in yeast and predicted docking poses for compounds. This material is available free of 

charge via the Internet at http://pubs.acs.org. 
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