
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
7
6
8
1
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
7
.
4
.
2
0
2
4

J
H
E
P
1
1
(
2
0
1
5
)
1
8
0

Published for SISSA by Springer

Received: October 5, 2015

Accepted: November 10, 2015

Published: November 25, 2015

Newton-Cartan supergravity with torsion and

Schrödinger supergravity

Eric Bergshoeff,a Jan Rosseelb,c and Thomas Zojera

aVan Swinderen Institute for Particle Physics and Gravity, University of Groningen,

Nijenborgh 4, 9747 AG Groningen, The Netherlands
bInstitute for Theoretical Physics, Vienna University of Technology,

Wiedner Hauptstr. 8-10/136, A-1040 Vienna, Austria
cAlbert Einstein Center for Fundamental Physics, University of Bern,

Sidlerstrasse 5, 3012 Bern, Switzerland

E-mail: e.a.bergshoeff@rug.nl, rosseelj@hep.itp.tuwien.ac.at,

t.zojer@rug.nl

Abstract: We derive a torsionfull version of three-dimensional N = 2 Newton-Cartan

supergravity using a non-relativistic notion of the superconformal tensor calculus. The

“superconformal” theory that we start with is Schrödinger supergravity which we obtain

by gauging the Schrödinger superalgebra. We present two non-relativistic N = 2 matter

multiplets that can be used as compensators in the superconformal calculus. They lead to

two different off-shell formulations which, in analogy with the relativistic case, we call “old

minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also

point out some differences with respect to the relativistic case.

Keywords: Gauge Symmetry, Supergravity Models, Holography and condensed matter

physics (AdS/CMT), Classical Theories of Gravity

ArXiv ePrint: 1509.04527

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2015)180

mailto:e.a.bergshoeff@rug.nl
mailto:rosseelj@hep.itp.tuwien.ac.at
mailto:t.zojer@rug.nl
http://arxiv.org/abs/1509.04527
http://dx.doi.org/10.1007/JHEP11(2015)180


J
H
E
P
1
1
(
2
0
1
5
)
1
8
0

Contents

1 Introduction 1

2 Schrödinger supergravity 5

2.1 The Schrödinger superalgebra and transformation rules 5

2.2 Curvature constraints 7

2.3 The dependent gauge fields 10

3 Matter multiplets 12

3.1 The scalar multiplet 13

3.2 The vector multiplet 15

4 Newton-Cartan supergravity with torsion 17

4.1 The “old minimal” formulation 19

4.2 The “new minimal” formulation 19

5 Truncation to zero torsion 20

6 Conclusions and outlook 23

A Details on the off-shell multiplets 25

A.1 “Old minimal” formulation 25

A.2 “New minimal” formulation 27

1 Introduction

Recent applications in condensed matter physics and gauge-gravity duality have led to a

renewed interest in the question of how to consistently couple non-relativistic field theories

to arbitrary non-relativistic space-time backgrounds. As in the relativistic case, a consistent

coupling of a field theory to arbitrary geometric background data allows one to covariantly

define currents such as the energy-momentum tensor and to study linear response. This

geometric approach has been used in condensed matter physics recently, as a means to

construct effective field theories that capture universal properties of the fractional quantum

Hall effect [1–4]. It also plays a prominent role in recent applications of gauge-gravity

duality to condensed matter physics, such as Lifshitz and Schrödinger holography [5–7].

Here, one views non-relativistic conformal field theories as living on the boundary of a

higher-dimensional space-time with non-relativistic isometries, that is a vacuum solution

of a suitable dual gravitational theory. The partition function of the field theory can then

be calculated holographically as the partition function of the dual gravitational theory, in

which all fields are subject to well-prescribed fall-off conditions towards the boundary. The

– 1 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
0

asymptotic values of the fields of the gravitational dual correspond to sources for operators

in the conformal field theory and play the role of arbitrary geometric background data to

which the field theory couples.

In both condensed matter and gauge-gravity duality applications, it has been argued

that the correct geometric framework to specify the background data is given by Newton-

Cartan geometry with torsion [4, 8–18]. Newton-Cartan geometry was first introduced in

the context of Newton-Cartan gravity [19–21], as the differential geometry necessary to cast

Newtonian gravity in a covariant form akin to General Relativity. Even though Newton-

Cartan geometry was originally formulated in a metric-like fashion, recent advances and

applications have focused more on an equivalent vielbein formulation, in both torsionless

and torsionfull cases. In this vielbein formulation one introduces temporal and spatial

vielbeins that transform under local spatial rotations and Galilean boosts, as well as spin

connections for spatial rotations and Galilean boosts. Crucially, one also includes an extra

gauge field that is associated to particle number conservation. In the torsionless case,

the vielbein formulation of Newton-Cartan geometry can be constructed by gauging the

Bargmann algebra, i.e. the central extension of the Galilei algebra [22, 23], where the

central charge corresponds to particle number. Similarly, it is possible to obtain particular

torsionfull Newton-Cartan geometries by gauging the conformal extension of the Bargmann

algebra, namely the Schrödinger algebra [14].

An interesting question is whether Newton-Cartan geometry and Newton-Cartan grav-

ity can be made compatible with supersymmetry, i.e. whether one can construct Newton-

Cartan supergravity theories. Such theories can be relevant for the construction of su-

persymmetric non-relativistic field theories, coupled to arbitrary backgrounds, that could

e.g. be used as toy models to study exact results in non-relativistic quantum field theory.

Relatedly, one might use Newton-Cartan supergravity theories to see whether localization

techniques, that have proved useful to obtain exact results for relativistic supersymmetric

theories on curved backgrounds [24–26], can be extended to non-relativistic theories.

The first example of a Newton-Cartan supergravity theory was obtained in [23] and

corresponds to three-dimensional, N = 2, on-shell, pure Newton-Cartan supergravity with

zero torsion. The independent gauge fields of this theory are given by1

non-relativistic on-shell :
(
τµ, eµ

a,mµ, ψµ±
)
. (1.1)

Initially, this theory was constructed via a gauging of the d = 3, N = 2 Bargmann super-

algebra; it was recently revisited in [27], where it was re-obtained from relativistic d = 3,

N = 2 supergravity via a procedure that corresponds to properly taking the non-relativistic

limit while keeping an arbitrary frame formulation. This limiting procedure was then sub-

sequently used to obtain an off-shell, pure d = 3, N = 2 Newton-Cartan supergravity

theory. Even though these examples show that Newton-Cartan geometry and gravity can

be appropriately supersymmetrized, for practical purposes it is desirable to construct more

elaborate examples than the pure, torsionless supergravities just mentioned. In particular,

in view of the above mentioned condensed matter and gauge-gravity duality applications

1We use the same notation and conventions as in [23].
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one would like to obtain Newton-Cartan supergravity theories that include non-trivial tor-

sion as well as matter couplings. Such theories can generically not be obtained by applying

the simple gauging procedure that led to the on-shell theory of [23], as not all fields will

correspond to gauge fields of an underlying superalgebra. Since taking a proper and con-

sistent non-relativistic limit can be rather cumbersome, new techniques are thus required

to obtain such torsionfull and/or matter-coupled Newton-Cartan supergravity theories.

A very useful way to construct relativistic supergravity theories is offered by the su-

perconformal tensor calculus (see [28] for an introduction and references). In relativistic

superconformal tensor calculus, one obtains Poincaré supergravity theories by starting from

a gauge theory of the superconformal algebra. In particular, one starts from a so-called

‘Weyl multiplet’, that realizes the superconformal algebra and contains its gauge fields (ei-

ther as independent or as dependent ones). In a next step, one couples the Weyl multiplet

to a ‘compensator multiplet’, whose role is to gauge fix the superconformal symmetries

that are not part of the Poincaré superalgebra. As a concrete example, we remind how this

procedure is applied to obtain d = 4, N = 1 ‘old minimal’ supergravity. In this case, the

d = 4, N = 1 Weyl multiplet contains the vielbein Eµ
A, gravitino Ψµ, R-symmetry gauge

field Aµ and dilatation gauge field bµ as independent fields. One can gauge fix the special

conformal transformations by putting bµ to zero. As a compensator multiplet, one takes a

chiral multiplet that comprises two complex scalars Φ and F and a spinor χ. To derive a

Poincaré multiplet from the Weyl multiplet one gauge fixes dilatations, R-symmetry and

conformal S-supersymmetry. As gauge fixing conditions, one can choose:

Φ = 1 : fixes dilatations and R-symmetry ,

χ = 0 : fixes conformal S-supersymmetry .
(1.2)

In this way, one obtains the old minimal Poincaré multiplet which comprises

(Eµ
A,Ψµ, Aµ, F ). Alternatively, one may also use a tensor multiplet (φ, λ,Bµν) as a com-

pensator multiplet where φ is a real scalar, λ a spinor and Bµν a 2-form gauge field.

Imposing the gauge fixing conditions

φ = 1 : fixes dilatations ,

λ = 0 : fixes conformal S-supersymmetry ,
(1.3)

one then obtains the new minimal Poincaré multiplet with the fields (Eµ
A,Ψµ, Aµ, Bµν).

This theory still enjoys a local U(1)-symmetry.

In this paper, we will show that superconformal techniques can also be used to con-

struct non-relativistic Newton-Cartan supergravity theories. We will in particular use a

non-relativistic analogue of the superconformal tensor calculus to construct off-shell formu-

lations of d = 3, N = 2 pure Newton-Cartan supergravity. The non-relativistic supercon-

formal algebra we will start from is the Schrödinger superalgebra. This algebra contains

the Bargmann superalgebra as a subalgebra (hence our interest in it) and extends it with

a dilatation generator, a single special conformal generator, an extra bosonic R-symmetry

generator and a single fermionic S-supersymmetry generator. We will then construct a

– 3 –
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non-relativistic Schrödinger supergravity multiplet2 that realizes the Schrödinger superal-

gebra and contains its gauge fields. The independent fields of Schrödinger supergravity

are a temporal vielbein τµ, a spatial vielbein eµ
a, a central charge gauge field mµ, a R-

symmetry gauge field rµ and two gravitini ψµ±. The Schrödinger supergravity multiplet

also contains an extra independent field b, that corresponds to the time-like component of

the dilatation gauge field and that can be put to zero by gauge fixing the special confor-

mal transformation.

In a next step, we will couple the Schrödinger supergravity multiplet to a compensator

multiplet, that as in the relativistic case can be used to gauge fix superfluous superconformal

symmetries. We will consider two different choices of compensator multiplet. The first

choice is given by a non-relativistic d = 3, N = 2 scalar multiplet and this will lead to a non-

relativistic analog of old minimal supergravity with independent fields (see subsection 4.1)

non-relativistic old minimal :
(
τµ, eµ

a,mµ, rµ, ψµ±, χ−, F1, F2

)
. (1.4)

The second compensator multiplet we will consider consists of a scalar φ, a spinor λ and

an extra bosonic field S, that transforms non-trivially under Galilean boosts. It can be

obtained as a truncation of the non-relativistic limit of a vector multiplet. The fields φ

and λ can then be used to gauge fix dilatations and S-supersymmetry, so that one ends up

with a non-relativistic analogue of new minimal supergravity whose independent fields are

given by (see subsection 4.2)

non-relativistic new minimal :
(
τµ, eµ

a,mµ, rµ, ψµ±, S
)
. (1.5)

As was shown in [14], the gauging of the Schrödinger algebra naturally leads to Newton-

Cartan geometry with torsion. The torsion is provided by the spatial components of the

dilatation gauge field, that are dependent on the other fields. This feature remains in the

construction of the Schrödinger supergravity multiplet and our non-relativistic supercon-

formal tensor calculus therefore naturally leads to torsionfull Newton-Cartan supergravity

theories. In this way, we are thus able to extend the constructions of [23, 27] to the tor-

sionfull case. The torsionless case can be retrieved by putting the torsion to zero. As the

torsion is provided by gauge field components that depend on the other fields in the su-

pergravity multiplet, this truncation is non-trivial and its consistency has to be examined.

We will study this truncation in the case of non-relativistic new minimal supergravity and

we will show that this truncation leads to the off-shell d = 3, N = 2 theory of [27].

The organization of this paper is as follows. In section 2, we discuss the gauging of

a suitable Schrödinger superalgebra and the ensuing construction of the d = 3, N = 2

Schrödinger supergravity theory. Section 3 is devoted to a discussion of the matter multi-

plets that we will consider as compensator multiplets. We will show how these multiplets

can be obtained as non-relativistic limits of a relativistic scalar and vector multiplet and

2We prefer to reserve the name non-relativistic “conformal” supergravity multiplet for the multiplet

that realizes the gauging of the Galilean Conformal Superalgebra [29–31]. The reason for this is that the

Schrödinger superalgebra, with only a single special conformal generator, allows a mass parameter while

the Galilean Conformal Superalgebra does not. We thank Jerzy Lukierski for a discussion on this point.
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how they can be coupled to the Weyl multiplet. The construction of torsionfull old mini-

mal and new minimal Newton-Cartan supergravity will be performed in section 4, whereas

section 5 will be devoted to the truncation to the torsionless case. Finally, we conclude

and give an outlook on future work in section 6.

2 Schrödinger supergravity

In this section we discuss the gauging of superconformal extensions of the Bargmann al-

gebra, the so-called Schrödinger superalgebras. This is done in several steps. First, in

section 2.1 we write down the transformation rules of all gauge fields, as determined by

the algebra. Then we solve for some of the gauge fields in terms of others, using so-called

conventional curvature constraints. The full set of curvature constraints is discussed in

detail in subsection 2.2. Once the dependent gauge fields are expressed in terms of inde-

pendent ones, their transformation rules do not necessarily coincide with those given by the

structure constants of the algebra. The final transformation rules of the dependent gauge

fields thus need to be re-evaluated and this is done in subsection 2.3. Having determined

the transformations of all fields, one can check whether the set of curvature constraints is

a consistent one. This analysis is given in subsection 2.2 for ease of presentation. Note

however that checking consistency of the constraints constitutes the last step of the analysis

and relies on the transformation rules determined in subsection 2.3.

2.1 The Schrödinger superalgebra and transformation rules

Schrödinger superalgebras were first found in [32] as the symmetry group of a spinning

particle. However, this leads to an algebra with a Grassmann valued vector charge, instead

of a spinor (Q− in our notation). Because we are mainly interested in extensions of the

Bargmann superalgebra with two spinorial supercharges we prefer that our Schrödinger

superalgebra also contains such operators. For this reason, and because we work in three

space-time dimensions, we will work with the superalgebra of [33].

For the purpose of this work we restrict ourselves to using z = 2 Schrödinger algebras.

This algebra, as well as its supersymmetric extension, is similar to the Bargmann algebra in

that it allows for the same central extension in the commutator of spatial translations and

Galilean boosts. This is important because it enables us to solve for the non-relativistic

spin- and Galilean boost-connections and thus the gauging works in the same way as

e.g. in [14, 22, 23].

To be concrete, we use the following set of commutators. The bosonic commutation

relations of the Bargmann algebra (a = 1, 2)[
Pa, Jbc

]
= 2 δa[b Pc] ,

[
H,Ga

]
= Pa ,[

Ga, Jbc
]

= 2 δa[bGc] ,
[
Pa, Gb

]
= δab Z ,

(2.1)

are supplemented by the action of the dilatation operator D and special conformal trans-

formations K as follows:[
D,H

]
= −2H ,

[
H,K

]
= D ,

[
D,K

]
= 2K ,[

D,Pa
]

= −Pa ,
[
D,Ga

]
= Ga ,

[
K,Pa

]
= −Ga .

(2.2)
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Here H,Pa, Jab, Ga and Z are the generators corresponding to time transla-

tions, spatial translations, spatial rotations, Galilean boosts and central charge

transformations, respectively.

The extension to supersymmetry is done by adding two fermionic supersymmetry

generators Q+, Q− and one so-called “special” supersymmetry generator S. We also

have to add one more bosonic so-called R-symmetry generator R which, however, does

not contribute to the commutation relations (2.1) and (2.2). This leads to the super-

algebra that was found in [33], see also [34, 35]. In this way the commutators of the

Bargmann superalgebra,[
Jab, Q±

]
= −1

2
γabQ± ,

[
Ga, Q+

]
= −1

2
γa0Q− ,{

Q+, Q+

}
= −γ0C−1H ,

{
Q+, Q−

}
= −γaC−1 Pa ,{

Q−, Q−
}

= −2 γ0C−1 Z ,

(2.3)

are augmented by the following commutators that involve the extra bosonic and fermionic

operators of the Schrödinger superalgebra:[
D,Q+

]
= −Q+ ,

[
D,S

]
= S ,

[
R,Q±

]
= ±γ0Q± ,

[
R,S

]
= γ0S[

Jab, S
]

= −1

2
γabS ,

[
S,H

]
= Q+ ,

[
S, Pa

]
=

1

2
γa0Q− ,

[
K,Q+

]
= S ,{

S, S
}

= −γ0C−1K ,
{
S,Q−

}
= γaC−1Ga ,{

S,Q+

}
=

1

2
γ0C−1D +

1

4
γ0abC−1 Jab +

3

4
C−1R . (2.4)

According to [34] this algebra is of a special kind that only exists in odd dimensions. Nev-

ertheless, it will serve our purpose to construct a non-relativistic Schrödinger supergravity

theory in three dimensions.

After imposing the conventional constraints we will find that the gauge fields ωµ
ab,

ωµ
a, fµ and φµ of spatial rotations, Galilean boosts, special conformal transformations

and S-supersymmetry transformations, respectively, together with the spatial components

ba = eµabµ of the dilatation gauge field bµ are dependent. The time-component b = τµbµ
of bµ will turn out to be a Stückelberg field for special conformal transformations, just like

in the bosonic case [14]. Eventually, we will use this to set b to zero, gauge fixing special

conformal transformations. For notational purposes though, it is easier to keep the full bµ.

We start with the transformations of the independent bosonic fields under the bosonic

symmetries. They are

δτµ = 2 ΛD τµ ,

δeµ
a = λab eµ

b + λa τµ + ΛD eµ
a ,

δmµ = ∂µσ + λa eµ
a ,

δbµ = ∂µΛD + ΛK τµ ,

δrµ = ∂µρ .

(2.5)

– 6 –
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For the fermionic fields we find

δψµ+ =
1

4
λabγabψµ+ + ΛD ψµ+ − γ0ψµ+ ρ ,

δψµ− =
1

4
λabγabψµ− −

1

2
λaγa0ψµ+ + γ0ψµ− ρ .

(2.6)

Here λab, λ
a,ΛD and ρ are the parameters of spatial rotations, Galilean boosts, dilatations

and R-symmetry transformations, respectively.

The fermionic symmetries act on the bosonic fields as follows:

δτµ =
1

2
ε̄+γ

0ψµ+ ,

δeµ
a =

1

2
ε̄+γ

aψµ− +
1

2
ε̄−γ

aψµ+ ,

δmµ = ε̄−γ
0ψµ− ,

δbµ = −1

4
ε̄+γ

0φµ −
1

4
η̄ γ0ψµ+ ,

δrµ = −3

8
ε̄+φµ +

3

8
η̄ ψµ+ ,

(2.7)

where ε± are the two Q-supersymmetry parameters while η is the single S-supersymmetry

parameter. Under these fermionic symmetries the fermionic fields transform as follows:

δψµ+ = Dµε+ − bµ ε+ + rµ γ0ε+ − τµ η ,

δψµ− = Dµε− − rµ γ0ε− +
1

2
ωµ

aγa0ε+ +
1

2
eµ
aγa0η .

(2.8)

Since we expect the transformation rules of the dependent gauge fields to change when we

solve for them we will not denote them here. Rather, we will first solve for the gauge fields

ωµ
ab, ωµ

a, ba, fµ and φµ, using conventional curvature constraints. The following subsection

is devoted to a discussion of all curvature constraints of the Schrödinger supergravity theory.

2.2 Curvature constraints

While gauging the Schrödinger superalgebra we impose several curvature constraints.

These follow mostly from requiring the correct transformation properties under diffeo-

morphisms. At the same time they allow us to solve for some of the gauge fields in terms of

the remaining independent ones. According to the Schrödinger superalgebra the curvatures

of the independent gauge fields are given by

Rµν(H) = 2 ∂[µτν] − 4 b[µτν] −
1

2
ψ̄[µ+γ

0ψν]+ ,

Rµνa(P ) = 2 ∂[µeν]
a − 2ω[µ

abeν]
b − 2ω[µ

aτν] − 2 b[µeν]
a − ψ̄[µ+γ

aψν]− ,

Rµν(Z) = 2 ∂[µmν] − 2ω[µ
aeν]

a − ψ̄[µ−γ
0ψν]− ,

Rµν(D) = 2 ∂[µbν] − 2 f[µτν] +
1

2
ψ̄[µ+γ

0φν] ,

Rµν(R) = 2 ∂[µrν] +
3

4
ψ̄[µ+φν] ,

(2.9)
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and

Ψ̂µν+(Q+) = 2 ∂[µψν]+ −
1

2
ω[µ

abγabψν]+ − 2 b[µψν]+ + 2 r[µγ0ψν]+ − 2 τ[µφν] ,

Ψ̂µν−(Q−) = 2 ∂[µψν]− −
1

2
ω[µ

abγabψν]− − 2 r[µγ0ψν]− + ω[µ
aγa0ψν]+ + e[µ

aγa0φν] .

(2.10)

The covariant curvatures R of the dependent gauge fields are not a priori given by the

“curvatures” R that follow from the structure constants of the Schrödinger superalgebra

since the transformation rules of the dependent gauge fields are not necessarily equal to

the ones that follow from the structure constants of the algebra, see e.g. the fermionic

transformation rules given in eqs. (2.34). For the following discussion we will need the

curvatures of spatial rotations, Galilean boosts and S-supersymmetry. In the case of spatial

rotations the full curvature coincides with the expression that follows from the structure

constants, i.e. R(J) = R(J), but in the other two cases there are additional terms in R
since the fermionic transformation rules of those gauge fields contain extra terms beyond

those that are determined by the structure constants, see eq. (2.34). We therefore have that

Rµνab(J) = 2 ∂[µων]
ab − 1

2
φ̄[µγ

0abψν]+ , (2.11)

but that

Rµνa(G) = Rµν
a(G) + additional terms , (2.12)

with the structure constant dependent part Rµν
a(G) given by

Rµν
a(G) = 2 ∂[µων]

a − 2ω[µ
abων]

b − 2ω[µ
abν] − 2 f[µeν]

a + φ̄[µγ
aψν]− . (2.13)

We will not need the ‘additional terms’ in R(G) except for a special trace combination in

which case the full expression for R(G) is given by

R0a
a(G) = R0a

a(G)− eµa ψ̄µ−γ0Ψ̂a0−(Q−) . (2.14)

Using the same notation we find that the curvature of the gauge field of S-supersymmetry

is given by

Rµν(S) = 2 ∂[µφν] −
1

2
ω[µ

abγabφν] + 2 b[µ φν] + 2 r[µ γ0φν] + 2 f[µ ψν]+ (2.15)

+ 2 γ0ψ[µ+

[
1

4
εabRν]0ab(J)−Rν]0(R)

]
−2 γcψ[µ−

[
1

4
εabRν]cab(J) +Rν]c(R)

]
,

where the first line comprises all terms that follow from the structure constants.

In the following subsection we will solve for the gauge fields ωµ
ab, ωµ

a, ba, fµ and φµ
in terms of the independent ones using the following set of conventional constraints:

Rµνa(P ) = 0 , Rµν(Z) = 0 , Ra0(H) = 0 ,

Ψ̂a0+(Q+) = 0 , γaΨ̂a0−(Q−) = 0 ,

Ra0(D) = 0 , R0a
a(G) = 0 .

(2.16)
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Note that the last constraint involves the curvature of the dependent Galilean boost gauge

field whose definition in terms of the part of the curvature that is determined by the

structure constants is given in eq. (2.14). Since the conventional constraints are used to

solve for some of the gauge fields their supersymmetry transformations do not lead to new

constraints. We note that, imposing constraints on the curvatures, the Bianchi identities

generically imply further constraints on the curvatures, which holds for the constraints

in (2.16) and those to be discussed below.

Besides the conventional constraints we also impose the foliation constraint

Rµν(H) = 0 . (2.17)

The time-space component of this constraint is conventional but the space-space part is

not. Its Q+-supersymmetry transformation leads to

Ψ̂µν+(Q+) = 0 , (2.18)

where, again, only the space-space part is a new, un-conventional constraint. The con-

straints (2.17) and (2.18) lead to

Rab(D) = 0 , (2.19)

as a consequence of a Bianchi identity. We now consider supersymmetry transformations

of the un-conventional constraint Ψ̂ab+(Q+) = 0. A Q−-variation enforces3

Ψ̂ab−(Q−) = 0 . (2.20)

Upon use of all known constraints and Bianchi identities, we find that the only non-trivial

variation of (2.20) is its Q−-variation which we combine with a Q+-variation of (2.18)

to find

Rab(R) = 0 , Rabcd(J) = 0 . (2.21)

At this point we have checked the symmetry variations of all constraints except the last

two, i.e. (2.21). Before we go on determining the implications of their transformations we

note that using all constraints so far we find the Bianchi identity

Rab(S) = 0 . (2.22)

The only non-trivial transformation of Rab(R) = 0 then leads to 3

3

4
εabRµνab(J) = Rµν(R) . (2.23)

3One might wonder how the supersymmetry transformation of a fermionic [bosonic] constraint can

lead to another fermionic [bosonic] constraint. It is true that this is not possible when following generic

transformation rules of covariant quantities. However, those rules only apply if we already know the full set

of constraints and the commutator algebra closes precisely because some constraints are needed to eliminate

apparently non-covariant terms. Hence, we can certainly take guidance from those covariant rules, but when

we use them too naively we might miss some constraints.
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Since (2.23) essentially identifies R(J) with R(R) we have derived all consequences

of (2.21). The constraint (2.23) itself is inert under all symmetries and hence we have

derived the full set of un-conventional constraints that follow from (2.17).

In summary, the set of constraints comprises the following chain of un-conventional

constraints:

Rab(H) = 0
Q+−→ Ψ̂ab+ = 0

Q−−→ Ψ̂ab− = 0 −→

Ψ̂ab+ = 0

Ψ̂ab− = 0

}
Q±−→ Rab(R) = 0

Q+−→ 3

4
εabRµνab(J) = Rµν(R) .

(2.24)

The Bianchi identities that feature in the discussion above are given by

Rab(D) = 0 , R0[a
b](G) = 0 , Rabc(G) = 2R0[a

b]c(J) , Rab(S) = 0 . (2.25)

2.3 The dependent gauge fields

Let us now determine the expressions of the dependent gauge fields. We first determine

the spatial component of bµ. Using Ra0(H) = 0 we find

ba = eµabµ =
1

2
eµaτ

ν

(
2 ∂[µτν] −

1

2
ψ̄[µ+γ

0ψν]+

)
. (2.26)

The (independent) scalar b = τµbµ is a Stückelberg field for special conformal transforma-

tions:

δb = ΛK + τµ∂µΛD − 2 ΛD b− λa ba −
1

4
τµ (ε̄+γ

0φµ + η̄ γ0ψµ+)

− 1

2
b ε̄+γ

0ψρ+τ
ρ − 1

2
ba τ

ρ (ε̄+γ
aψρ− + ε̄−γ

aψρ+) .

(2.27)

Thus, we could choose to set b = 0. This would induce the compensating transformation

ΛK = −τµ∂µΛD + λa ba +
1

4
τµ (ε̄+γ

0φµ + η̄ γ0ψµ+)

+
1

2
ba τ

ρ (ε̄+γ
aψρ− + ε̄−γ

aψρ+) .

(2.28)

In the following we will keep b 6= 0. In any case, since no independent field transforms

under special conformal transformations there is in essence no effect from this gauge fixing.

We proceed with determining the other dependent gauge fields. The gauge fields

ωµ
ab of spatial rotations and ωµ

a of Galilean boosts are solved for using the conventional

constraints Rµνa(P ) = 0 and Rµν(Z) = 0. We find the following expressions:

ωµ
ab = 2 eν[a

(
∂[νeµ]

b] − 1

2
ψ[ν+γ

b]ψµ]− − b[ν eµ]b]
)

(2.29)

+ eµ
ceρaeνb

(
∂[ρeν]

c− 1

2
ψ[ρ+γ

cψν]−−b[ρ eν]c
)
−τµeρaeνb

(
∂[ρmν]−

1

2
ψ[ρ−γ

0ψν]−

)
,

ωµ
a = −τν

(
∂[νeµ]

a − 1

2
ψ[ν+γ

aψµ]− − b[ν eµ]a
)

+ eµ
ceρaτν

(
∂[ρeν]

c − 1

2
ψ[ρ+γ

cψν]− − b[ρ eν]c
)

+ eνa
(
∂[µmν] −

1

2
ψ[µ−γ

0ψν]−

)
− τµeρaτν

(
∂[ρmν] −

1

2
ψ[ρ−γ

0ψν]−

)
.

(2.30)
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The S-supersymmetry gauge field φµ is determined through the conventional constraints

Ψ̂a0+(Q+) = 0 and γaΨ̂a0−(Q−) = 0, which lead to the following expression:

φµ = − τν
(

2 ∂[µψν]+ −
1

2
ω[µ

abγabψν]+ − 2 b[µψν]+ + 2 r[µγ0ψν]+

)
+ τµτ

ρeνcγ
0c

(
2 ∂[ρψν]− −

1

2
ω[ρ

abγabψν]− + ω[ρ
aγa0ψν]+ − 2 r[µγ0ψν]−

)
.

(2.31)

Finally, to solve for the special conformal boost gauge field fµ we use the conventional

constraints Ra0(D) = 0 and R0a
a(G) = 0. In this way we find that

fµ = τν
(

2 ∂[µbν] +
1

2
ψ̄[µ+γ

0φν]

)
(2.32)

+
1

2
τµτ

ρeνa
(
2 ∂[ρων]

a − 2ω[ρ
abων]

b − 2ω[ρ
abν] + φ̄[ργ

aψν]−
)

− 1

2
τµe

ρ
a ψ̄ρ−γ

0Ψ̂a0−(Q−) .

At this point we have solved for all the dependent gauge fields in terms of the indepen-

dent ones. Using their expressions in terms of the independent gauge fields, we find that

they transform under the bosonic Schrödinger transformations as follows:

δωµ
ab = ∂µλ

ab ,

δωµ
a = ∂µλ

a − ωµabλb + bµλ
a + λab ωµ

b − ΛD ωµ
a + ΛK eµ

a ,

δfµ = ∂µΛK + 2 ΛK bµ − 2 ΛD fµ − τµ λbR0a
ab(J) ,

δφµ =
1

4
λabγabφµ − ΛD φµ − ΛK ψµ+ − γ0φµ ρ .

(2.33)

These are precisely the transformation rules that follow from the structure constants of

the Schrödinger algebra except for the curvature term in the transformation rule of the

special conformal boost gauge field fµ. In [14] this was circumvented by redefining fµ by

adding terms with mµ and Rµνab(J) in the conventional constraint R0a
a(G) = 0 that is

used to solve for fµ. However, then the field acquired a non-trivial transformation under

the central charge symmetry. We will not perform any redefinition of that kind here.

Concerning the fermionic symmetries, we find that the Q and S-transformations of the

dependent gauge fields fields ωµ
ab, ωµ

a and φµ are given by

δωµ
ab = −1

4
ε̄+γ

ab0φµ +
1

4
η̄ γab0ψµ+ ,

δωµ
a = ε̄−γ

0Ψ̂µ
a
−(Q−)− 1

2
ε̄−γ

aφµ +
1

4
eµb ε̄+γ

bΨ̂a
0−(Q−)

+
1

4
ε̄+γ

aΨ̂µ0−(Q−)− 1

2
η̄ γaψµ− ,

δφµ = Dµη + bµ η + rµ γ0η + fµ ε+

+ γ0ε+

[
1

4
εabRµ0ab(J)−Rµ0(R)

]
+ γcε−

[
1

4
εabRµcab(J) +Rµc(R)

]
.

(2.34)
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The above bosonic and fermionic transformations allow us to explicitly check that the

commutator algebra of two supersymmetries is realized by the formula[
δ(Q1, S1), δ(Q2, S2)

]
= δg.c.t.

(
Ξµ

)
+ δJ

(
Λab

)
+ δG

(
Λa

)
+ δZ

(
Σ
)

+ δD
(
λD

)
+ δK

(
λK

)
+ δQ+

(
Υ+

)
+ δQ−

(
Υ−

)
+ δS

(
η
)

+ δR
(
ρR

)
,

(2.35)

where the parameters are given by

Ξµ =
1

2
ε̄2+γ

0ε1+ τ
µ+

1

2

(
ε̄2+γ

aε1−+ε̄2−γ
aε1+

)
eµa ,

Λab = −Ξµωµ
ab +

1

4

(
ε̄1+γ

0abη2 − η̄1 γ0abε2+
)
, Υ± = −Ξµψµ± ,

Λa = −Ξµωµ
a − 1

2

(
ε̄1−γ

aη2 + η̄1 γ
aε2−

)
, λK = −Ξµfµ +

1

2
η̄2 γ

0η1 ,

Σ = −Ξµmµ + ε̄2−γ
0ε1− , ρR = −Ξµrµ +

3

8

(
ε̄1+η2 − η̄1 ε2+

)
,

λD = −Ξµbµ +
1

4

(
ε̄1+γ

0η2 + η̄1 γ
0ε2+

)
, η = −Ξµφµ .

(2.36)

This finishes the discussion of the Schrödinger supergravity theory.

Note that our analysis of the Schrödinger theory is not fully complete, since we did

not derive the variation of the dependent field fµ under fermionic symmetries. Even so,

this was not needed to show that the set of constraints (2.24) is a consistent one and that

the commutator algebra closes on all independent fields.

3 Matter multiplets

In this section we present matter multiplets that realize the same commutators corre-

sponding to the Schrödinger superalgebra as we derived for the Schrödinger supergravity

multiplet in the previous section. These multiplets will be used as compensator multiplets

in the next section to derive off-shell formulations of Newton-Cartan supergravity.

One such off-shell formulation already exists in the literature [27]. It was obtained

by taking a non-relativistic limit of the three-dimensional N = 2 new minimal Poincaré

multiplet [36]. The new minimal Poincaré multiplet follows from superconformal techniques

using a compensating (relativistic) vector multiplet. Hence, in order to derive its non-

relativistic analog we should use as a compensator a non-relativistic vector multiplet. This

is one of the two non-relativistic matter multiplets which we derive in this section. The

other one is the scalar multiplet which we shall later use to derive a new off-shell formulation

of Newton-Cartan supergravity.

It would be very efficient if we could derive the matter multiplets coupled to

Schrödinger supergravity by applying the non-relativistic limiting procedure of [27]. How-

ever we cannot, because the Schrödinger superalgebra does not follow from the contraction

of any relativistic superalgebra and the same applies to the corresponding Schrödinger su-

pergravity theory. Instead, we shall start from the rigid version of a relativistic matter

multiplet that realizes the Poincaré superalgebra. First, we use that as a starting point to
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derive a non-relativistic matter multiplet that realizes the rigid Bargmann superalgebra.4

The important thing is that we have now derived the field content of the non-relativistic

multiplet. It turns out that the same multiplet also provides a representation of the rigid

Schrödinger superalgebra. Therefore, once we have obtained this non-relativistic multiplet,

we can couple it to the fields of Schrödinger supergravity, thereby realizing the commutator

algebra derived in the previous section, in the standard way.

3.1 The scalar multiplet

In this subsection we construct the non-relativistic scalar multiplet. We start with

the three-dimensional rigid relativistic N = 2 scalar multiplet which comprises two

complex scalars and two spinors. In real notation we are thus left with the fields

(ϕ1, ϕ2, χ1, χ2, F1, F2):

δϕ1 = η̄1χ1 + η̄2χ2 ,

δϕ2 = η̄1χ2 − η̄2χ1 ,

δχ1 =
1

4
γµ∂µϕ1 η1 −

1

4
γµ∂µϕ2 η2 −

1

4
F1 η1 −

1

4
F2 η2 ,

δχ2 =
1

4
γµ∂µϕ2 η1 +

1

4
γµ∂µϕ1 η2 −

1

4
F2 η1 +

1

4
F1 η2 ,

δF1 = −η̄1γµ∂µχ1 + η̄2γ
µ∂µχ2 ,

δF2 = −η1γµ∂µχ2 − η2γµ∂µχ1 .

(3.1)

To take the non-relativistic limit we use a contraction parameter ω which we will send

to infinity. The rescaling of the symmetry parameters follows from the Inönü-Wigner

contraction of the related symmetry generators, see [27]. This means for example that we

will require

ε± =
ω∓1/2

√
2

(
η1 ± γ0η2

)
. (3.2)

It remains to find the scalings of all other fields. It turns out that, in order to avoid terms

that diverge in the limit ω →∞, we need to use

χ± =
ω−1±1/2

√
2

(χ1 ± γ0χ2) (3.3)

for the two spinors, while for the scalings of the bosons we need to take

ϕ̃i =
1

ω
ϕi , F̃i = − 1

ω
Fi . (3.4)

4This (rigid) limit coincides with the non-relativistic limit performed in [37].
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After calculating the transformation rules in the limit ω →∞ we drop the tildes and find

δϕ1 = ε̄+χ+ + ε̄−χ− ,

δϕ2 = ε̄+γ
0χ+ − ε̄−γ0χ− ,

δχ+ =
1

4
γ0ε+ ∂tϕ1 +

1

4
ε+ ∂tϕ2 +

1

4
γiε− ∂iϕ1 +

1

4
γi0ε− ∂iϕ2 +

1

4
ε− F1 +

1

4
γ0ε− F2 ,

δχ− =
1

4
γiε+ ∂iϕ1 −

1

4
γi0ε+ ∂iϕ2 +

1

4
ε+ F1 −

1

4
γ0ε+ F2 ,

δF1 = ε̄+γ
i∂iχ+ + ε̄+γ

0∂tχ− + ε̄−γ
i∂iχ− ,

δF2 = ε̄+γ
i0∂iχ+ + ε̄+∂tχ− − ε̄−γi0∂iχ− . (3.5)

Together with the bosonic transformation rules, which we refrain from giving here but

which can be obtained easily by similar techniques, the transformation rules (3.5) realize

the rigid Bargmann superalgebra. Next, we promote this multiplet to a representation

of the rigid Schrödinger superalgebra by assigning transformations under the Schrödinger

transformations that are not contained in the Bargmann superalgebra. After that we couple

the multiplet to the fields of Schrödinger supergravity. Following standard techniques of

coupling matter to supergravity we find for the bosonic transformations

δϕ1 = wΛDϕ1 +
2w

3
ρϕ2 ,

δϕ2 = wΛDϕ2 −
2w

3
ρϕ1 ,

δχ+ =
1

4
λabγabχ+ −

1

2
λaγa0χ− + (w − 1) ΛDχ+ −

(
2w

3
+ 1

)
γ0χ+ ρ ,

δχ− =
1

4
λabγabχ− + wΛDχ− +

(
2w

3
+ 1

)
γ0χ− ρ ,

δF1 = (w − 1) ΛDF1 + 2

(
w

3
+ 1

)
ρF2 ,

δF2 = (w − 1) ΛDF2 − 2

(
w

3
+ 1

)
ρF1 ,

(3.6)

while for the fermionic transformation rules we find the following expressions:

δϕ1 = ε̄+χ+ + ε̄−χ− ,

δϕ2 = ε̄+γ
0χ+ − ε̄−γ0χ− ,

δχ+ =
1

4
γ0ε+ τ

µD̂µϕ1 +
1

4
ε+ τ

µD̂µϕ2 +
1

4
γaε− e

µ
aD̂µϕ1 +

1

4
γa0ε− e

µ
aD̂µϕ2

+
1

4
ε− F1 +

1

4
γ0ε− F2 −

w

4
γ0η ϕ1 −

w

4
η ϕ2 ,

δχ− =
1

4
γaε+ e

µ
aD̂µϕ1 −

1

4
γa0ε+ e

µ
aD̂µϕ2 +

1

4
ε+ F1 −

1

4
γ0ε+ F2 ,

δF1 = ε̄+γ
aeµaD̂µχ+ + ε̄+γ

0τµD̂µχ− + ε̄−γ
aeµaD̂µχ− − (w + 1) η̄ γ0χ− ,

δF2 = ε̄+γ
a0eµaD̂µχ+ + ε̄+τ

µD̂µχ− − ε̄−γa0eµaD̂µχ− − (w + 1) η̄ χ− .

(3.7)
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The covariant derivatives that appear in (3.7) can be deduced from the transformation

rules (3.6) and (3.7). For the bosonic fields they are given by

D̂µϕ1 = ∂µϕ1 − w bµ ϕ1 −
2w

3
rµ ϕ2 − ψ̄µ+χ+ − ψ̄µ−χ− ,

D̂µϕ2 = ∂µϕ2 − w bµ ϕ2 +
2w

3
rµ ϕ1 − ψ̄µ+γ0χ+ + ψ̄µ−γ

0χ− ,

D̂µF1 = ∂µF1 − (w − 1) bµ F1 − 2

(
w

3
+ 1

)
rµ F2

− ψ̄µ+γaeρaD̂ρχ+ − ψ̄µ+γ0τρD̂ρχ− − ψ̄µ−γaeρaD̂ρχ− + (w + 1) φ̄µγ
0χ− ,

D̂µF2 = ∂µF2 − (w − 1) bµ F2 + 2

(
w

3
+ 1

)
rµ F1

− ψ̄µ+γa0eρaD̂ρχ+ − ψ̄µ+τρD̂ρχ− + ψ̄µ−γ
a0eρaD̂ρχ− + (w + 1) φ̄µχ− ,

(3.8)

while for the covariant derivatives of the fermions we find the following expressions:

D̂µχ+ = Dµχ+ +
1

2
ωµ

aγa0χ− − (w − 1) bµχ+ +

(
2w

3
+ 1

)
rµ γ0χ+

− 1

4
γ0ψµ+ τ

ρD̂ρϕ1 −
1

4
ψµ+ τ

ρD̂ρϕ2 −
1

4
γaψµ− e

ρ
aD̂ρϕ1

− 1

4
γa0ψµ− e

ρ
aD̂ρϕ2 −

1

4
ψµ− F1 −

1

4
γ0ψµ− F2 +

w

4
γ0φµ ϕ1 +

w

4
φµ ϕ2 ,

D̂µχ− = Dµχ− − w bµ χ− −
(

2w

3
+ 1

)
rµ γ0χ−

− 1

4
γaψµ+ e

ρ
aD̂ρϕ1 +

1

4
γa0ψµ+ e

ρ
aD̂ρϕ2 −

1

4
ψµ+ F1 +

1

4
γ0ψµ+ F2 .

(3.9)

This completes our derivation of the non-relativistic scalar multiplet. In section 4 we

will use this scalar multiplet to derive a new off-shell formulation of Newton-Cartan

supergravity.

3.2 The vector multiplet

The N = 2 vector multiplet in three dimensions contains a vector, a physical scalar, two

spinors and an auxiliary scalar (Cµ, ρ, λi, D). Using the three-dimensional epsilon symbol

we can define a new “dual” vector Vµ = εµ
νρ ∂νCρ with

∂µVµ = 0 , (3.10)

which has the dimension of an auxiliary field. In terms of (ρ, λi, Vµ, D) we have the following

transformation rules:

δρ = εij η̄iλj ,

δλi = −1

2
γµηi Vµ −

1

2
εijηj D −

1

4
γµεijηj ∂µρ ,

δD =
1

2
εij η̄i γ

µ∂µλj ,

δVµ =
1

2
δij η̄i γµ

ν∂νλj .

(3.11)
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Next, we perform the non-relativistic limiting procedure. First, we have to find the

scalings of the fields, starting with the scalings of the supersymmetry parameters given in

eq. (3.2). We define new spinors

λ± =
ω−1±1/2

√
2

(λ1 ± γ0λ2) , (3.12)

and the bosonic field

φ =
ρ

ω
. (3.13)

Furthermore, we find it useful to introduce the new fields

S = − 1

ω
V0 −D , F =

1

ω3
V0 −

1

ω2
D , Ci =

1

ω

(
Vi +

1

2
εij ∂jρ

)
. (3.14)

In the limit ω →∞ this leads to the following supersymmetry transformations:

δφ = ε̄+γ
0λ+ − ε̄−γ0λ− ,

δλ+ =
1

4
ε+ ∂tφ−

1

2
γ0ε+ S +

1

2
γi0ε− ∂iφ−

1

2
γiε−Ci ,

δS =
1

2
ε̄+ ∂tλ+ − ε̄−γi0∂iλ+ −

1

2
ε̄− ∂tλ− ,

δCi = ε̄−γ
ij∂jλ− +

1

2
ε̄+γ

i0∂tλ− ,

δλ− = −1

2
γiε+Ci +

1

2
γ0ε− F ,

δF = ε̄+γ
i0∂iλ− .

(3.15)

To prove closure one has to use the constraint

∂iCi =
1

2
∂tF , (3.16)

which follows from inserting the definitions (3.14) in the relativistic constraint (3.10) and

sending ω →∞.

An effect of taking the non-relativistic limit is that there exists a consistent truncation

of this multiplet. We can impose

Ci = 0 , F = 0 , λ− = 0 , (3.17)

which results into

δφ = ε̄+γ
0λ+ ,

δλ+ =
1

4
ε+ ∂tφ−

1

2
γ0ε+ S +

1

2
γi0ε− ∂iφ ,

δS =
1

2
ε̄+ ∂tλ+ − ε̄−γi0∂iλ+ .

(3.18)
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While this multiplet looks like a scalar multiplet and appears to be simpler than the scalar

multiplet given in (3.5) its relation to the relativistic vector multiplet manifests itself in

the following way. Due to the redefinition (3.14) the auxiliary field S is related to the

zero component of the vector field. As a consequence of this the auxiliary field transforms

non-trivially under Galilean boosts. This can already be seen in the rigid transformations

but we will only give the bosonic transformations when we couple (3.18) to Schrödinger

supergravity.

After coupling to supergravity the bosonic transformations read

δφ = wΛDφ ,

δλ =
1

4
λabγabλ+ (w − 1) ΛD λ− ρ γ0λ ,

δS = (w − 2) ΛD S −
1

2
εabλa eµbD̂µφ ,

(3.19)

while the fermionic ones take the form

δφ = ε̄+γ
0λ ,

δλ =
1

4
ε+ τ

µD̂µφ+
1

2
γa0ε− e

µ
aD̂µφ−

1

2
γ0ε+ S −

w

4
η φ ,

δS =
1

2
ε̄+τ

µD̂µλ− ε̄−γa0eµaD̂µλ−
w − 1

2
η̄ λ .

(3.20)

Note the non-trivial transformation of S under local Galilean boosts, see eq. (3.19). This

makes clear the vector multiplet origin of (3.19) and (3.20). In the formulas above we use

the covariant derivatives

D̂µφ = ∂µφ− ψ̄µ+γ0λ− w bµ φ ,

D̂µλ = ∂µλ−
1

4
ωµ

abγabλ− (w − 1) bµλ+ rµ γ0λ+
w

4
φµ φ

− 1

4
ψµ+ τ

νD̂νφ−
1

2
γa0ψµ− e

ν
aD̂νφ+

1

2
γ0ψµ+ S ,

D̂µS = ∂µS + 2 bµ S −
1

2
ψ̄µ+τ

ρD̂ρλ+ ψ̄µ−γ
a0eρaD̂ρλ

+
1

2
εab ωµ

a eρbD̂ρφ+
w − 1

2
λ̄ φµ .

(3.21)

This finishes our derivation of the non-relativistic vector multiplet. In the following

section we will use the non-relativistic scalar and vector multiplets to derive two inequiva-

lent off-shell formulations of Newton-Cartan supergravity with torsion. Before doing so we

will give a brief overview of the multiplets that we have discussed so far and which provide

the basis of a non-relativistic superconformal tensor calculus, see table 1.

Note that if we were to add another column to this table for the central charge weight

(Z-weight) we would have only zeros. We will come back to this in the conclusion section.

4 Newton-Cartan supergravity with torsion

At this point we have at our disposal a “conformal” Schrödinger supergravity theory and

two matter multiplets which we can use to fix some of the gauge symmetries. This en-
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Overview of non-relativistic multiplets

multiplet field type D-weight R-weight

Schrödinger τµ time-like vielbein 2 0

eµ
a spatial vielbein 1 0

mµ Z gauge field 0 0

rµ R gauge field 0 0

b “D gauge field” -2 0

ψµ+ Q+ gravitino 1 -1

ψµ− Q− gravitino 0 1

Scalar ϕ1 physical scalar w 2w
3

ϕ2 physical scalar w −2w
3

χ+ spinor w − 1 −2w
3 − 1

χ− spinor w 2w
3 + 1

F1 auxiliary scalar w − 1 2w
3 + 2

F2 auxiliary scalar w − 1 −2w
3 − 2

Vector φ physical scalar w 0

λ spinor w − 1 -1

S auxiliary w − 2 0

Table 1. Properties of three-dimensional non-relativistic multiplets.

ables us to use superconformal techniques to derive off-shell non-relativistic supergravity

multiplets. The superconformal tensor calculus naturally leads to a Newton-Cartan super-

gravity with non-zero torsion, i.e. the curl of the gauge field τµ of local time translations is

non-zero, see also [14] for a discussion of the bosonic case. The origin of the torsion is the

spatial part ba of the dilatation gauge field. Unlike in the relativistic case, this spatial part

cannot be shifted away by a special conformal transformation. Instead, it is a dependent

gauge field whose presence leads to torsion.

In this section we show how the extra symmetries of the Schrödinger superalgebra

that are not contained in the Bargmann superalgebra, i.e. dilatations D, special conformal

transformations K, S-supersymmetry and possibly R-symmetry, can be eliminated by using

a compensator matter multiplet. First, we eliminate the special conformal transformations

by setting

b = τµbµ = 0 . (4.1)

The induced compensating transformation is given in eq. (2.28). This step is the same

independent of which compensator multiplet we use. In the following we shall use both,

the scalar and the vector multiplet from the previous section. In analogy to the relativistic

case we refer to the resulting off-shell formulations as the “old minimal” one when we use
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a compensator scalar multiplet and the “new minimal” formulation when the compensator

multiplet is the vector multiplet.

4.1 The “old minimal” formulation

In this subsection we choose the scalar multiplet whose transformation rules can be found in

eqs. (3.6) and (3.7) as the compensator multiplet. Like in the relativistic case we eliminate

both physical scalars thus gauge fixing the dilatations and the local U(1) R-symmetry. One

of the fermions is used to get rid of the special conformal S-supersymmetry:

ϕ1 = 1 :

ϕ2 = 0 :

}
fixes dilatations and R-symmetry , (4.2)

χ+ = 0 : fixes special conformal S-supersymmetry . (4.3)

The compensating transformations are given by

ΛD = − 1

w
ε̄−χ− , ρ = − 3

2w
ε̄−γ

0χ− , (4.4)

and

η = − 1

w
ε+ τ

µψ̄µ−χ− + γ0ε+ τ
µ

(
2

3
rµ +

1

w
ψ̄µ−γ

0χ−

)
− γa0ε−

(
ba +

1

w
eµa ψ̄µ−χ−

)
− γaε− eµa

(
2

3
rµ +

1

w
ψ̄µ−γ

0χ−

)
+

1

w
γ0ε− F1 −

1

w
ε− F2 −

2

w
λaγaχ− . (4.5)

We thus end up with the field content given in eq. (1.4) of the “old minimal” Newton-Cartan

supergravity theory that realizes the Bargmann superalgebra off-shell. The transformation

rules of all fields can be easily constructed using those of Schrödinger supergravity, see

section 2, and those of the scalar multiplet, see eqs. (3.6) and (3.7), together with the com-

pensating transformations given in eqs. (2.28), (4.4) and (4.5). Given the lengthy nature

of the final transformation rules we have moved the explicit expressions to appendix A.

4.2 The “new minimal” formulation

In this subsection we choose the vector multiplet, see eqs. (3.19) and (3.20), as the compen-

sator multiplet. The gauge fixing of dilatations and the special conformal S-supersymmetry

is done by imposing the conditions

φ = 1 : fixes dilatations ,

λ = 0 : fixes S-supersymmetry ,
(4.6)

and the resulting compensating gauge transformations are given by

ΛD = 0 , η = − 2

w
γ0ε+ S − 2 γa0ε− ba . (4.7)

At this point we are left with the symmetries of the Bargmann superalgebra, see eqs. (2.1)

and (2.3), plus an extra U(1) R-symmetry. These symmetries are realized on the set
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of independent fields of the “new minimal” Newton-Cartan supergravity theory given in

eq. (1.5). This theory is the non-relativistic version of the three-dimensional N = (2, 0)

new minimal Poincaré supergravity theory. The bosonic transformations of the different

fields are given by

δτµ = 0 ,

δeµ
a = λab eµ

b + τµ λ
a ,

δmµ = ∂µσ + λaeµ
a ,

δrµ = ∂µρ ,

δS = −1

2
εabλabb ,

(4.8)

and

δψµ+ =
1

4
λabγabψµ+ − γ0ψµ+ ρ ,

δψµ− =
1

4
λabγabψµ− −

1

2
λaγa0ψµ+ + γ0ψµ+ ρ .

(4.9)

Note that S transforms non-trivially under a Galilean boost transformation which is pro-

portional to ba, i.e. to torsion, see eq. (5.2). The fermionic transformations including the

compensating terms that follow from eq. (4.7) are given by

δτµ =
1

2
ε̄+γ

0ψµ+ ,

δeµ
a =

1

2
ε̄+γ

aψµ− +
1

2
ε̄−γ

aψµ+ ,

δmµ = ε̄−γ
0ψµ− ,

δrµ =
3

4
ε̄−γ

a0ψµ+ ba −
3

8
ε̄+φµ −

3

4w
ε̄+γ

0ψµ+ S ,

δS =
w

8
ε̄+φµ τ

µ +
w

4
ε̄+γ

a0ψµ− τ
µ ba −

1

4
ε̄+γ

0ψµ+ S

− w

4
ε̄−γ

a0φµ e
µ
a −

w

2
ε̄−γ

aγbψµ− e
µ
a bb −

1

2
ε̄−γ

aψµ+ e
µ
a S ,

(4.10)

and

δψµ+ = Dµε+ − ε+ eµa ba + γ0ε+ rµ +
2

w
γ0ε+ τµ S + 2 γa0ε− τµ ba ,

δψµ− = Dµε− − γ0ε− rµ + γaγbε− eµ
a bb +

1

2
γa0ε+ ωµ

a +
1

w
γaε+ eµ

a S .

(4.11)

The transformation rules of the dependent gauge fields can be found in appendix A.

5 Truncation to zero torsion

In the previous section we derived a Newton-Cartan supergravity theory with non-zero

torsion. This needs to be contrasted with the Newton-Cartan supergravity theories con-

structed in [23, 27] that have zero torsion. To see the difference, it is instructive to compare
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the curvature of local time translations for the theories with and without torsion. Indi-

cating the curvature of the torsionfull theory with R(H) and the one of the zero-torsion

theory with R̂(H) we have

Rµν(H) = 2 ∂[µτν] − 4 b[µτν] −
1

2
ψ̄[µ+γ

0ψν]+ ,

R̂µν(H) = 2 ∂[µτν] −
1

2
ψ̄[µ+γ

0ψν]+ .

(5.1)

Note that the space-space components of both curvatures are the same. The difference is

in the time-space component. In the torsionfull case, setting the time-space component to

zero, is a conventional constraint that is used to solve for the spatial part ba of the dilatation

gauge field whereas in the torsionless case it represents an un-conventional constraint.

Indeed, we have

ba =
1

2
R̂a0(H) , (5.2)

and therefore setting the torsion to zero, i.e.

ba = 0 , (5.3)

leads to the un-conventional constraint R̂a0(H) in the torsionless theory.

This points us to an interesting observation: the existence of a non-trivial truncation

of the old minimal and new minimal Newton-Cartan supergravity multiplets constructed

in section 4. Indeed, we shall show in this section how we can reduce the new minimal

torsionfull theory constructed in subsection 4.2 to the known new minimal torsionless

Newton-Cartan supergravity theory constructed in [23, 27].

We now investigate the consequences of imposing the zero-torsion constraint (5.3). It

is convenient to use the explicit expression for the S-supersymmetry gauge field field φµ,

which simplifies to

φµ = γa0ψ̂aµ− −
2

w
γ0ψµ+ S , (5.4)

when we use the curvatures and constraints that we introduce below. The only dependent

gauge fields of the Newton-Cartan supergravity theory are the connection fields for spatial

rotations and Galilean boosts. For the supersymmetry rules of the independent gauge fields

we find

δτµ =
1

2
ε̄+γ

0ψµ+ ,

δeµ
a =

1

2
ε̄+γ

aψµ− +
1

2
ε̄−γ

aψµ+ ,

δmµ = ε̄−γ
0ψµ− ,

δrµ = −3

8
ε̄+γ

a0ψ̂aµ− −
3

2w
ε̄+γ

0ψµ+ S ,

δS =
w

8
ε̄+γ

a0ψ̂a0− ,

(5.5)

– 21 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
0

and

δψµ+ = Dµε+ + γ0ε+ rµ +
2

w
γ0ε+ τµ S ,

δψµ− = Dµε− − γ0ε− rµ +
1

2
γa0ε+ ωµ

a +
1

w
γaε+ eµ

a S .

(5.6)

The curvatures and derivatives of the new minimal torsionless Newton-Cartan supergravity

theory are now given by (5.1) and

R̂µν
a(P ) = 2 ∂[µeν]

a − 2ω[µ
abeν]

b − 2ω[µ
aτν] − ψ̄[µ+γ

aψν]− ,

R̂µν(Z) = 2 ∂[µmν] − ψ̄[µ−γ
0ψν]− ,

R̂µν(R) = 2 ∂[µrν] +
3

2w
ψ̄[µ+γ

0ψν]+ S +
3

4
ψ̄[µ+γ

a0ψ̂aν]− ,

D̂µS = ∂µS −
w

8
ψ̄µ+γ

a0ψ̂a0− ,

ψ̂µν+ = 2 ∂[µψν]+ −
1

2
ω[µ

abγabψν]+ − 2 γ0ψ[µ+ rν] −
4

w
γ0ψ[µ+ τν] S ,

ψ̂µν− = 2 ∂[µψν]− −
1

2
ω[µ

abγabψν]− + 2 γ0ψ[µ− rν] + ω[µ
aγa0ψν]+ −

2

w
γaψ[µ+ eν]

a S .

(5.7)

As we explained at the beginning of this section, the zero-torsion constraint (5.3) may

convert a conventional constraint into an un-conventional one. If this happens we have to

check if the supersymmetry variation of this un-conventional constraint leads to further

constraints. To perform this check we need the transformation rules of the dependent

connection gauge fields which reduce to

δωµ
ab = −1

2
ε̄+γ

[aψ̂b]µ− +
1

w
ε̄+γ

abψµ+ S ,

δωµ
a = ε̄−γ

0ψ̂µ
a
− +

1

4
eµ
b ε̄+γ

bψ̂a0− +
1

4
ε̄+γ

aψ̂µ0− −
1

w
ε̄+γ

a0ψµ− S −
1

w
ε̄−γ

a0ψµ+ S .

(5.8)

The corresponding curvatures are given by

R̂µν
ab(J) = 2 ∂[µων]

ab + ψ̄[µ+γ
[aψ̂b]ν]− −

1

w
ψ̄[µ+γ

abψν]+ S ,

R̂µν
a(G) = 2 ∂[µων]

a − 2ω[µ
abων]

b − 2 ψ̄[µ−γ
0ψ̂ν]

a
− −

1

2
e[ν

bψ̄µ]+γ
bψ̂a0−

− 1

2
ψ̄[µ+γ

aψ̂ν]0− +
2

w
ψ̄[µ+γ

a0ψν]− S .

(5.9)

We are now ready to discuss the constraint structure of the truncated theory. Some of

the curvatures did not change, hence we can immediately infer, e.g., that

R̂ab(R) = 0 ,
3

4
εab R̂µν

ab(J) = R̂µν(R) . (5.10)

The constraints R̂µν
a(P ) = 0 and R̂µν(Z) = 0 are identities when we insert the expressions

for the connection gauge fields, i.e. they are conventional constraints. More importantly
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though, we find new constraints. This is due to the fact that we imposed R̂a0(H) = 0

which is an example of a conventional constraint (necessary to solve for the spatial part

ba of the dilatation gauge field) that gets converted into an un-conventional constraint.

Together with the constraint R̂ab(H) = 0 which reads the same in the torsionfull as well as

in the torsionless case, we find R̂µν(H) = 0. Supersymmetry variations of this constraint

reveal the following additional constraints:

Q−−→ ψ̂ab− = 0 (5.11)

R̂µν(H) = 0
Q+−→ ψ̂µν+ = 0

Q+−→ R̂µν
ab(J) =

4

w
εab τ[µD̂ν] S . (5.12)

Further transformations only lead to Bianchi identities. By combining the con-

straints (5.12) with (5.10) we furthermore derive that

− 6

w
D̂[µ

(
τν] S

)
= 2 D̂[µrν] . (5.13)

This constraint implies that up to an arbitrary constant the R-symmetry gauge field rµ is

determined by τµ and S. In fact, when we set

rµ = − 3

w
τµ S , (5.14)

the truncated theory leads to the off-shell Newton-Cartan multiplet that was presented

in [27]. Furthermore, by making the redefinition

rµ = −Vµ −
1

w
τµ S , (5.15)

one obtains precisely the off-shell multiplet that is obtained when taking the limit of the

new minimal Poincaré multiplet as described in [27].

6 Conclusions and outlook

In this paper we have discussed extensions of non-relativistic supergravity to include con-

formal symmetries. As an example we have constructed a three-dimensional theory of

Schrödinger supergravity, i.e. a theory that realizes a Schrödinger superalgebra, and we

have successfully constructed two matter multiplets. These results are summarized in

table 1. We have then introduced a non-relativistic version of the superconformal tensor

calculus and used it to construct two inequivalent off-shell formulations, called the old min-

imal and new minimal formulation, of a three-dimensional non-relativistic Newton-Cartan

supergravity multiplet with torsion.

The appearance of torsion is one of the points where our analysis differs from the

relativistic one. In the relativistic case the full gauge field of dilatations bµ is a Stückelberg

field for special conformal transformations and the theory is by construction torsionless.

In contrast, in the non-relativistic case only the time component b is a Stückelberg field

for the single (scalar) special conformal transformation of the Schrödinger superalgebra.

The spatial components ba on the other hand are dependent gauge field components and
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they are proportional to torsion. Thus, unless we set set ba = 0 as we did in section 5, the

superconformal approach always leads to torsionfull theories in the non-relativistic setting.

It would be interesting to see how one can go on-shell in the presence of torsion. This

is not a straightforward thing to do since to our knowledge even in the bosonic case the

equations of motion describing Newton-Cartan gravity with torsion have not been written

down so far.5 Even in the absence of torsion the equations of motion have only been

written down under the assumption that the curvature of spatial rotations is zero [22]. It

is not difficult to write down the equations of motion for the case that this curvature is

nonzero but the price one has to pay is that one has to add extra terms to the equation of

motion proposed in [22] that break the invariance under central charge transformations [14].

In the bosonic case this extended equation of motion can be understood by applying a

conformal tensor calculus at the level of the equations of motion (without the need to

write down an action) using a single compensator scalar transforming under dilatations.

The situation gets more intricate when one introduces non-zero torsion because in that

case a second compensating scalar is needed that transforms non-trivially under central

charge transformations. This second compensating scalar should therefore be part of a

different multiplet than the scalar and vector multiplets we considered in this work. The

construction of such a multiplet is different from our investigations in section 3 and goes

beyond the scope of this paper. We hope to return to the issue of how to go on-shell with

a non-flat foliation space and in the presence of torsion in a future work.

Perhaps we can get some inspiration from a similar problem in the relativistic case.

In the four-dimensional N = 2 off-shell formulation one also has to use two compensator

multiplets in order to be able to write down an action [39]. The first compensator multiplet

fixes dilatations, S-supersymmetry and a chiral U(1) symmetry. The second compensator

multiplet fixes a remaining local chiral SU(2) symmetry and it is needed only to be able to

write down an action. In our analogy this would correspond to fixing central charge sym-

metry. Maybe a non-relativistic matter multiplet with a scalar field that has a non-trivial

central charge transformation could be found as a non-relativistic (three-dimensional) ana-

logue of one of the three compensator multiplets used in [39].

In this paper we only considered the construction of pure Newton-Cartan supergrav-

ity. A natural generalization of our work would be to consider general non-relativistic

matter-coupled Newton-Cartan supergravity theories with simple or extended supersym-

metry. This would answer the question of what the non-relativistic analogue is of the

geometries that one encounters in the relativistic matter-coupled supergravity theories.

For example, it would be interesting to find out what the non-relativistic analogue is of a

Kähler target space.

Finally, it would be very interesting to find higher-dimensional analogues of our results

on Newton-Cartan supergravity. So far, the use of gauging techniques has failed to lead to

e.g. a four-dimensional theory of Newton-Cartan supergravity. It is a priori not clear what

auxiliary fields are needed to close the supersymmetry algebra. Presumably, similar obsta-

cles are encountered if one were to try to gauge a four-dimensional Schrödinger superalge-

5A systematic approach to construct such an equation of motion will be given in [38].
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bra. The limiting procedure discussed in [27], if its application is equally straightforward

in higher dimensions, might be the simplest way to find a four-dimensional Newton-Cartan

supergravity theory.
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A Details on the off-shell multiplets

This appendix contains more details about the two off-shell formulations of torsional

Newton-Cartan supergravity that feature in the main text. In particular, we give the trans-

formation rules of all independent fields of the old minimal formulation in appendix A.1.

Those for the new minimal formulation were given in section 4.2. In appendix A.2 we

give the transformation rules of the dependent gauge fields of the new minimal formulation

which are needed to show that the commutator algebra closes.

A.1 “Old minimal” formulation

We collect here the transformation rules of the independent gauge fields of the old minimal

formulation. We find that the bosonic gauge fields transform as follows under the bosonic

transformations

δτµ = 0 ,

δeµ
a = λab eµ

b + τµ λ
a ,

δmµ = ∂µσ + λaeµ
a ,

δrµ = − 3

4w
λa ψ̄µ+γ

aχ− ,

δF1 = 0 ,

δF2 = 0 ,

(A.1)

while the fermionic gauge fields transform as

δψµ+ =
1

4
λabγabψµ+ +

2

w
τµ λ

aγaχ− ,

δψµ− =
1

4
λabγabψµ− −

1

2
λaγa0ψµ+ +

1

w
eµ
a λb γaγb0χ− ,

δχ− =
1

4
λabγabχ− .

(A.2)
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Note the non-trivial Galilean boost transformation of the R-symmetry gauge field rµ
in (A.1). The supersymmetry transformations are given by

δτµ =
1

2
ε̄+γ

0ψµ+ ,

δeµ
a =

1

2
ε̄+γ

aψµ− +
1

2
ε̄−γ

aψµ+ ,

δmµ = ε̄−γ
0ψµ− ,

(A.3)

and

δψµ+ = Dµε+ − eµa ba ε+ +

(
rµ −

2

3
τµτ

ρrρ

)
γ0ε+ +

2

3
γaε− τµ e

ρ
a rρ + γa0ε− τµ ba

− 1

w
γ0ε− τµ F1 +

1

w
ε− τµ F2 −

1

w
ψµ+ ε̄−χ− +

3

2w
γ0ψµ+ ε̄−γ

0χ−

+
1

w
τµ γ

aχ− ε̄+γ
aψρ− τ

ρ − 1

w
τµ γ

a0χ− ε̄−ψρ− e
ρ
a +

1

w
τµ γ

aχ− ε̄−γ
0ψρ− e

ρ
a ,

δψµ− = Dµε− − rµ γ0ε− +
1

2
ωµ

aγa0ε+ −
1

3
γaε+ eµ

aτρ rρ −
1

3
γaγb0ε+ eµ

aeρb rρ

+
1

2
γaγbε− eµ

a bb −
1

2w
γaε− eµ

a F1 −
1

2w
γa0ε− eµ

a F2 −
3

2w
γ0ψµ− ε̄−γ

0χ−

− 1

2w
γaγb0χ− ε̄+γ

bψρ− eµ
a τρ − 1

2w
γaγbχ− ε̄−ψρ− eµ

aeρb

− 1

2w
γaγb0χ− ε̄−γ

0ψρ− eµ
aeρb ,

δχ− = − w

6
γa0ε+ e

µ
a rµ −

w

4
γaε+ ba −

1

3w
ε− χ̄−χ− +

1

4
ε+ F1 −

1

4
γ0ε+ F2

− 1

4
γaγbχ− ε̄+γ

bψµ− e
µ
a . (A.4)

Finally, for the R-symmetry gauge field rµ and the auxiliary scalars F1 and F2 we find the

following transformations:

δrµ = −3

8
ε̄+φµ +

1

4
ε̄+γ

0ψµ+ τ
ρrρ +

1

4
ε̄−γ

a0ψµ+ e
ρ
arρ +

3

8
ε̄−γ

a0ψµ+ ba

+
3

8w
ε̄−γ

0ψµ+ F1 −
3

8w
ε̄−ψµ+ F2 −

3

8w
ε̄+γ

aψρ− τ
ρ ψ̄µ+γ

aχ−

+
3

8w
ε̄−ψρ− e

ρ
a ψ̄µ+γ

a0χ− −
3

8w
ε̄−γ

0ψρ− e
ρ
a ψ̄µ+γ

aχ− ,

δF1 = ε̄+γ
0τµD̂µχ− + ε̄−γ

aeµaD̂µχ− +
2

w
ε̄−χ− F1 −

2

w
ε̄−γ

0χ− F2

− 1

4
ε̄+γ

aψµ− e
µ
a F1 +

1

4
ε̄+γ

a0ψµ− e
µ
a F2 +

w

4
ε̄+γ

a0φµ e
µ
a

+
1

2
ε̄+γ

aγb0χ− e
µ
a ωµ

b − w

6
ε̄+γ

aψµ+ e
µ
aτ
ρ rρ −

w

6
ε̄+γ

aγb0ψµ− e
µ
ae
ρ
b rρ

+
2(w + 1)

3
ε̄+χ− τ

µ rµ −
2(w + 1)

3
ε̄−γ

a0χ− e
µ
a rµ +

w

4
ε̄+γ

aγbψµ− e
µ
a bb

+ (w + 1) ε̄−γ
aχ− ba +

1

4
ε̄+γ

aγb0χ− ψ̄ρ−γ
bψµ+ e

µ
aτ
ρ − 1

4
ε̄+χ− ψ̄ρ−ψµ− e

µ
ae
ρ
a

+
1

4
ε̄+γ

ab0χ− ψ̄ρ−γ
0ψµ− e

µ
ae
ρ
b , (A.5)

– 26 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
0

and

δF2 = ε̄+γ
0τµD̂µχ− − ε̄−γa0eµaD̂µχ− +

2

w
ε̄−χ− F2 +

2

w
ε̄−γ

0χ− F1

− 1

4
ε̄+γ

a0ψµ− e
µ
a F1 −

1

4
ε̄+γ

aψµ− e
µ
a F2 −

w

4
ε̄+γ

0φµ e
µ
a

− 1

2
ε̄+γ

aγbχ− e
µ
aωµ

b − w

6
ε̄+γ

a0ψµ+ e
µ
aτ
ρ rρ −

w

6
ε̄+γ

aγbψµ+ e
µ
ae
ρ
b rρ

− 2(w + 1)

3
ε̄+γ

0χ− τ
µ rµ −

2(w + 1)

3
ε̄−γ

aχ− e
µ
a rµ −

w

4
ε̄+γ

aγb0ψµ− e
µ
a bb

− (w + 1) ε̄−γ
a0χ− ba +

1

4
ε̄+γ

aγbχ− ψ̄ρ−γ
bψµ+ e

µ
aτ
ρ

+
1

4
ε̄+γ

0χ− ψ̄ρ−ψµ− e
µ
ae
ρ
a +

1

4
ε̄+γ

abχ− ψ̄ρ−γ
0ψµ− e

µ
ae
ρ
b .

(A.6)

These are only the transformations of the independent fields. Those of the dependent gauge

fields ωµ
ab, ωµ

a, fµ, ba and φµ would be even longer, which is why we refrain from giving

them here. They can be derived easily from eqs. (2.5), (2.7), (2.33) and (2.34). Note that

in the transformations of ωµ
a and φµ one should also take into account the new expressions

for curvatures of the gravitini ψµ− and of rµ, see also the next section were we do work out

those transformations for the dependent fields.

A.2 “New minimal” formulation

In the new minimal formulation the bosonic transformations of the dependent gauge fields

ωµ
ab, ωµ

a, ba and φµ are given by

δωµ
ab = ∂µλ

ab ,

δωµ
a = ∂µλ

a − ωµabλb + λa eµ
b bb + eµ

aλb bb + λab ωµ
b ,

δba = λab bb ,

δφµ =
1

4
λabγabφµ − γ0φµ ρ− ψµ+ λa ba ,

(A.7)

while the fermionic transformations read

δωµ
ab = −1

4
ε̄+γ

ab0φµ +
1

2w
ε̄+γ

abψµ+ S + ε̄−γ
[aψµ+ b

b] ,

δωµ
a = ε̄−γ

0ψ̂µ
a
− +

1

4
eµ
b ε̄+γ

bψ̂a0− +
1

4
ε̄+γ

aψ̂µ0− −
1

w
ε̄+γ

a0ψµ− S −
1

w
ε̄−γ

a0ψµ+ S

− 2 εab ε̄−ψµ− bb + eµ
beρa ε̄−γ

0γbγcψρ− bc −
1

2
eµ
beρa ε̄−γ

b

(
φρ +

2

w
γ0ψρ+ S

)
+

1

2
eµ
a τρ ε̄+γ

bψρ+ bb ,

δba = −1

2
ε̄+γ

bψµ− e
µ
b ba −

1

2
ε̄+γ

0ψµ+ τ
µ ba −

1

4
ε̄+γ

0φµ e
µ
a −

1

2w
ε̄+ψµ+ e

µ
a S ,

δφµ = ε+ fµ −
2

3
γ0ε+

[
R̂µ0(R) +

3

2
τν ψ̄[µ−γ

a0ψν]+ ba −
3

4w
τν ψ̄[µ+γ

0ψν]+ S

]
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+
4

3
γaε−

[
R̂µa(R) +

3

2
eνa ψ̄[µ−γ

b0ψν]+ bb −
3

4w
eνa ψ̄[µ+γ

0ψν]+ S

]
−

(
Dµ + eµ

a ba + rµ γ0
)( 2

w
γ0ε+ S + 2 γb0ε− bb

)
. (A.8)

Here, we used the covariant Newton-Cartan curvatures of the independent gauge fields ψµ−
and rµ, which are are given by

ψ̂µν− = 2 ∂[µψν]− −
1

2
ω[µ

abγabψν]− − 2 r[µ γ0ψν]− + ω[µ
a γa0ψν]+

+ 2 γaγbψ[ν− eµ]
abb +

2

w
γaψ[ν+ eµ]

a S ,

R̂µν(R) = 2 ∂[µrν] +
3

4
ψ̄[µ+φν] −

3

2
ψ̄[µ−γ

a0ψν]+ ba +
3

4w
ψ̄[µ+γ

0ψν]+ S .

(A.9)

Finally, the expression for the special conformal gauge field fµ can be found in eq. (2.32).

We did not derive the transformation rule of fµ because no independent field transforms

to fµ. Therefore, its variation is not needed for any checks on the closure of the commuta-

tor algebra.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[21] C.W. Misner, K. Thorne and J. Wheeler, Gravitation, W.H. Freeman and company, San

Francisco, U.S.A. (1973).

[22] R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian gravity and the Bargmann

algebra, Class. Quant. Grav. 28 (2011) 105011 [arXiv:1011.1145] [INSPIRE].

[23] R. Andringa, E.A. Bergshoeff, J. Rosseel and E. Sezgin, 3D Newton-Cartan supergravity,

Class. Quant. Grav. 30 (2013) 205005 [arXiv:1305.6737] [INSPIRE].

[24] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[25] M. Mariño, Lectures on localization and matrix models in supersymmetric

Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

[26] G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06

(2011) 114 [arXiv:1105.0689] [INSPIRE].

[27] E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan (super)gravity as a non-relativistic

limit, Class. Quant. Grav. 32 (2015) 205003 [arXiv:1505.02095] [INSPIRE].

[28] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge

U.K. (2012).

– 29 –

http://dx.doi.org/10.1088/0264-9381/32/4/045010
http://arxiv.org/abs/1407.3617
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3617
http://arxiv.org/abs/1408.6855
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6855
http://dx.doi.org/10.1016/j.physletb.2015.05.010
http://arxiv.org/abs/1409.1519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1519
http://dx.doi.org/10.1103/PhysRevD.92.066003
http://arxiv.org/abs/1409.1522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1522
http://dx.doi.org/10.1088/0264-9381/32/13/135017
http://arxiv.org/abs/1409.5555
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5555
http://dx.doi.org/10.1007/JHEP04(2015)155
http://arxiv.org/abs/1412.2738
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2738
http://dx.doi.org/10.1007/JHEP08(2015)006
http://arxiv.org/abs/1502.00228
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00228
http://dx.doi.org/10.1063/1.4932967
http://arxiv.org/abs/1503.02682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.02682
http://dx.doi.org/10.1007/JHEP08(2015)042
http://arxiv.org/abs/1503.02680
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.02680
https://eudml.org/doc/8141
http://www.numdam.org/item?id=ASENS_1924_3_41__1_0
http://dx.doi.org/10.1088/0264-9381/28/10/105011
http://arxiv.org/abs/1011.1145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1145
http://dx.doi.org/10.1088/0264-9381/30/20/205005
http://arxiv.org/abs/1305.6737
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6737
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
http://dx.doi.org/10.1088/1751-8113/44/46/463001
http://arxiv.org/abs/1104.0783
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0783
http://dx.doi.org/10.1007/JHEP06(2011)114
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
http://dx.doi.org/10.1088/0264-9381/32/20/205003
http://arxiv.org/abs/1505.02095
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.02095


J
H
E
P
1
1
(
2
0
1
5
)
1
8
0

[29] J.A. de Azcarraga and J. Lukierski, Galilean superconformal symmetries, Phys. Lett. B 678

(2009) 411 [arXiv:0905.0141] [INSPIRE].

[30] M. Sakaguchi, Super Galilean conformal algebra in AdS/CFT, J. Math. Phys. 51 (2010)

042301 [arXiv:0905.0188] [INSPIRE].

[31] A. Bagchi and I. Mandal, Supersymmetric extension of galilean conformal algebras, Phys.

Rev. D 80 (2009) 086011 [arXiv:0905.0580] [INSPIRE].

[32] J.P. Gauntlett, J. Gomis and P.K. Townsend, Supersymmetry and the physical phase space

formulation of spinning particles, Phys. Lett. B 248 (1990) 288 [INSPIRE].

[33] M. Leblanc, G. Lozano and H. Min, Extended superconformal Galilean symmetry in

Chern-Simons matter systems, Annals Phys. 219 (1992) 328 [hep-th/9206039] [INSPIRE].

[34] C. Duval and P.A. Horvathy, On Schrödinger superalgebras, J. Math. Phys. 35 (1994) 2516

[hep-th/0508079] [INSPIRE].

[35] M. Sakaguchi and K. Yoshida, More super Schrödinger algebras from PSU(2, 2|4), JHEP 08

(2008) 049 [arXiv:0806.3612] [INSPIRE].

[36] P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with

central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183

[hep-th/9505032] [INSPIRE].

[37] J. Gomis, K. Kamimura and P.K. Townsend, Non-relativistic superbranes, JHEP 11 (2004)

051 [hep-th/0409219] [INSPIRE].

[38] H. Afshar, E.A. Bergshoeff, A. Mehra, P. Parekh and B. Rollier, Hořava-Lifshitz gravity and
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