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Economic theory distinguishes two concepts of utility: decision utility, objectively quantifiable by choices, and experienced utility,
referring to the satisfaction by an obtainment. To date, experienced utility is typically measured with subjective ratings. This study
intended to quantify experienced utility by global levels of neuronal activity. Neuronal activity was measured by means of electroenceph-
alographic (EEG) responses to gain and omission of graded monetary rewards at the level of the EEG topography in human subjects. A
novel analysis approach allowed approximating psychophysiological value functions for the experienced utility of monetary rewards. In
addition, we identified the time windows of the event-related potentials (ERP) and the respective intracortical sources, in which varia-
tions in neuronal activity were significantly related to the value or valence of outcomes. Results indicate that value functions of experi-
enced utility and regret disproportionally increase with monetary value, and thus contradict the compressing value functions of decision
utility. The temporal pattern of outcome evaluation suggests an initial (�250 ms) coarse evaluation regarding the valence, concurrent
with a finer-grained evaluation of the value of gained rewards, whereas the evaluation of the value of omitted rewards emerges later. We
hypothesize that this temporal double dissociation is explained by reward prediction errors. Finally, a late, yet unreported, reward-
sensitive ERP topography (�500 ms) was identified. The sources of these topographical covariations are estimated in the ventromedial
prefrontal cortex, the medial frontal gyrus, the anterior and posterior cingulate cortex and the hippocampus/amygdala. The results
provide important new evidence regarding “how,” “when,” and “where” the brain evaluates outcomes with different hedonic impact.

Introduction
To optimize behavior, an organism needs to assess the experi-
enced utility of actions or objects compared with its expected
utility. The expected utility of a prospect is behaviorally inferred
from revealed choices (Becker et al., 1964). Conversely, the expe-
rienced utility, referring to the hedonic impact of an obtainment
(Bentham, 1798), is more difficult to objectively quantify because
it represents a transient subjective state of emotion.

Recent research using functional magnetic resonance imaging
has identified neuronal structures that are involved in the evalu-
ation of rewarding and punishing outcomes and therefore im-
plicitly provide physiologically based correlates of experienced
utility and experienced regret (Knutson et al., 2003; O’Doherty et
al., 2003; Coricelli et al., 2007; D’Ardenne et al., 2008). Electro-
encephalography (EEG) studies revealed insights to the temporal
course of outcome evaluation. Besides others, most prominently
two event-related potentials (ERP) have been identified: the feed-

back error-related negativity (fERN) (Holroyd et al., 2003; Haj-
cak et al., 2005) and its pendant, the feedback correct-related
positivity (fCRP) (Holroyd et al., 2008). The fERN amplitude
increases when outcomes are worse than expected, whereas the
fCRP is more pronounced, when outcomes are better than ex-
pected. Consequently, the difference between the expectation
and outcome is thought to define the experienced utility of the
outcome (Yeung et al., 2005; Potts et al., 2006).

Until this present study, it has not been investigated how dif-
ferent magnitudes of outcomes are related to the magnitude of
global brain activity. From a logical point of view, neuronal ac-
tivity elicited by stimuli solely differing in reward magnitude
must reflect their hedonic impacts. Consequently, the quantifi-
cation of the magnitude of brain responses of a reasonable sample
of different rewards would enable to construct value functions for
experienced utility in the case of gain and experienced regret in
the case of omission. Value functions for experienced utility and
regret may be of profound interest because they could help clarify
why people sometimes fail to choose what maximizes their hap-
piness (Hsee and Hastie, 2006).

To derive such value functions, high-density EEG was re-
corded while subjects played a wheel-of-fortune game, during
which they could win graded monetary rewards. In addition, we
aimed to extend knowledge on electrophysiological responses to
rewards by circumventing common methodological issues: a ma-
jority of previous studies investigated only difference waveforms
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between two conditions, such as two magnitudes of outcomes.
Hence, it is impossible to deduce the source of the variance (Luck,
2005). Another potential drawback of the “classical” ERP ap-
proach is that waveforms are observed at a small number of
previously selected electrodes. These electrodes are not represen-
tative for the underlying spatiotemporal distribution of brain
activity (Murray et al., 2008). Extending the classical ERP ap-
proach, we investigated outcome-related responses at the ERP
topography using the whole set of electrodes. With topographic
EEG measures, the full spatial and temporal information of EEG
is available and thus can be used to estimate the intracerebral
sources of EEG activity. Using this information, we delineated
latency and localization of brain activity covarying (and not only
differing) with reward value.

Materials and Methods
Subjects. Sixteen healthy subjects (10 female, 6 male; mean � SD age,
26.4 � 5.0 years) were recruited at the University of Zurich. Subjects
reported having no psychiatric conditions. The local ethics review com-
mittee approved the study. Subjects signed informed consent documents
before the start of the experiment.

Procedure. Subjects were seated at 1 m distance from a computer
screen (resolution, 1024 � 768 pixels; screen size, 17 inches) in a sound,
light, and electrically shielded EEG recording room and played a wheel-
of-fortune game (Fig. 1).

On each trial of the experiment, three coins were presented to the
subjects. The sum of the three coins indicated the monetary reward value
at stake. The reward value was pseudorandomly assigned, ranging from
10 Swiss centimes to 1 Swiss franc (�0.75€). To ensure visual similarity
between the different monetary reward values, three coins were always
presented with one or two visually scrambled coins, depending on the
monetary value (for an example, see Fig. 1).

By pressing one of two buttons, subjects chose a color (green or red) to
bet on. Depending on the chosen color, a rectangle surrounding the
picture with the coins adapted its color accordingly. At 500 ms after the
button press, a second rectangle, framed by the outer rectangle, started to
alternate in coloring from red to green and back. The speed of alternation
asymptotically decreased until the inner rectangle stopped after 3500 –
3800 ms. A trial was won if the inner and outer rectangle matched color,
increasing the actual balance of a subject for the amount of money played
for. Whenever the color of the inner and outer rectangle was different,
the money at stake was omitted. The time point of definite outcome was
indicated through a white border of the inner rectangle. The picture

indicating the outcome was presented for 1500
ms. The next trial started after the presentation
(1000 ms) of a blank screen with a fixation
cross.

In each of 300 trials, a real monetary reward
was at stake. Each reward value was played for
30 times, with a probability of 50% for gain and
omission, resulting in a total monetary gain of
82.50 Swiss francs. Subjects were informed
about the probability to win. Because the anal-
ysis (outlined below) is sensitive to unbalanced
numbers of observations, we chose to pseudo-
randomly predefine the sequences of outcomes
of trials using randomized arrays (obtained at
www.random.org). Consequently, the 20 ex-
perimental conditions [reward value (10) �
outcome (2)] were randomly distributed in
time. There were six blocks of 50 trials for each
subject presented in different random order.
The subjects were truthfully told that they
could keep the money they won. Because the
total gain was equal for all subjects, they were
asked before the experiment whether they
knew about any other participants and their
gain. If a subject indicated they knew another’s

gain, a different randomization procedure was available, resulting in a
similar gain (85 Swiss francs). None of the subjects indicated knowing
about the monetary gains of others.

EEG data acquisition and preprocessing. Scalp EEG was recorded at 250
Hz with a Geodesics system (Electrical Geodesics) from 129 scalp elec-
trodes referenced to the vertex. Impedances were maintained at 30 k� or
less. Twenty electrodes located on the outermost circumference (chin
and neck) were omitted, because the head model implemented in stan-
dardized low-resolution electromagnetic tomography (sLORETA)
(Pascual-Marqui, 2002), which was used to localize intracerebral sources,
does not cover these electrodes. The remaining 109 electrodes were sub-
mitted to additional analysis. The EEG was filtered offline from 1.5 to 30
Hz. Eye movement artifacts were removed from the data using indepen-
dent component analysis. Trials containing additional artifacts after
visual inspection were excluded from the ERP analysis. EEG data was
recomputed against the average reference. Artifact-free EEG epochs of
1200 ms were extracted with onsets 200 ms before the presentation of the
outcome stimuli (Fig. 1 D). The average � SD number of artifact-free
data epochs from each subject was as follows: 134.4 � 15.2 (of 150) for
the rewarded outcomes and 132.0 � 16.2 (of 150) for the omitted out-
comes. ERP maps of each reward condition were averaged for each sub-
ject, and grand-average ERPs across subjects were computed for each
reward condition and across reward conditions.

Definition of the time window of analysis: consistent ERP topography
across subjects. To restrain the temporal window of analysis, we followed
a recently suggested approach (Koenig and Melie-Garcia, 2009, 2010)
that detects the time periods in the ERP in which similar intracortical
generators are active across subjects. Because similar generators imply
similar topographies, topographies across subjects are tested for consis-
tency. For this test, the global field power (GFP) of the grand mean ERPs
is taken as the measure of effect size. The null hypothesis states that for
each time point, the GFP of the grand mean ERP (i.e., the mean ERP
across subjects of the mean ERPs within subjects) may be observed by
chance. To test this hypothesis, the GFP of the grand mean ERP was
compared with 5000 GFPs of the grand mean ERPs that were constructed
by randomly shuffling the measurements across electrodes of the grand
mean ERP within each subject. To obtain the probability of the null
hypothesis, the percentage of cases was computed in which the GFP
obtained after randomization was larger than the GFP obtained in the
observed data. This procedure was applied for grand means of won out-
comes, lost outcomes, and all outcomes.

Topographic analysis of covariance. Topographic analyses of covariance
(TANCOVA) was used to identify the time points in which the global
scalp field potentials significantly covaried with the external variables.

Figure 1. Course of the experimental paradigm. A, Reward at stake is presented (e.g., 50 Swiss centimes). B, Subject chooses
color via button press. C, The inner rectangle starts alternating and stops after 3500 –3800 ms. D, If the chosen color (outer
rectangle) and the inner rectangle match, the subject wins. If the two rectangles are of different color, the potential reward is
omitted. E, After the presentation of a blank screen for 1 s, the next trial starts with a different reward value at stake. iti, Intertrial
interval.
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This method of analysis introduced by Koenig et al. (2008) relies on the
fact that ERP fields are additive. Therefore, the existence of a source that
is active proportionally to an external variable results in a single topog-
raphy that is added to the ERP proportionally to the external variable. To
retrieve the topography that is proportional to the external variable at a
given point in time, the covariance of the external variable with the
potentials at each electrode at that point in time is computed. The ob-
tained covariance map � represents the map corresponding to the gen-
erators that activate proportionally to the external variable at the given
point in time. Using the GFP of this covariance map as an effect size
allows testing time frame for time frame for significant covariation by
applying randomization statistics as described by Koenig et al. (2008).

For the time windows indicating significant ( p � 0.01) consistent
scalp topographies across subjects, TANCOVAs were computed for the
variables: reward value of gains (levels: 10), reward value of omitted
outcomes (levels: 10), and valence (gains vs omitted rewards) (levels: 2).
Because it was not known whether reward value contributes linearly to
the scalp field map, we tested different, monotonic functions to relate
reward with the electrophysiological data with the goal of maximizing the
correspondence of the actual reward value and the electrophysiological
index of reward representation. Reward values xi were therefore trans-
formed using a power function with parameter � (� � 1, concave func-
tion; � � 1, linear function; � � 1, convex function):

xi
	 � xi

�, (1)

where i is the reward level, x is the reward (ranging from 0 to 1), and xi
	 is

the covariate used for the computation of the covariance maps. � was
varied in the range of 0.01 to 10 with increments of 0.1. For each subject
and value of �, covariance maps � between the transformed reward
values and the potentials at each electrode and each included point in
time were computed as follows:

�t,e � �
i � 1

10

vi,t,e � xi
	, (2)

where v is the scalp potential at electrode e, time point t, and reward level
i. These covariance maps were then used to compute, for each reward
level, an electrophysiological index s�i of reward using the following equa-
tion (Koenig et al. 2008):

st,i � �
e � 1

m

vi,t,e � �t,e, (3)

and where s�i is the mean of st,i across time.
The correspondence between s�i and xi was defined by the squared

Pearson’s correlation coefficient r 2 between the two vectors, which is
equivalent to the percentage of common variance. The individual opti-
mal � was defined at which this correspondence was maximal. In a next
step, we assessed whether the r 2 and � values of best-fitting functions
significantly differ from the corresponding r 2 values and a linear func-
tion (� � 1), using Wilcoxon’s signed-rank tests and paired t tests, when
appropriate. The median of the � values of the best-fitting functions
entered the randomization test, described in the following section. To
visually confirm the goodness of fit of the value functions, the values of st,i

were plotted.
According to Koenig et al. (2008), a randomization procedure (5000

iterations) was used to identify at which time points of the ERP the global
scalp field potentials significantly covaried with the previously deter-
mined best-fitting value function. Because this test calculates whether the
ERP topography covaries above chance level for each time frame inde-
pendently, the problem of multiple testing needs to be addressed. Fol-
lowing the same rationale of randomization statistics as for determining
significance levels for each time frame, we calculated whether the dura-
tion of a time window of continuous significant covariation might be
observed by chance. Thus, the probability of falsely detecting certain
duration of a significant effect was computed. Details on this particular
test are explicated by Koenig and Melie-Garcia (2009, 2010). Results are

reported with a threshold for significance of p � 0.01. For significant
time windows, the false-positive probability of the duration (FPP-D) is
indicated. The whole analytical procedure was conducted for the won
outcome conditions and the reward omission outcome conditions sepa-
rately. Because the variable reward valence has only two levels and can be
considered as a special case of a covariational analysis (with parameters of
1 for won and 
1 for omission) (Koenig et al., 2008), the analysis steps of
fitting the best function were unnecessary.

Source localization. Because the generated TANCOVA maps represent
a linear transformation of the topographical data, they can directly be
submitted to source localization procedures (Koenig et al., 2008). The
inverse solution of the ERP data was calculated using sLORETA (http://
www.uzh.ch/keyinst/loreta.htm) (Pascual-Marqui, 2002). This method
computes the current density magnitude (amperes per square millime-
ter) of each voxel, localizing the neural generators of the electrical activity
by assuming similar activation among neighboring neuronal clusters.
The solution space was computed on a spherical head model with ana-
tomical constraints (Spinelli et al., 2000) and comprised 3005 solution
points equidistantly distributed within the gray matter of the cerebral
cortex and limbic structures of the Montreal Neurological Institute
(MNI) 152 average brain. Anatomical labels are reported using an appro-
priate correction from Talairach–Tournoux to MNI space (Brett et al.,
2002). The obtained tomography represents the intracerebral generators
of the scalp field data accounting for the effects observed in the external
variable with the full spatial resolution of the measured data. The graph-
ical rendering of intracerebral sources and the ERP topographies was
performed using the Cartool software (brainmapping.unige.ch/cartool)
(Brunet et al., 2011).

Results
Behavioral results
The behavioral task consisted of pseudorandomly assigned
gained and omitted rewards, and the subjects were informed that
the chance to win was 50% throughout the experiment. Never-
theless, we were interested how frequently subjects changed their
choice of color to bet on, depending on the outcome and type of
the previous trial. Results indicated no significant difference in
the frequency of changing the choice for a color, depending on
neither the value at stake (F(9,135) � 0.942; p � 0.491), nor the
outcomes (gain/loss) (F(1,15) � 0.262; p � 0.616), nor on the
interaction of both (F(9,135) � 0.492; p � 0.878).

Consistent topography across subjects
The test for consistent ERP topographies of the grand means
across subjects revealed significant ( p � 0.01) consistency for a
time window from 
100 to 564 ms (with the outcome as tempo-
ral reference), with an inconsistent time window at 132–140 ms.
It is noteworthy that such a short period of inconsistency within
a larger time window of consistent ERP topography typically oc-
curs when ERP topographies change polarity, indicating that ERP
sources are in transition to new stable states. The topography of
the grand mean of gain trials was consistent across subjects from

72 to 544 ms. Similarly, the grand mean ERP topography of all
omission trials was consistent from 
112 to 568 ms, with incon-
sistent time frames at 132–140, 396 – 408, and 464- 24 ms. The
information of the obtained consistent time frames was submit-
ted to the proceeding analysis steps of reward value function
estimation and the TANCOVA (see Fig. 3A).

Estimation of value functions
The value functions for gains and omissions were estimated
subject-wise according to the criterion of the maximal sum of
explained variance in the ERP data during the time of consistent
topography. For both gains and omissions, convex functions fit-
ted the ERP data best [�gains: median (Mdn), 2.41; median abso-

10476 • J. Neurosci., July 20, 2011 • 31(29):10474 –10480 Pedroni et al. • EEG Measures of Experienced Utility



lute deviation (MAD), 4.28; �omission: Mdn, 3.56; MAD, 3.21]
(Fig. 2). Wilcoxon’s signed-rank tests indicated that �omission dif-
fered significantly (Z � 2.694, p � 0.007) from � � 1 (linear
function) and that there is a trend for a significant difference
between �gains (Z � 1.890, p � 0.059) and � � 1. Furthermore,
paired t tests revealed that the functions with optimized � values
explain significantly more variance in the ERPs than linear func-
tions (gains, T(15) � 3.991, p � 0.001; omission, T(15) � 4.238,
p � 0.001).

The model functions with optimized � values explained on
average 49.66% of variance in the omission ERPs during the time
of consistent topography. For gains, the functions with optimized
� values explained on average 49.86% of variance in the gain
ERPs during the time of consistent topography.

Topographic analysis of covariance
The TANCOVA on the variable valence revealed significantly
( p � 0.01) covarying EEG topographies in the time windows
268 –304 ms (FPP-D � 0.036) and 464 –508 ms (FPP-D � 0.028)
after outcome onset. Unexpectedly early (16 ms after onset of
outcomes to 40 ms), there was a trend ( p � 0.05) for significantly
differing ERP topographies with respect to valence. The p value
plot indicates that the p value starts to decrease before the out-
come of the game is presented; thus, this effect cannot be the
result of a physiological reaction to the valence of outcomes. The
analysis further indicated significant ( p � 0.01) covariance for
the variable reward value of won outcomes during the time
periods of 280 –296 ms (FPP-D � 0.056) and 484 –504 ms

(FPP-D � 0.038) after outcome onset. For reward values of
omitted outcomes, ERP topographies indicated a trend ( p �
0.05) for significant covariations with reward value during a time
window of 360 –380 ms after outcome onset (Fig. 3B). Plots of the
electrophysiological index of reward st,i as function of time and
reward level (Fig. 3C) should provide an insight on how the dif-
ferent reward levels contribute to the overall representation of
reward across time.

Source localization
sLORETA was used to localize the intracranial generators of the
ERP covariance maps for each time point in the ERPs. The reported
intracranial generators represent the averaged time windows of sig-
nificant covariance derived in the TANCOVA. Therefore, this ap-
proach revealed the relative contribution of intracranial sources
covarying with the external variables. Overall, source localization
revealed a neuronal network that sensitively responds to informa-
tion about rewarding (or disappointing in the case of omissions)
outcomes that includes the ventromedial prefrontal cortex
(VMPFC), anterior and posterior cingulate cortex (ACC/PCC),
the hippocampus and amygdala (Hipp/Amy), and the medial
frontal gyrus (MFG).

The point of maximal current source density (CSD) for va-
lence during the time window of 248 –312 ms was found in
VMPFC (MNI: x � 
9, y � 42, z � 
16). The time window from
456 to 520 ms indicated maximal CSD in the right Hipp/Amy
(MNI: x � 29, y � 
12, z � 
26). The covariance maps of value
coding after gains at the time windows of 268 –304 ms revealed
maximal CSD at the left MFG (MNI: x � 
32, y � 8, z � 60). For
the time window of 480 –512 ms highest CSD was found at the
VMPFC (MNI: x � 
3, y � 35, z � 
21). The covariance maps
of value coding after omitted rewards at the time window of
360 –380 ms revealed maximal CSD at the right Hipp/Amy (MNI:
x � 29, y � 
12, z � 
26) (Fig. 3E).

Discussion
This study aimed to extend knowledge on reward processing by
investigating ERP responses at the level of the EEG topography.
This approach offers several attractions: it combines the full spa-
tial representation of EEG data with a high time resolution and
direct access to neuronal signaling. In addition, it is possible to
collect a large number of trials within a short time. These factors
made it possible to provide novel contributions to the under-
standing of “how,” “where,” and “when” reward is processed.

“How” is monetary reward translated into brain activity?
We determined the form of relation between ERP topographies
and associated monetary reward values. This functional form
describes how the global response of brain activity is related to
stimuli indicating gain and omission of different monetary re-
wards. Because we ensured that these stimuli solely differed with
respect to the magnitude of the outcome, it is conceivable that the
response of brain activity (measured at the ERP topography) corre-
sponds to the experienced utility or regret of a more or less favorable
outcome. Contrary to our expectations, the results revealed convex
value functions for gains and omissions. Therefore, the sensitivity of
the electrophysiological response nonlinearly increased for larger
values. This finding is in contrast to concave utility functions derived
from revealed choices (decision utility) and stimulus–intensity cod-
ing functions, following the psychophysics of diminishing sensitivity
(Kahneman and Tversky, 1979). It is possible that the discrepancy
between the value functions is attributable to the low monetary val-
ues at stake in our experiment. However, as reported for value func-

A

B

Figure 2. Electroencephalographically derived value functions. Mean electrophysiological
indices of reward (s�i; for details, see Eq. 3) as function of actual reward for the gain and omission
conditions. Solid lines show the average across consistent time frames and subjects and indicate
a convex, nonlinear relation between monetary rewards and ERP responses. Gray areas repre-
sent �1 SEM. The dotted lines illustrate the estimated value functions, which corresponded
most closely to the exhibited ERP responses and thus explained most variance in the data.
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tions of decision utility, it is assumable that value functions for
experienced utility might not change with rising stakes (Fehr-Duda
et al., 2010). In addition, it has been shown that reward value is
neuronallycodedinrelationtopossibleoutcomesandnotatanabsolute
scale (Nieuwenhuis et al., 2005; Tobler et al., 2005; Elliott et al., 2008; De
Martino et al., 2009; Fujiwara et al., 2009). New experiments are called
for to examine the robustness of this unforeseen result, thus allowing to
propose conscientious psychological interpretations of value functions
for experienced utility and experienced regret.

“Where” is value and valence processed?
Source solutions revealed a network of brain areas, which sensitively
responded to information about rewarding (or disappointing) out-
comes that includes the VMPFC, ACC/PCC, hippocampus/
amygdala, and MFG. Interestingly, the characteristic topographies
of covariance of the specific time windows and conditions seems not
to result from structurally dissociable neuronal processes as sug-
gested previously (Yeung and Sanfey, 2004; Yacubian et al., 2006).
Instead, it seems that a common network is involved in the process-
ing of distinct aspects of reward information; the components are
differentially engaged depending on the specific step in processing.

For example, the VMPFC responds sensitively to the valence
of the outcome and the value of gains but to a lesser extent to the
value of omissions. This is in line with previous studies showing
that activity in the VMPFC increases after rewarding outcomes
compared with omissions (Knutson et al., 2003) and is correlated
with experienced value (Smith et al., 2010) and pleasantness rat-
ings (Lebreton et al., 2009). In addition, the MFG predominantly
responded to information about value but scarcely to valence.
This conforms to linear increasing activity with the reward value
of gains (Elliott et al., 2003). The source solution indicated most
prominent (but not exclusive) omission-sensitive activity in the
hippocampus in vicinity to the amygdala. The potential involve-
ment of the amygdala replicates previous results showing that the
amygdala encodes negative prediction errors (e.g., worse than
expected outcomes) (Yacubian et al., 2006) but also responds to
rewards (Breiter et al., 2001) and is generally believed to encode
the emotional significance of stimuli, be it appetitive or aversive
(Shabel and Janak, 2009). Similarly, besides the processing of
mnemonic functions, the observation of reward-dependent vari-
ation of activity in the hippocampus is compatible with the key

Figure 3. Overview of ERP: results. A, Results of the topographic consistency test for all outcomes (first row), gains only (second row), and omissions (third row). Black areas indicate the
significance level (inversely log-transformed) of the test. Areas exceeding the p � 0.01 mark restrict the time window of the TANCOVA. The gray areas depicted within indicate the GFP. B,
Moment-by-moment significance level of the TANCOVA. The height of the area indicates the significance level (inversely log-transformed) of covariation between ERP topographies and valence (first
row), value of gains (second row), and value of omissions (third row). C, Plot of the electrophysiological index of reward st,i as function of time and reward level (see Eq. 3). D, Covariance maps of the
ERP data of the respective time frames of strong covariance. E, Source estimation of the covariance maps. The loci of maximal CSD (e.g., representing the maximal contribution to the covariance in
the ERP topography) are framed in red. It is worth emphasizing that, in all conditions, similar sources differently contribute to the covariance at the level of the ERP topography.
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role played by this structure in reward and emotion (Blood and
Zatorre, 2001).

We are aware that the precision of the EEG source localization
is limited, and it likely cannot distinguish activity, for example, in
the amygdala from hippocampal activity. Nevertheless, at a more
general level, it has been shown that mediotemporal activity or
activity in the VMPFC (or orbitofrontal cortex) can be reliably
retrieved from scalp EEG using similar source reconstruction
techniques as in our study (Lantz et al., 1997, 2001; Pizzagalli et
al., 2003; Zumsteg et al., 2005).

“When” is reward information processed?
The results indicate that, at a first stage (�250 –300 ms after
outcome), two factors of outcomes are processed: a coarse eval-
uation along a good– bad dimension (valence) and a concurrent,
finer-grained evaluation of positive outcomes (value). The value
of omitted rewards covaried with the ERP topography at a greater
latency (�360 ms after outcome). Importantly, during this time
window, ERP topographies did not differ with respect to the
valence of outcomes. The results therefore revealed a concurrent
processing of valence and value of gained rewards and a later
processing of omitted reward values.

We conjecture that this scheme of brain responses may be
driven through cortical input of midbrain reward prediction er-
ror (RPE) signals. Seminal experiments of Schultz et al. (1997)
have shown that, for rewards at chance, a positive RPE is gener-
ated, which is represented by a phasic increase in spiking activity.
This increase is scaled to the value of gained rewards (Fiorillo et
al., 2003; Bayer and Glimcher, 2005). It was suggested that these
phasic fluctuations of dopaminergic midbrain activity modu-
late activity in the ACC (Holroyd and Coles, 2002; Holroyd et al.,
2003). Furthermore, in line with our results, several studies re-
vealed that the dopaminergic midbrain is effectively connected
(besides others) with the VMPFC, MFG, and hippocampus/
amygdala (for review, see Camara et al., 2009). In the case of the
omission of a reward, a depression in spiking activity typically
follows (Schultz et al., 1997). Therefore, the difference between
the depression and any scaled increase of spikes makes it possible
that valence and value of gains are concurrently encoded.

For scaled negative RPEs (e.g., modulated through omitted
rewards of different magnitude), the quantification of spike de-
pression appears to be limited (Fiorillo et al., 2003) because the
range of the spiking rate of dopaminergic midbrain neurons from
the baseline rate (3– 8 spikes/s) (Niv and Schoenbaum, 2008) to
zero spiking is marginal. This might explain why the value of
omitted rewards is not processed at the same time as value of
gains in the present study.

However, it has been suggested that scaled negative RPEs are
coded by means of the duration of the pauses in spiking (Bayer et
al., 2007). Consequently, it only makes sense to pass the informa-
tion about the value of negative RPEs from midbrain structures
to higher cognitive processing after the full expiration of the
pause. In line with this, omitted reward values in this study sig-
nificantly covaried with the ERP topography �110 ms after the
first significant effect of valence coding.

Although we were exploring measures at the level of the ERP
topography, by and large our results are supported through find-
ings of research focusing on ERP responses of individual elec-
trodes (Hajcak et al., 2005; Potts et al., 2006; Hewig et al., 2008;
Holroyd et al., 2008; San Martin et al., 2010). For example, un-
derpinning the hypothesis of dopaminergically driven ERP to-
pographies, Cohen et al. (2007) showed that, during a time
window in the range of the first processing of valence and value of

gains, power and phase coherence values of ERPs after wins but
not losses were modulated by reward probability, which, like
reward value, modulates the magnitude of RPEs. Regarding the
omission-sensitive ERP topography, previous studies reported
that the amplitude of the (highly similar in terms of topography
and latency) P300 reflects a pure coding of value regardless of
valence in the P300 component (Yeung and Sanfey, 2004; Sato et
al., 2005), whereas others indicated that the P300 is sensitive to
valence and value (Hajcak et al., 2005; Holroyd and Krigolson,
2007; Wu and Zhou, 2009).

Besides the above-discussed results, which are within the tem-
poral range of previously reported feedback-related ERPs, the
ERP topography in a later time window (�470 ms after feedback)
significantly varied as a result of valence and value differences of
the gains. Again, the ERP topography did not reflect an influence
of the value of omitted rewards. The processing of valence and
value of gains similarly involved the VMPFC and hippocampus/
amygdala. Activity in the VMPFC more strongly covaried with
the value of gains, whereas activity in the Hipp/Amy exhibited the
strongest source of valence-dependent variation. The finding of a
later, yet not reported, reward-sensitive ERP topography demon-
strates one of the key advantages of our analysis approach,
namely the a priori unrestrained analysis of all electrodes and
time points of the post-outcome epoch.

To conclude, the present results demonstrate a measure of
experienced utility by means of brain activity. In addition, ERP
responses to different aspects of reward information recruit sim-
ilar but differently weighted neuronal structures in a specific tem-
poral sequence. The time course of processing argues in favor of
dopaminergically driven activity.
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