Contextualizing local-scale point sample data using global-scale spatial datasets: Lessons learnt from the analysis of large-scale land acquisitions

Eckert, Sandra; Giger, Markus; Messerli, Peter (2016). Contextualizing local-scale point sample data using global-scale spatial datasets: Lessons learnt from the analysis of large-scale land acquisitions. Applied geography, 68, pp. 84-94. Elsevier 10.1016/j.apgeog.2016.01.008

[img] Text
Eckert et al_Contextualizing_2016.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB) | Request a copy

This paper examines how the geospatial accuracy of samples and sample size influence conclusions from geospatial analyses. It does so using the example of a study investigating the global phenomenon of large-scale land acquisitions and the socio-ecological characteristics of the areas they target. First, we analysed land deal datasets of varying geospatial accuracy and varying sizes and compared the results in terms of land cover, population density, and two indicators for agricultural potential: yield gap and availability of uncultivated land that is suitable for rainfed agriculture. We found that an increase in geospatial accuracy led to a substantial and greater change in conclusions about the land cover types targeted than an increase in sample size, suggesting that using a sample of higher geospatial accuracy does more to improve results than using a larger sample. The same finding emerged for population density, yield gap, and the availability of uncultivated land suitable for rainfed agriculture. Furthermore, the statistical median proved to be more consistent than the mean when comparing the descriptive statistics for datasets of different geospatial accuracy. Second, we analysed effects of geospatial accuracy on estimations regarding the potential for advancing agricultural development in target contexts. Our results show that the target contexts of the majority of land deals in our sample whose geolocation is known with a high level of accuracy contain smaller amounts of suitable, but uncultivated land than regional- and national-scale averages suggest. Consequently, the more target contexts vary within a country, the more detailed the spatial scale of analysis has to be in order to draw meaningful conclusions about the phenomena under investigation. We therefore advise against using national-scale statistics to approximate or characterize phenomena that have a local-scale impact, particularly if key indicators vary widely within a country.

Item Type:

Journal Article (Original Article)


10 Strategic Research Centers > Centre for Development and Environment (CDE)

UniBE Contributor:

Eckert, Sandra, Giger, Markus, Messerli, Peter






[505] Land Matrix Official URL




Stephan Schmidt

Date Deposited:

02 Mar 2016 14:16

Last Modified:

05 Dec 2022 14:52

Publisher DOI:





Actions (login required)

Edit item Edit item
Provide Feedback