Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey Younes ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la Corniche 10, 1010 Lausanne, Switzerland.

+41 (0)21 314 26 14 TEL

+41(0)21 314 73 73 FAX

e-mail: silvia.stringhini@chuv.ch

Keywords: Allostatic load, socioeconomic status, physiological dysregulation, population-based, heritability

Word count: Abstract 252 words Text 4475 words

Summary

Allostatic load (AL) is a marker of physiological dysregulation which reflects exposure to chronic stress. High AL has been related to poorer health outcomes including mortality. We examine here the association of socioeconomic and lifestyle factors with AL. Additionally, we investigate the extent to which AL is genetically determined. We included 803 participants (52% women, mean age 48±16 years) from a population and family-based Swiss study. We computed an AL index aggregating 14 markers from cardiovascular, metabolic, lipidic, oxidative, hypothalamus-pituitary-adrenal and inflammatory homeostatic axes. Education and occupational position were used as indicators of socioeconomic status. Marital status, stress, alcohol intake, smoking, dietary patterns and physical activity were considered as lifestyle factors. Heritability of AL was estimated by maximum likelihood. Women with a low occupational position had higher AL (low vs. high OR =3.99, 95%CI [1.22;13.05]), while the opposite was observed for men (middle vs. high OR =0.48, 95%CI [0.23;0.99])). Education tended to be inversely associated with AL in both sexes(low vs. high OR=3.54, 95%CI [1.69;7.4]/OR =1.59, 95%CI [0.88;2.90] in women/men). Heavy drinking men as well as women abstaining from alcohol had higher AL than moderate drinkers. Physical activity was protective against AL while high salt intake was related to increased AL risk. The heritability of AL was estimated to be 29.5% ±7.9%. Our results suggest that generalized physiological dysregulation, as measured by AL, is determined by both environmental and genetic factors. The genetic contribution to AL remains modest when compared to the environmental component, which explains approximately 70% of the phenotypic variance.

1 Introduction

Allostatic load (AL) is an indicator of biological dysregulation representing the cumulative physiological toll experienced by an organism when it fails to adequately respond to chronic psychosocial or physical challenges from the environment (Dowd et al., 2009; McEwen, 1998). Introduced in the early nineties by McEwen and Stellar (McEwen and Stellar, 1993), AL is measured through a single index, resulting from a combination of biological markers reflecting the states of several axes including cardiovascular, metabolic, dyslipidemic, neuroendocrine, hypothalamus-pituitary-adrenal (HPA) and inflammatory (Nicod et al., 2014; Seeman et al., 2010). High AL has been related to several adverse health outcomes, including physical and cognitive functioning, symptoms of post traumatic stress disorder, risk of cardiovascular events (Crimmins et al., 2003; Juster et al., 2010; Seeman et al., 2001), and all-cause mortality (Seeman et al., 2004).

The concept of AL was originally introduced to represent the physiological consequences of chronic stress, itself influenced by socioeconomic status (SES), health behaviors or psychosocial factors. In this context, many studies have found a strong association between low SES, as reflected by low education, adverse financial conditions or receiving social transfers, and high AL (Gruenewald et al., 2012; Nicod et al., 2014). The role of health behaviors in relation to chronic stress and health has also been investigated in previous research, which showed that individuals confronted to stressful daily life (i.e. poverty, crime) are prone to engage themselves into unhealthy behaviors such as smoking or overeating, which may help alleviate symptoms of psychological stress. However, despite these positive, short-term psychological effects, an unhealthy lifestyle has detrimental physiological consequences on the long term and thus results in increased morbidity and mortality (Jackson et al., 2010).

However, the associations between health behaviors and AL have not always been consistent across studies. Gallo et al. (Gallo et al., 2011) showed, for example, that moderate alcohol consumption was associated with decreased AL, whereas Crimmins et al. (Crimmins et al., 2009) found no association between alcohol intake and AL. Similarly, results for the effect of smoking on AL were inconsistent

(Crimmins et al., 2009; Hu et al., 2007). Finally, AL has mainly been studied as a consequence of chronic environmental demands, whereas a limited number of studies have examined the contribution of selected genetic determinants using a candidate gene approach to this phenotype (Brody et al., 2013; Cicchetti et al., 2011). The complex nature of AL suggests that this phenotype is influenced by more than one gene (i.e. a polygenic trait). However, previous studies have mainly focused on the role of specific genetic markers, which are involved in responses to contextual stress, including SES-associated risks, family or personal pressure and the response to physical abuse (Brody et al., 2013; Cicchetti et al., 2011). To date, two markers have been identified, the SLC6A4 serotonin transporter gene, whose shorter variant was associated with high AL, and CRHR1 corticotropin releasing hormone receptor 1 gene, which is involved in HPA axis regulation, and whose TAT variant was associated with high AL. However, to our knowledge, no study has yet investigated nor assessed heritability of AL, which allows the determine the overall genetic contribution to this phenotype, irrespective of the specific function of selected genes. In this study, we examine the association of socioeconomic (education and occupation) and behavioral factors (marital status, smoking, alcohol consumption, physical activity, dietary patterns, and stress) with AL using data from a Swiss population-based study. Further, we investigate the extent to which AL is genetically determined by assessing narrow sense heritability. We hypothesize that AL is influenced by both environmental (socioeconomic and behavioural) and genetic factors (Figure 1).

2 Methods

2.1 Study population and design

Data were drawn from the SKIPOGH study (Swiss Kidney Project on Genes in Hypertension), a multicenter family-based population study initiated in 2009 to explore the genetic and environmental determinants of blood pressure (Alwan et al., 2014; Pruijm et al., 2013).

Study participants were recruited in the cantons of Bern and Geneva and the city of Lausanne.

Recruitment began in December 2009 and ended in April 2013. Index cases were randomly selected from the population-based CoLaus study in Lausanne (Firmann et al., 2008), and from the population-based

Bus Santé study in Geneva (Guessous et al., 2012). In Bern, index participants were randomly selected using the cantonal phone directory. Inclusion criteria were: (1) written informed consent; (2) minimum age of 18 years; (3) Caucasian origin; (4) at least one, and preferably three, first-degree family members also willing to participate. At the end of the recruitment period, the study population included 1128 participants. The SKIPOGH study was approved by the ethical committees of Lausanne University Hospital, Geneva University Hospital and the University Hospital of Bern (Ponte et al., 2014). Participants came from 271 distinct family structures (pedigrees), most of which included three generations and second degree links (i.e. cousins). The mean pedigree size (±SD) was 5.05 ± 2.26, with the largest nuclear family (parent-children only) including 8 members. These pedigrees led to 1444 parent-offspring pairs, 462 sibling pairs, 213 avuncular pairs, 310 grandparents-grandchildren pairs and 44 cousin pairs.

2.2 Clinical and biological data

Participants came for the study visit at one of the three medical centers in the morning, and filled in a standardized questionnaire at home. The questionnaire focused on a variety of issues including lifestyle habits as well as medical history. Body weight (kg), height (cm) and waist and hip circumferences (cm) were measured according to standard procedures. Body mass index (BMI) was defined as weight in kg divided by the square of height in meters. Blood pressure and heart rate were measured after 10 minutes of rest in the sitting position with a validated non-mercury auscultatory sphygmomanometer (A&D UM-101, A&D Company, Ltd., Toshima Ku, Tokyo, Japan). Each participant's office blood pressure and heart rate were the means of five consecutive readings. Venous blood samples were drawn after an overnight fast. Electrolytes, kidney and liver-function tests, blood glucose, cholesterol, triglycerides, insulin, C-reactive protein (CRP), serum uric acid, gamma-glutamyltransferase (GGT) and other biological markers were measured in local university laboratories using standard clinical laboratory methods. Participants were also asked to collect a 24-hour urine sample for the measurement of urinary

volume, urinary sodium and additional parameters (Alwan et al., 2014; Ponte et al., 2014; Pruijm et al., 2013).

2.3 Socioeconomic status (SES)

Two indicators of SES were used: educational level and occupational position. Highest level of education attained was self-reported and further classified into three categories: "High" (University education), "Middle" (Higher secondary education), and "Low" (Lower secondary education or lower). Occupational position was self-reported and grouped into three categories: "High" (Managers: liberal professions, directors, professors), "Middle" (Lower level executives: teachers, qualified technicians, nurses) and "Low" (Low qualified non-manuals and manuals: sales assistants, clerks, manual workers). Participants who were not currently working were assigned their past occupational position. Participants who had never worked (students and housewives) were not included in the analysis.

2.4 Lifestyle factors

Lifestyle factors were self reported. Marital status was categorized as "Living alone" or "Living in a couple". Alcohol consumption was assessed using questions on the number of alcoholic drinks usually consumed within a week, then categorized as "Abstainers" (0 unit/week; 1 unit=10g of pure alcohol) "Moderate" (1-21/1-14 units/week for men/women) or "Heavy drinking" (≥21/≥14 units/week for men/women). Smoking status was categorized as current and noncurrent smoking, the latter category including never smokers and ex-smokers. Physical activity was reported on a scale from 1 to 10, 1 corresponding to a complete sedentary lifestyle and 10 corresponding to manual work combined with sports practice. Based on this scale, three categories were subsequently defined: "Low" (1-4), "Moderate" (5), and "High" (6-10). Daily salt intake was assessed through 24-h urinary sodium excretion (mmol/24h) and categorized as "Up to 5g/day", "5-10g/day" and ">10g/day". Weekly meat consumption was categorized as "Low" (Never − Once/week), "Moderate" (2-4 times/week) and "High" (5-7 times/week). Daily fruit and vegetable consumption was classified as "Low" (0 -3 portions/day), "Moderate" (3 portions/day) and "High" (> 3 portions/day). Perceived stress level (referred to as "Stress") was assessed

through the question: "Please indicate on a scale from 1 to 10 the psychological tensions and stress to which you are exposed in your everyday life / Veuillez noter sur une échelle de 1 à 10 les tensions psychologiques et le stress auxquel vous êtes confrontés actuellement dans votre vie quotidienne [FR] / Bitte beurteilen Sie anhand einer Skala von 1-10 Ihre tägliche Anspannung und Stress in Ihrem Alltag [DE] " with possible answers on a scale from 1 to 10. It was further subdivided into "Low" (1-3), "Moderate" (4-6) and "High" (7-10).

2.5 Other covariates

Use of anti-hypertensive drugs (beta-blockers, angiotensin-converting-enzyme inhibitors, angiotensin receptor blockers, calcium channel blockers, diuretics), lipid-lowering drugs (statin, fibrates) and anti-diabetes drugs (oral anti-diabetics, insulin) was included as potential confounding effects in the association between SES and AL (Sensitivity analyses).

2.6 Allostatic load

We analyzed the constituting risk factors of AL in groups corresponding to six physiological systems: cardiovascular, metabolism, hypothalamic-pituitary-adrenal axis (HPA), lipidic axis, inflammation and oxidative stress (Gallo et al., 2011; Nicod et al., 2014; Seeman et al., 2010). Compared to the markers usually included in the assessment of AL, we omitted autonomic nervous system parameters (i.e. adrenaline, noradrenaline) as they were not available in SKIPOGH. Moreover, we decided to include an oxidative stress axis as chronic oxidative stress has also been linked to generalized physiological dysregulation (Devaki et al., 2013; Nicod et al., 2014). Further, we separated the lipids from the metabolism axes contrary to previous studies. In total, we assessed 14 biological markers within 6 homeostatic dimensions: mean systolic blood pressure, mean diastolic blood pressure and heart rate (cardiovascular system); blood glucose, blood insulin, bmi and waist-to-hip ratio (metabolism); 24h urine cortisol (HPA); high-density lipoprotein cholesterol, total cholesterol and triglycerides (lipidic axis),

serum uric acid and GGT (oxidative stress) and CRP (inflammation). All physiological parameters composing AL were stratified by sex and are summarized in supplementary Table1 (Online Resource 1). Each biological marker was dichotomized into high versus low-risk values (1-0) according to clinical thresholds as found in the literature (Ascaso et al., 2003; Dowd and Goldman, 2006; Dowd et al., 2009; Karlamangla, 2012; Krishnamurthy, 2013; Perk et al., 2012; Ridker, 2003; Zoppini et al., 2012). The AL score was computed by summing the dichotomized values and thus ranged between 0 and 14. The AL score and each of the six homeostatic dimensions were further dichotomized into high versus low risk by using as a cut-off the value closest to the median (supplementary Table 2 – Online Resource 2). This cut-off was chosen as previous studies have found that differences in morbidity or mortality occur between groups when AL was dichotomized at the median or at scores of 3-4 (Geronimus et al., 2006; Smith et al., 2009)."

2.7 Statistical analyses

The associations of SES indicators and lifestyle factors with AL were analyzed using a minimally adjusted mixed logistic regression model and a fully adjusted model, which included additional adjustment for all factors. The association between SES and continuous AL score was further investigated through mixed linear regression models (M1: minimally adjusted and M2: fully adjusted) for which adjusted means were calculated. As the association of occupational position and several lifestyle factors with AL differed by sex (p for interaction <0.05), all analyses were stratified by sex. The associations of SES and lifestyle factors with AL were similar for the three centers (p for interaction >0.05), so data from the three centers were polled and all analyses were adjusted by center. Familial correlations were taken into account for all analyses. We assessed heritability as previously described (Pruijm et al., 2013). Heritability is a measure of familial resemblance that relies on the assumption that total phenotypic variance of a trait can be partitioned into independent genetic and environmental components. The genetic variance can further be subdivided into three components: an additive or polygenic genetic variance (1), a dominance variance (2) and an epistatic variance (3). The additive genetic component represents the

average effects of individual alleles on a trait and reflects transmissible resemblance between relatives. Heritability in the narrow sense is defined as the ratio of the additive genetic variance to the total phenotypic variance. In this paper we refer to "heritability in the narrow sense" simply as heritability. We estimated the heritability of AL within a model which was adjusted for age, sex and center. For heritability measure, total phenotypic variance was subdivided into random (R), polygenic (P) (additive genetic variance) and marital (M) components. Sibship component was not included in the model as it did not significantly contribute to the total phenotypic variance. For heritability, the SAGE software (Statistical Analysis for Genetic Epidemiology) from the ASSOC program was used (Ponte et al., 2014). All other analyses were conducted in STATA 13, (Stata Corp, College Station, Texas, USA). A two-sided p-value<0.05 was used as a significant threshold. Figure 1 was generated using MSOffice PowerPoint and Figure 2 was generated using MSOffice Excel and PowerPoint.

3 Results

Of the 1128 participants of the SKIPOGH study, 250 were excluded because of missing values or incomplete description on one or more covariates (N=47 for education or occupational position, N=171 for allostatic load and N=32 for lifestyle factors) and 75 participants were excluded because they were not currently working and had no previous occupation (68 students and 7 housewives). In total, 803 individuals were included in the present study, of which 388 were men (48%). Excluded participants were younger (mean age 45 vs. 48 years, p<0.05) and tended to have a lower education (13% vs. 23% in the high education group, p<0.05) than those included in the study.

Table 1 summarizes the main characteristics of the sample. Women were more frequently in a low occupational position, were less frequently smokers, were more frequently alcohol abstainers and had healthier dietary patterns (lower meat consumption and daily salt intake and higher fruit and vegetable consumption) comparing to men (all p<0.001).

Table 2 shows results for the association of SES indicators with AL. Men in the middle vs. high occupational position had lower AL (OR =0.48, 95%CI [0.23;0.99]) while those with a low vs. high

education tended to have higher AL (OR =1.59, 95%CI [0.88;2.90]). Women in the lowest vs. highest occupational and educational group had higher AL (OR =3.99, 95%CI [1.22;13.05] for occupational position and OR=3.54, 95%CI [1.69;7.4] for education). The association of occupational position with AL in women was partly attenuated after adjusting for lifestyle factors (OR= 3.23, 95%CI [0.92;11.36]). Further, we observed a dose-response association between education and AL in men and women (**Figure 2** all p<0.05).

Results for the association of lifestyle factors and stress with AL are shown in **Table 3**. Heavy drinking tended to be associated with increased AL in men (OR=2.28, 95%CI [0.98;5.27]), whereas abstaining was associated with higher AL in women (OR=1.90, 95%CI [1.14;3.17]). Participants who were physically active had a decreased risk of high AL: OR= 0.44, 95%CI [0.24;0.80]/ 0.45, 95%CI [0.25;0.81] in men/women). High salt intake was associated with high AL in women (OR=2.26, 95%CI [1.03;4.95]), and tended to be associated in men (OR=2.26, 95%CI [0.90;5.70]). People consuming a high amount of fruit and vegetable had a lower AL, but the difference was not significant, whereas high meat consumption and smoking tended to be associated with high AL.

Estimated heritability measures for AL are presented in **Table 4.** Heritability for allostatic load was 29.5%±7.9% in the model adjusted for age, sex and center. Random, polygenic (additive) and marital variances significantly contributed to the total phenotypic variance (T).

In **supplementary Tables 4-8** (Online Resources 4-8), we present results for the association of SES indicators, lifestyle factors and stress with each homeostatic dimension. Lower education tended to be associated with high risk of all homeostatic axes, except for HPA and lipids. Lower occupational position tended to be associated with increased dysregulation of the metabolic and HPA axes. These associations were generally stronger in women than in men. High physical activity was associated with lower dysregulation of cardiovascular, metabolic, lipidic axes and tended to be associated with low oxidative stress. Heavy drinking was associated with deleterious dysregulation of cardiovascular and oxidative stress axes. Increased fruit and vegetable consumption was associated with low risk of metabolic

dysregulation. Finally, high salt intake was associated with high risk of dysregulation of metabolic and HPA axes.

Sensitivity analyses

We conducted a sensitivity analysis to assess whether medication intake (anti-hypertensive, lipid-lowering, anti-diabetic drugs, entered as separate dummy variables) could confound or attenuate the association between SES and AL. We observed that an additional adjustment for these compounds attenuated the association between occupational position and AL in women (adjusted for age, sex, center OR=3.99 95%CI[1.22;13.05]; + lifestyle factors 3.23[0.92;11.36]; + medication 3.03[0.85;10.78]) but not in men. We also observed an attenuation for the association between occupational position and the oxidative stress axis in women but not in men.

4 Discussion

In this multicentric population and family-based Swiss study, we found a strong association between SES, several lifestyle factors, and AL, a measure of generalized physiological dysregulation and a strong predictor of morbidity and all-cause mortality (Seeman et al., 2001). Occupational position and education were negatively related with AL in women, while the associations in men tended to be positive for occupational position and negative for education. Physical activity was negatively associated with AL, salt intake was positively associated, whereas the association between alcohol consumption and AL was dependent on sex. Finally, our results show a significant genetic component for AL, as measured by heritability, independently of age, center, SES and lifestyle factors.

Occupational position was negatively related to AL in women, with women with a low occupational position having a higher risk of high AL than their more advantaged counterparts, in line with results from other studies (Gallo et al., 2011; Juster et al., 2013). However, this association was reversed in men. A possible explanation for these results is that men in high occupational positions may have high-demand jobs with long working hours and considerable professional responsibilities, potentially leading to higher

stress, comparing to men occupying non-manual intermediate occupations characterized by lower demand and at the same time not involving physical efforts. On the other hand, the adverse health effects of low occupational position may be particularly severe in women as they generally have to combine the physical and psychosocial strain of manual, less paid jobs (Bonjour and Gerfin, 2001) to that of household responsibilities (Artazcoz et al., 2004). For example, in a previous study partly based on the same population of our study (Alwan et al., 2014), women with a low occupational position were more affected by sleep deprivation than men regardless of social class. Sex differences in the association between occupational position and AL have been reported in a previous study in Montreal (Juster et al., 2013). A proposed explanation for this reversed association was that work related psychosocial factors, such as psychological demands, decision latitude and social support interact in sex-specific ways with AL (Juster et al., 2013). However, we must point out that the majority of studies in this field report a negative association between occupational position and AL for both sexes (Gustafsson et al., 2011). Participants with a low education experienced higher physiological dysregulation as measured by AL, in line with previous research (Howard and Sparks, 2015; Nicod et al., 2014; Seeman et al., 2004) including a study performed in a Swiss population (Nicod et al., 2014). This may be related to several factors such as health-related knowledge on detrimental behaviors (Kenkel, 1991; Nocon et al., 2007), use of health preventive services such as screening (Adler et al., 1993), availability of psychosocial resources such as social support, and better ability to cope with everyday hassles and stressful situations in individuals with high vs. low education (Adler and Snibbe, 2003; Seeman, 1996). All these factors may translate into better behaviors and lower exposures to chronic stress in individuals with high education. However, in our study lifestyle factors (including marital status and stress only) slightly attenuated the association between SES indicators and AL. Other factors such as work-life balance, social support, psychosocial factors, early life conditions and better measurements of stress and financial strain can potentially contribute to explain the observed social differences in physiological dysregulation (Gallo et al., 2011; Hawkley et al., 2011; Hu et al., 2007; Kubzansky et al., 1999). In terms of education results were more consistent than for occupational position (Hu et al., 2007; Nicod et al., 2014; Seeman et al., 2004). A

previous study performed by Nicod et al. (Nicod et al., 2014) also found a negative association between this indicator and AL, in a Swiss population from which a subset of the participants were also included in SKIPOGH.

Several lifestyle factors were also related to physiological dysregulation in our study. Moderate alcohol consumption was protective against high AL in both men and women, in line with results from Gallo et al. (Gallo et al., 2011). This may be related to the beneficial effects of moderate alcohol consumption on several axis included in the AL index such as lipidic, and to the detrimental effect of heavy drinking on the cardiovascular axis. Women abstaining from alcohol were also at increased risk of high AL. However, individuals might restrain from alcohol consumption due to medical conditions or other reasons such as past drinking (Gallo et al., 2011; Hu et al., 2007). Consistently with previous research showing the beneficial effects of physical activity on various physiological processes (Warburton et al., 2006), we found that men and women reporting high physical activity had lower AL and lower dysregulation of several physiological axes including metabolism, cardiovascular axis, lipidic profile and oxidative stress. We also observed that high salt intake was associated with increased AL in women and tended to be positively associated in men. These results are supported by previous research showing that an increased salt consumption causes an increase in the glomerular filtration rate in the kidneys thus contributing to high AL (Berge-Landry and James, 2004).

Surprisingly, we did not find an association between stress and AL, even though previous research has placed chronic stress as a major determinant of AL (Gallo et al., 2011; McEwen and Seeman, 1999). This is probably related to the rough measurement of stress in our study, where individuals were asked to rate their perceived stress on a 10-level scale, whereas research focusing on AL generally examines stressful events, conditions and experiences (Gruenewald et al., 2012; McEwen, 1998) or uses more elaborate and accurate tools, such as the Perceived Stress Questionnaire (Levenstein et al., 1993). Moreover, although previous research has found an association between smoking and increased AL (Crimmins et al., 2009), smoking tended to be weakly and not significantly associated with high AL in our study.

AL was a significantly heritable trait, after adjustment for age, sex and center. To our knowledge, this is the first study to demonstrate heritability of such a phenotype. However, despite statistical significance, the genetic contribution to AL remains modest when compared to the environmental component, which explains approximately 70% of the phenotypic variance.

It remains however to be clarified whether the heritability of AL comes from the individual contribution

of each of its components (Bartels et al., 2003; Christian et al., 1976; Elbein et al., 1999; Loomba et al., 2010; McIlhany et al., 1975; Retterstol et al., 2003), most of which are known to be heritable, or from a "master-regulator" genetic process that affects several physiological parameters simultaneously.

In addition to the research that has investigated determinants of AL in Western populations, several studies have also been conducted in Asian countries such as Japan, Taiwan or Nepal, and may therefore provide an interesting ethnic or cultural contrast for the study of determinants of AL (Hu et al., 2007; Kusano et al., 2015; Worthman and Panter-Brick, 2008). Kusano et al.(Kusano et al., 2015) have shown that in elderly Japanese, high alcohol intake was associated with high AL, and increased vegetable consumption was associated with lower AL, a tendency which was also observed in our study. On the other hand, while we found a strong association between education or occupation and AL in our study, no relation was found for these SES indicators in a Japanese population. Moreover, other Asian studies have shown similar or different tendencies for the determinants of AL(Hu et al., 2007). However, at this point, it remains difficult to determine whether the similarities or differences in the associations between SES or lifestyle behaviors and AL are due to the genetic background or to cultural factors (Glei et al., 2013), and additional studies focusing on different ethnicities shall be conducted to clarify this point.

4.1 Strengths and Limitations

Our study has several strengths, the first being the richness of the physiological, genetic and lifestyle data on a population-based sample of a Swiss population of European descent. This allowed us to compute dysregulation indexes for specific physiological axes and a generalized index of physiological dysregulation (AL score). In addition, the significant heritability of AL also suggested that data quality

was high within our study, since measurement errors tend to reduce heritability (Pruijm et al., 2013). Finally, this is, to our knowledge, the first study to show that AL is determined by both environmental and genetic factors.

Our study also has some limitations. First, except for dietary salt intake, the assessment of lifestyle factors is likely to be imprecise and subjective, as they were self-reported by study participants and assessed with basic questions. Second, the notion of AL as a marker of physiological dysregulation still requires further experimental and clinical validation. Even though this marker has been increasingly used (Steptoe et al., 2014), this concept remains somewhat arbitrary, relatively complex, and lacks absolute consensus in the way it is computed throughout studies (Karlamangla, 2012; Nicod et al., 2014). It would therefore be desirable to establish a widely accepted and precise definition for AL, as it is the case for frailty, which is a similar notion (Guessous et al., 2014). One of the issues regarding AL in our study is the lack of additional markers of inflammation and the total absence of neuroendocrine axis markers, such as adrenaline or noradrenaline (Karlamangla, 2012). This also raises the question of whether different homeostatic axes and their components shall be weighted differentially when generating the AL score. Further, the limited sample size may have led to statistical power issues for some of the associations. Finally, our findings are only valid for the Swiss population of European descent, and may not be generalized to other populations.

5 Conclusion

In summary, our findings indicate that SES acts as a strong determinant of AL, especially among women, and that this association is not necessarily attenuated by lifestyle behaviors, which affect AL independently. Moreover, despite that fact that the concepts of allostasis and AL were meant to express the consequences of chronic environmental demands, heritability analyses showed that there is a significant genetic predisposition for AL.

6 Acknowledgments

The authors would like to express their gratitude to the participants of the SKIPOGH study and to the investigators who have contributed to the recruitment, in particular Marie-Odile Levy, Guler Gök-Sogüt, Ulla Schüpbach, and Dominique Siminski.

7 Author Contributions

SS, MBo and DP designed the study. BP, ND, MP, GE, DA, IG, SEY, APB, BV, MM, PYM, FP, MBu and MBo actively contributed to data acquisition. DP, SS, EP, MBo analyzed the data. SS, DP, EP, BP, ND, MP, DA, IG, FP, MBu and MBo critically revised the manuscript.

8 Conflicts of interest

The authors declare that they have no conflict of interest

9 Funding

Silvia Stringhini is supported by the Swiss national science foundation (Ambizione Grant n° PZ00P3_147998). This work is supported by the European commission and the Swiss state secretariat for education, research and innovation - SERI (Horizon 2020 grant n° 633666). The SKIPOGH study is supported by a grant from the Swiss national science foundation (FN 33CM30-124087). Some of the results of this paper were obtained by using the program package S.A.G.E., which was supported by a U.S. Public health service resource grant (RR03655) from the National center for research resources. The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of data; and preparation, review or approval of the manuscript.

Dusan Petrovic et al., 2015

References

Adler, N.E., Boyce, W.T., Chesney, M.A., Folkman, S., Syme, S.L., 1993. Socioeconomic inequalities in health. No easy solution. Jama 269, 3140-3145.

Adler, N.E., Snibbe, A.C., 2003. The role of psychosocial processes in explaining the gradient between socioeconomic status and health. Current Directions in Psychological Science 12, 119-123.

Alwan, H., Pruijm, M., Ponte, B., Ackermann, D., Guessous, I., Ehret, G., Staessen, J.A., Asayama, K., Vuistiner, P., Younes, S.E., Paccaud, F., Wuerzner, G., Pechere-Bertschi, A., Mohaupt, M., Vogt, B., Martin, P.Y., Burnier, M., Bochud, M., 2014. Epidemiology of masked and white-coat hypertension: the family-based SKIPOGH study. PloS one 9, e92522.

Artazcoz, L.a., Borrell, C., Benach, J., Cortès, I., Rohlfs, I., 2004. Women, family demands and health: the importance of employment status and socio-economic position. Social science & medicine 59, 263-274.

Ascaso, J.F., Pardo, S., Real, J.T., Lorente, R.I., Priego, A., Carmena, R., 2003. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes care 26, 3320-3325.

Bartels, M., Van den Berg, M., Sluyter, F., Boomsma, D., de Geus, E.J., 2003. Heritability of cortisol levels: review and simultaneous analysis of twin studies. Psychoneuroendocrinology 28, 121-137.

Berge-Landry, H.v., James, G.D., 2004. Serum electrolyte, serum protein, serum fat and renal responses to a dietary sodium challenge: allostasis and allostatic load. Annals of human biology 31, 477-487.

Bonjour, D., Gerfin, M., 2001. The unequal distribution of unequal pay—An empirical analysis of the gender wage gap in Switzerland. Empirical Economics 26, 407-427.

Brody, G.H., Yu, T., Chen, Y.-f., Kogan, S.M., Evans, G.W., Beach, S.R., Windle, M., Simons, R.L., Gerrard, M., Gibbons, F.X., 2013. Cumulative socioeconomic status risk, allostatic load, and adjustment: a prospective latent profile analysis with contextual and genetic protective factors. Developmental psychology 49, 913.

Christian, J.C., Feinleib, M., Hulley, S.B., Castelli, W.P., Fabsitz, R.R., Garrison, R.J., Borhani, N.O., Rosenman, R.H., Wagner, J., 1976. Genetics of plasma cholesterol and triglycerides: a study of adult male twins. Acta geneticae medicae et gemellologiae: twin research 25, 145-149.

Cicchetti, D., Rogosch, F.A., Oshri, A., 2011. Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Development and psychopathology 23, 1125-1138.

Crimmins, E.M., Johnston, M., Hayward, M., Seeman, T., 2003. Age differences in allostatic load: an index of physiological dysregulation. Experimental gerontology 38, 731-734.

Crimmins, E.M., Kim, J.K., Seeman, T.E., 2009. Poverty and biological risk: The earlier "aging" of the poor. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 64, 286-292.

Devaki, M., Nirupama, R., Yajurvedi, H., 2013. Chronic stress-induced oxidative damage and hyperlipidemia are accompanied by atherosclerotic development in rats. Stress 16, 233-243.

Dowd, J.B., Goldman, N., 2006. Do biomarkers of stress mediate the relation between socioeconomic status and health? Journal of Epidemiology and Community Health 60, 633-639.

Dowd, J.B., Simanek, A.M., Aiello, A.E., 2009. Socio-economic status, cortisol and allostatic load: a review of the literature. International journal of epidemiology 38, 1297-1309.

- Elbein, S.C., Hasstedt, S.J., Wegner, K., Kahn, S.E., 1999. Heritability of Pancreatic β-Cell Function among Nondiabetic Members of Caucasian Familial Type 2 Diabetic Kindreds 1. The Journal of Clinical Endocrinology & Metabolism 84, 1398-1403.
- Firmann, M., Mayor, V., Vidal, P.M., Bochud, M., Pécoud, A., Hayoz, D., Paccaud, F., Preisig, M., Song, K.S., Yuan, X., 2008. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC cardiovascular disorders 8, 6.
- Gallo, L.C., Jiménez, J.A., Shivpuri, S., de los Monteros, K.E., Mills, P.J., 2011. Domains of chronic stress, lifestyle factors, and allostatic load in middle-aged Mexican-American women. Annals of Behavioral Medicine 41, 21-31.
- Geronimus, A.T., Hicken, M., Keene, D., Bound, J., 2006. "Weathering" and age patterns of allostatic load scores among blacks and whites in the United States. American journal of public health 96, 826-833.
- Glei, D.A., Goldman, N., Shkolnikov, V.M., Jdanov, D., Shkolnikova, M., Vaupel, J.W., Weinstein, M., 2013. Perceived stress and biological risk: is the link stronger in Russians than in Taiwanese and Americans? Stress 16, 411-420.
- Gruenewald, T.L., Karlamangla, A.S., Hu, P., Stein-Merkin, S., Crandall, C., Koretz, B., Seeman, T.E., 2012. History of socioeconomic disadvantage and allostatic load in later life. Social science & medicine 74, 75-83.
- Guessous, I., Bochud, M., Theler, J.-M., Gaspoz, J.-M., Pechère-Bertschi, A., 2012. 1999–2009 trends in prevalence, unawareness, treatment and control of hypertension in Geneva, Switzerland.
- Guessous, I., Luthi, J.-C., Bowling, C.B., Theler, J.-M., Paccaud, F., Gaspoz, J.-M., McClellan, W., 2014. Prevalence of frailty indicators and association with socioeconomic status in middle-aged and older adults in a Swiss region with universal health insurance coverage: a population-based cross-sectional study. Journal of aging research 2014.
- Gustafsson, P.E., Janlert, U., Theorell, T., Westerlund, H., Hammarström, A., 2011. Socioeconomic status over the life course and allostatic load in adulthood: results from the Northern Swedish Cohort. Journal of epidemiology and community health 65, 986-992.
- Hawkley, L.C., Lavelle, L.A., Berntson, G.G., Cacioppo, J.T., 2011. Mediators of the relationship between socioeconomic status and allostatic load in the Chicago Health, Aging, and Social Relations Study (CHASRS). Psychophysiology 48, 1134-1145.
- Howard, J.T., Sparks, P.J., 2015. The Role of Education in Explaining Racial/Ethnic Allostatic Load Differentials in the United States. Biodemography and social biology 61, 18-39.
- Hu, P., Wagle, N., Goldman, N., SEEMAN, T.E., 2007. The associations between socioeconomic status, allostatic load and measures of health in older Taiwanese persons: Taiwan social environment and biomarkers of aging study. Journal of biosocial science 39, 545-556.
- Jackson, J.S., Knight, K.M., Rafferty, J.A., 2010. Race and unhealthy behaviors: chronic stress, the HPA axis, and physical and mental health disparities over the life course. American journal of public health 100, 933-939.
- Juster, R.-P., McEwen, B.S., Lupien, S.J., 2010. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews 35, 2-16.
- Juster, R.-P., Moskowitz, D., Lavoie, J., D'Antono, B., 2013. Sex-specific interaction effects of age, occupational status, and workplace stress on psychiatric symptoms and allostatic load among healthy Montreal workers. Stress 16, 616-629.

Karlamangla, A.S., Gruenewald, T.L., Seeman, T.S., 2012. Promise of Biomarkers in Assessing and Predicting Health The biological consequences of socioeconomic inequalities pp. 38-62.

Kenkel, D.S., 1991. Health behavior, health knowledge, and schooling. Journal of Political Economy, 287-305.

Krishnamurthy, H., 2013. The Serum Gamma Glutamyl Transpeptidase-A Non invasive Diagnostic Bio Marker of Chronic Anicteric Non Alcoholic Liver Diseases. Journal of clinical and diagnostic research: JCDR 7, 691.

Kubzansky, L.D., Kawachi, I., Sparrow, D., 1999. Socioeconomic status, hostility, and risk factor clustering in the Normative Aging Study: any help from the concept of allostatic load? Annals of Behavioral Medicine 21, 330-338.

Kusano, Y., Crews, D.E., Iwamoto, A., Sone, Y., Aoyagi, K., Maeda, T., Leahy, R., 2015. Allostatic load differs by sex and diet, but not age in older Japanese from the Goto Islands. Annals of human biology, 1-8

Levenstein, S., Prantera, C., Varvo, V., Scribano, M.L., Berto, E., Luzi, C., Andreoli, A., 1993. Development of the Perceived Stress Questionnaire: a new tool for psychosomatic research. Journal of psychosomatic research 37, 19-32.

Loomba, R., Rao, F., Zhang, L., Khandrika, S., Ziegler, M.G., Brenner, D.A., O'Connor, D.T., 2010. Genetic Covariance Between γ-Glutamyl Transpeptidase and Fatty Liver Risk Factors: Role of β 2-Adrenergic Receptor Genetic Variation in Twins. Gastroenterology 139, 836-845. e831.

McEwen, B.S., 1998. Stress, adaptation, and disease. Allostasis and allostatic load. Annals of the New York Academy of Sciences 840, 33-44.

McEwen, B.S., Seeman, T., 1999. Protective and damaging effects of mediators of stress: elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences 896, 30-47.

McEwen, B.S., Stellar, E., 1993. Stress and the individual: mechanisms leading to disease. Archives of internal medicine 153, 2093-2101.

McIlhany, M.L., Shaffer, J.W., Hines Jr, E.A., 1975. The heritability of blood pressure: an investigation of 200 pairs of twins using the cold pressor test. The Johns Hopkins medical journal 136, 57-64.

Nicod, E., Stringhini, S., Marques-Vidal, P., Paccaud, F., Waeber, G., Lamiraud, K., Vollenweider, P., Bochud, M., 2014. Association of education and receiving social transfers with allostatic load in the Swiss population-based CoLaus study. Preventive medicine 63, 63-71.

Nocon, M., Keil, T., Willich, S.N., 2007. Education, income, occupational status and health risk behaviour. Journal of Public Health 15, 401-405.

Perk, J., De Backer, G., Gohlke, H., Graham, I., Reiner, Ž., Verschuren, M., Albus, C., Benlian, P., Boysen, G., Cifkova, R., 2012. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). European heart journal 33, 1635-1701.

Ponte, B., Pruijm, M., Ackermann, D., Vuistiner, P., Eisenberger, U., Guessous, I., Rousson, V., Mohaupt, M.G., Alwan, H., Ehret, G., 2014. Reference values and factors associated with renal resistive index in a family-based population study. Hypertension 63, 136-142.

Pruijm, M., Ponte, B., Ackermann, D., Vuistiner, P., Paccaud, F., Guessous, I., Ehret, G., Eisenberger, U., Mohaupt, M., Burnier, M., Martin, P.Y., Bochud, M., 2013. Heritability, determinants and reference values of renal length: a family-based population study. European radiology 23, 2899-2905.

Retterstol, L., Eikvar, L., Berg, K., 2003. A twin study of C-reactive protein compared to other risk factors for coronary heart disease. Atherosclerosis 169, 279-282.

Ridker, P.M., 2003. C-reactive protein a simple test to help predict risk of heart attack and stroke. Circulation 108, e81-e85.

Seeman, T., Epel, E., Gruenewald, T., Karlamangla, A., McEwen, B.S., 2010. Socio-economic differentials in peripheral biology: Cumulative allostatic load. Annals of the New York Academy of Sciences 1186, 223-239.

Seeman, T.E., 1996. Social ties and health: The benefits of social integration. Annals of epidemiology 6, 442-451.

Seeman, T.E., Crimmins, E., Huang, M.H., Singer, B., Bucur, A., Gruenewald, T., Berkman, L.F., Reuben, D.B., 2004. Cumulative biological risk and socio-economic differences in mortality: MacArthur studies of successful aging. Social science & medicine 58, 1985-1997.

Seeman, T.E., McEwen, B.S., Rowe, J.W., Singer, B.H., 2001. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proceedings of the National Academy of Sciences of the United States of America 98, 4770-4775.

Smith, A.K., Maloney, E.M., Falkenberg, V.R., Dimulescu, I., Rajeevan, M.S., 2009. An angiotensin-1 converting enzyme polymorphism is associated with allostatic load mediated by C-reactive protein, interleukin-6 and cortisol. Psychoneuroendocrinology 34, 597-606.

Steptoe, A., Hackett, R.A., Lazzarino, A.I., Bostock, S., La Marca, R., Carvalho, L.A., Hamer, M., 2014. Disruption of multisystem responses to stress in type 2 diabetes: Investigating the dynamics of allostatic load. Proceedings of the National Academy of Sciences 111, 15693-15698.

Warburton, D.E., Nicol, C.W., Bredin, S.S., 2006. Health benefits of physical activity: the evidence. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne 174, 801-809.

Worthman, C.M., Panter-Brick, C., 2008. Homeless street children in Nepal: Use of allostatic load to assess the burden of childhood adversity. Development and psychopathology 20, 233-255.

Zoppini, G., Targher, G., Chonchol, M., Ortalda, V., Abaterusso, C., Pichiri, I., Negri, C., Bonora, E., 2012. Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes care 35, 99-104.

 Table 1: Baseline characteristics of participants included in the study.

	Men (N=388)	Women (N=415)	p-value*
Age, mean (±SD, years)	48.28 (±16.51)	48.43 (±15.65)	0.893
Center			0.040
Lausanne	108 (28%)	150 (36%)	
Geneva	168 (43%)	156 (38%)	
Bern	112 (29%)	109 (26%)	
Educational attainment			0.379
High	95 (24%)	86 (21%)	
Middle	116 (30%)	123 (30%)	
Low	177 (46%)	206 (50%)	
Occupational position	, ,	, ,	< 0.001
High	70 (18%)	32 (8%)	
Middle	130 (34%)	127 (31%)	
Low	188 (48%)	256 (62%)	
Marital status	(*)	()	0.241
Living alone	97 (25%)	119 (29%)	
Living in couple	291 (75%)	296 (71%)	
Smoking	251 (7570)	250 (7170)	< 0.001
No	271 (70%)	333 (80%)	٠٥.001
Yes	117 (30%)	82 (20%)	
Alcohol consumption	117 (3070)	02 (2070)	< 0.001
Moderate	249 (64%)	191 (46%)	\0.001
Abstainers	91 (23%)	192 (46%)	
Heavy drinkers	48 (12%)	32 (8%)	
Physical activity	48 (1270)	32 (670)	0.053
Low	121 (31%)	143 (34%)	0.055
Moderate	92 (24%)	119 (29%)	
High	175 (45%)	153 (37%)	
E	173 (4376)	133 (3770)	< 0.001
Daily fruit and vegetables consumption	169 (429/)	00 (220/)	<0.001
Low Moderate	168 (43%) 129 (33%)	90 (22%)	
		166 (40%)	
High	91 (23%)	159 (38%)	<0.001
Meat consumption	27 (70/)	EQ (140/)	< 0.001
Low	27 (7%)	58 (14%)	
Moderate	204 (53%)	250 (60%)	
High	157 (40%)	107 (26%)	.0.001
Salt intake	(00.0)	00 (210 ()	< 0.001
Up to 5g/day	32 (8%)	88 (21%)	
5-10g / day	194 (50%)	253 (61%)	
>10g / day	162 (42%)	74 (18%)	
Stress level			0.752
Low	110 (28%)	124 (30%)	
Moderate	174 (45%)	189 (46%)	
High	104 (27%)	102 (25%)	

Data are N (%) unless otherwise specified.

* p-value was computed according to Chi2 test was between each variable and sex.

Table 2: Association between socioeconomic indicators and allostatic load.

		Men (N=388) Adjusted for age a center	and	Adjusted for age, lifestyle factors	center,	Women (N=415) Adjusted for age center		Adjusted for age, center, lifestyle factors	
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Occupational position	High (Ref.) Middle Low	1.00 0.48 [0.23;0.99] 0.69 [0.34;1.38]	0.600	1.00 0.43 [0.19;0.94] 0.62 [0.30;1.31]	0.480	1.00 3.39 [1.00;11.48] 3.99 [1.22;13.05]	0.042	1.00 3.19 [0.88;11.56] 3.23 [0.92;11.36]	0.190
Education	High (Ref.) Middle Low	1.00 1.07 [0.57;2.00] 1.59 [0.88;2.90]	0.107	1.00 1.13 [0.58;2.20] 1.61 [0.84;3.10]	0.137	1.00 2.30 [1.08;4.89] 3.54 [1.69;7.40]	<0.001	1.00 2.50 [1.11;5.63] 3.40 [1.53;7.57]	0.004

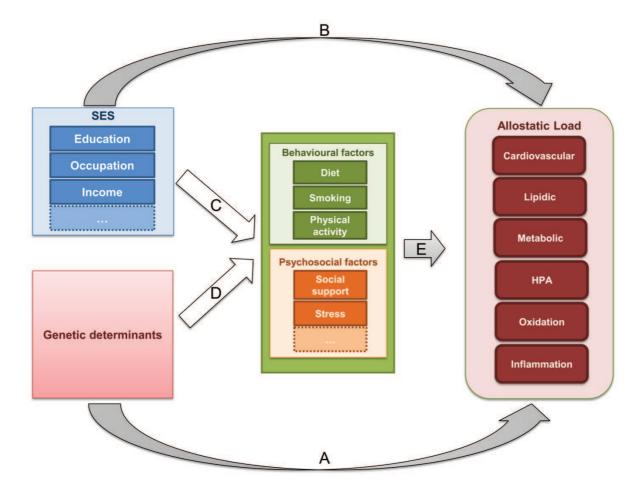
OR: Odds ratio; CI: Confidence interval; Ref: Reference level

^{*}p-value for linear trend across >2 categories

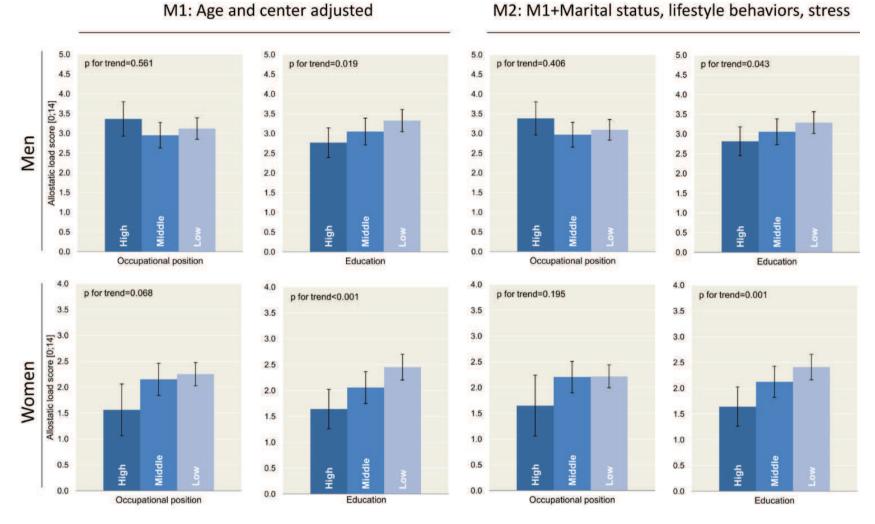
Table 3: Association between lifestyle factors and allostatic load.

		Men (N=388) Adjusted for age a	and	Adjusted for age,	center,	Women (N=415) Adjusted for age a	ınd	Adjusted for age,	center,
		center		education and occ		center		education and oc	
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Marital status	Living alone (Ref.)	1.00	0.387	1.00	0.389	1.00	0.160	1.00	0.187
	Living in a couple	1.30 [0.72;2.37]		1.31 [0.71;2.41]		0.68 [0.40;1.16]		0.70 [0.41;1.19]	
Smoking	No (Ref.)	1.00	0.137	1.00	0.143	1.00	0.617	1.00	0.949
	Yes	1.51 [0.88;2.59]		1.51 [0.87;2.63]		1.17 [0.63;2.15]		1.02 [0.56;1.85]	
Alcohol	Abstainers	0.83 [0.47;1.47]	0.195	0.79 [0.44;1.40]	0.209	1.90 [1.14;3.17]	0.116	1.72 [1.03;2.85]	0.166
consumption	Moderate (Ref.)	1.00		1.00		1.00		1.00	
	Heavy drinkers	2.28 [0.98;5.27]		2.41 [1.02;5.72]		1.09 [0.43;2.77]		1.11 [0.44;2.83]	
Physical	Low (Ref.)	1.00	0.011	1.00	0.006	1.00	0.008	1.00	0.003
activity	Moderate	0.41 [0.21;0.81]		0.37 [0.18;0.74]		0.86 [0.49;1.51]		0.79 [0.45;1.38]	
-	High	0.44 [0.24;0.80]		0.40 [0.21;0.74]		0.45 [0.25;0.81]		0.43 [0.24;0.75]	
Fruits and	Low (Ref.)	1.00	0.289	1.00	0.408	1.00	0.106	1.00	0.325
vegetables	Moderate	0.77 [0.45;1.33]		0.84 [0.48;1.48]		0.77 [0.42;1.41]		0.81 [0.44;1.47]	
	High	0.74 [0.40;1.36]		0.77 [0.41;1.46]		0.60 [0.33;1.12]		0.72 [0.39;1.36]	
Meat	Low (Ref.)	1.00	0.346	1.00	0.372	1.00	0.310	1.00	0.375
	Moderate	1.92 [0.75;4.96]		1.82 [0.67;4.91]		1.94 [0.91;4.11]		1.80 [0.86;3.78]	
	High	1.98 [0.75;5.22]		1.90 [0.69;5.21]		1.77 [0.76;4.08]		1.64 [0.72;3.75]	
Salt intake	Up to 5g (Ref.)	1.00	0.087	1.00	0.184	1.00	0.055	1.00	0.064
	5g-10g	1.77 [0.71;4.42]		1.69 [0.67;4.28]		0.95 [0.52;1.73]		0.96 [0.53;1.76]	
	>10g	2.26 [0.90;5.70]		1.99 [0.78;5.08]		2.26 [1.03;4.95]		2.20 [1.00;4.86]	
Stress	Low (Ref.)	1.00	0.921	1.00	0.785	1.00	0.803	1.00	0.775
	Moderate	0.88 [0.49;1.59]		0.83 [0.45;1.51]		1.33 [0.76;2.31]		1.42 [0.82;2.44]	
	High	0.96 [0.50;1.84]		0.90 [0.46;1.77]		1.06 [0.55;2.05]		1.06 [0.55;2.04]	

OR: Odds ratio; CI: Confidence interval; Ref: Reference level


^{*}p-value for linear trend across >2 categories.

Dusan Petrovic et al., 2015


Table 4: Total variance partition and narrow sense heritability for allostatic load.

Variance component	Estimate (±SD)	p-value
Random (R)	0.35 (±0.08)	< 0.001
Polygenic (P)	$0.21 (\pm 0.06)$	< 0.001
Marital (M)	$0.14~(\pm 0.06)$	0.01
Total (T)	$0.71 \ (\pm 0.03)$	< 0.001
Heritability (P/T) ^a	29.55% (±7.96%)	< 0.001

^a Narrow sense heritability (Polygenic / Total)

Figure 1: Simplified conceptual framework for the determinants of allostatic load. AL is represented with its six homeostatic axes. It may be influenced directly by genetic factors (arrow A) and SES (B), or indirectly through behavioural and psychosocial factors (arrows C and D). Behavioural and psychosocial factors may also influence AL directly (E).

Figure 2: Mixed linear regression adjusted means (\pm SE) for allostatic load by occupational position and education. Model 1 (M1) was adjusted for age and center and Model 2 (M2) was additionally adjusted for marital status, lifestyle behaviors and stress.

(Figure 2: Attached)

Supplementary Table 1: Study participant baseline values of biomarkers composing allostatic load (Ascaso et al., 2003; Dowd and Goldman, 2006; Dowd et al., 2009; Karlamangla, 2012; Krishnamurthy, 2013; Perk et al., 2012; Ridker, 2003; Zoppini et al., 2012).

[TABLE]

HDL: High Density Cholesterol; CRP: C-reactive protein; GGT: Gamma Glutamyl Transferase Data are the means (SD) unless otherwise specified

*p-value was computed according to Mann-Whitney U test for the difference between men and women

Supplementary Table 2: Dichotomization of six homeostatic axes and AL at the median of the score. [TABLE]

HPA: Hypothalamus Pituitary Adrenal Gland.

Descriptions of allostatic load only go up to 6, for readability. Scores closest to median are marked in bold.

Supplementary Table 3: Association between SES indicators and lifestyle factors with dichotomized cardiovascular axis.

[TABLE]

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Supplementary Table 4: Association between SES indicators and lifestyle factors with dichotomized metabolic axis.

[TABLE]

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Supplementary Table 5: Association between SES indicators and lifestyle factors with dichotomized lipidic axis.

[TABLE]

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Supplementary Table 6: Association between SES indicators (A) and lifestyle factors (B) with dichotomized oxidative stress axis.

[TABLE]

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Supplementary Table 7: Association between SES indicators and lifestyle factors with dichotomized HPA axis.

[TABLE]

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Supplementary Table 8: Association between SES indicators and lifestyle factors with dichotomized inflammation axis.

[TABLE]

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey-Younès ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil
- 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland.

e-mail: silvia.stringhini@chuv.ch

Supplementary Table 1: Study participant baseline values of biomarkers composing allostatic load. Risk thresholds were defined according to [1-8].

Allostatic load axis	Risk threshold	Men (n=388)	Women (n=415)	p-value*
Cardiovascular				
Systolic blood pressure (mmHg)	>140	121.95 (±15.33)	$114.47 (\pm 17.18)$	< 0.001
Diastolic blood pressure (mmHg)	>90	$78.98 (\pm 8.74)$	$73.66 (\pm 9.55)$	< 0.001
Beats Per Minute (bpm)	>90	$78.44 (\pm 10.27)$	$82.76 (\pm 9.02)$	< 0.001
Metabolic				
Insulin (mU/L)	>12	$6.77 (\pm 5.98)$	$5.52 (\pm 4.86)$	< 0.001
Glucose (mmol/L)	>6.1	$5.35 (\pm 0.77)$	$4.99 (\pm 0.55)$	< 0.001
Body Mass Index (kg/m ²)	>25	25.87 (±3.89)	23.98 (±4.27)	< 0.001
Waist-to-Hip ratio	men: >0.90; women >0.85	$0.92 \ (\pm 0.08)$	$0.82 (\pm 0.08)$	< 0.001
Hypothalamus Pituitary Adrenal				
Cortisol (µg/24h)	>100	125.93 (±64.96)	99.67 (±58.97)	0.176
Lipidic				
Total cholesterol (mmol/L)	>6.2	$4.96 (\pm 1.01)$	$5.28 (\pm 1.03)$	< 0.001
Triglycerides (mmol/L)	>1.7	$1.16 (\pm 0.75)$	$0.93 (\pm 0.51)$	< 0.001
HDL (mmol/L)	men: <1; women <1.2	$1.31 (\pm 0.33)$	$1.71 (\pm 0.42)$	< 0.001
Inflammatory				
CRP (mg/L)	>3 mg/L	$1.40 (\pm 1.75)$	$1.55 (\pm 1.85)$	< 0.001
Oxidative stress	_			
Uric acid (umol/L)	men: >416; women: >386	355.42 (±65.57)	261.15 (±56.34)	< 0.001
GGT (U/L)	>51	30.54 (±27.48)	19 (±18.36)	< 0.001

HDL : High Density Cholesterol; CRP : C-reactive protein; GGT: Gamma Glutamyl Transferase

- 1. Dowd, J.B., A.M. Simanek, and A.E. Aiello, *Socio-economic status, cortisol and allostatic load: a review of the literature.* Int J Epidemiol, 2009. **38**(5): p. 1297-309.
- 2. Karlamangla, A.S., Gruenewald, T.L., Seeman, T.S., *Promise of Biomarkers in Assessing and Predicting Health* in *The biological consequences of socioeconomic inequalities* 2012. p. 38-62.
- 3. Dowd, J.B. and N. Goldman, *Do biomarkers of stress mediate the relation between socioeconomic status and health?* Journal of Epidemiology and Community Health, 2006. **60**(7): p. 633-639.
- 4. Ridker, P.M., *C-reactive protein a simple test to help predict risk of heart attack and stroke.* Circulation, 2003. **108**(12): p. e81-e85.
- 5. Perk, J., et al., European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). European heart journal, 2012. **33**(13): p. 1635-1701.
- 6. Krishnamurthy, H., *The Serum Gamma Glutamyl Transpeptidase-A Non invasive Diagnostic Bio Marker of Chronic Anicteric Non Alcoholic Liver Diseases.* Journal of clinical and diagnostic research: JCDR, 2013. 7(4): p. 691.
- 7. Ascaso, J.F., et al., *Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism.* Diabetes care, 2003. **26**(12): p. 3320-3325.
- 8. Zoppini, G., et al., Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes care, 2012. **35**(1): p. 99-104.

Data are the means (SD) unless otherwise specified

^{*}p-value was computed according to Mann-Whitney U test for the difference between men and women.

Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey-Younès ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil
- 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland.

e-mail: silvia.stringhini@chuv.ch

Supplementary Table 2: Dichotomization of six homeostatic axes and AL at the median of the score.

Homeostatic axis	Number of obse	rvations and cui	nulative freque	ncies				Dichotom	ization
Score	571	190	36	6	-			Group 1	Group 2
Cardiovascular [0;3]	71.11%	94.77%	99.25%	100.00%	-			0	1-3
	323	198	197	70	15				
Metabolic [0;4]	40.22%	64.88%	89.41%	98.13%	100.00%			0-1	2-4
2 . 2	421	382	-	-	-				
HPA axis [0;1]	52.43%	100.00%	-	-	-			0	1
	542	209	46	6	-				
Lipidic [0;3]	67.50%	93.52%	99.25%	100.00%	-			0	1-3
	695	108	-	-	-				
Inflammation [0;1]	74.60%	100.00%	-	-	-			0	1
	670	116	17	-	-				
Oxidative stress [0;2]	83.44%	97.88%	100.00%	-	-			0	1-2
	571	190	36	6	-				
	0	1 2	<u>.</u> :	3	4 5		>=6		
Allostatic load [0,14]	98	169	176	135	91	58	100	0-2	3-14
	12.20%	33.25%	55.17%	71.98%	83.31%	90.54%	100.00%		

HPA: Hypothalamus Pituitary Adrenal Gland.

Descriptions of allostatic load only go up to 6, for readability. Scores closest to median are marked in bold.

Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey-Younès ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland.

e-mail: silvia.stringhini@chuv.ch

Supplementary Table 5: Association between SES indicators and lifestyle factors with dichotomized lipidic axis.

		Men (N=388) Adjusted for age a center	nd	Adjusted for age, lifestyle factors	center,	Men (N=415) Adjusted for age a center	and	Adjusted for age, lifestyle factors	center,
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Occupational	High (Ref.)	1.00	0.845	1.00	0.775	1.00	0.410	1.00	0.657
position	Middle	0.94 [0.49;1.82]		0.9 [0.47;1.72]		1.47 [0.56;3.85]		1.47 [0.53;4.02]	
	Low	0.93 [0.5;1.74]		0.9 [0.48;1.68]		1.57 [0.62;3.94]		1.43 [0.53;3.85]	
Education	High (Ref.)	1.00	0.279	1.00	0.271	1.00	0.120	1.00	0.248
	Middle	0.83 [0.45;1.54]		0.82 [0.44;1.55]		1.27 [0.64;2.53]		1.23 [0.60;2.52]	
	Low	1.29 [0.74;2.27]		1.31 [0.73;2.34]		1.64 [0.85;3.15]		1.48 [0.74;2.98]	
		Adjusted for age a	nd	Adjusted for age,		Adjusted for age a	ınd	Adjusted for age,	
		center		education and oc		center		education and occ	upation
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Marital status	Living alone (Ref.)	1.00	0.630	1.00	0.693	1.00	0.678	1.00	0.635
	Living in a couple	1.16 [0.64;2.09]		1.13 [0.63;2.03]		1.12 [0.67;1.87]		1.13 [0.68;1.90]	
Smoking	No (Ref.)	1.00	0.140	1.00	0.147	1.00	0.533	1.00	0.437
-	Yes	1.46 [0.88;2.41]		1.44 [0.88;2.36]		0.83 [0.47;1.48]		0.80 [0.45;1.41]	
Alcohol	Abstainers	0.93 [0.54;1.59]	0.300	0.91 [0.53;1.55]	0.270	1.67 [1.03;2.72]	0.300	1.63 [1.00;2.65]	0.327
consumption	Moderate (Ref.)	1.00		1.00		1.00		1.00	
•	Heavy drinkers	0.66 [0.32;1.37]		0.66 [0.32;1.34]		0.86 [0.34;2.17]		0.87 [0.34;2.21]	
Physical	Low (Ref.)	1.00	0.024	1.00	0.023	1.00	0.067	1.00	0.056
activity	Moderate	1.15 [0.65;2.05]		1.18 [0.67;2.09]		0.63 [0.36;1.11]		0.61 [0.35;1.08]	
	High	0.54 [0.32;0.94]		0.55 [0.32;0.94]		0.60 [0.35;1.04]		0.59 [0.34;1.02]	
Fruits and	Low (Ref.)	1.00	0.064	1.00	0.076	1.00	0.053	1.00	0.098
vegetables	Moderate	0.97 [0.58;1.61]		0.98 [0.59;1.62]		0.68 [0.38;1.20]		0.69 [0.39;1.22]	
	High	0.54 [0.30;0.98]		0.55 [0.30;1.01]		0.55 [0.31;0.99]		0.59 [0.32;1.08]	
Meat	Low (Ref.)	1.00	0.248	1.00	0.209	1.00	0.635	1.00	0.590
	Moderate	2.54 [0.88;7.35]		2.45 [0.85;7.09]		1.13 [0.58;2.21]		1.08 [0.55;2.12]	
	High	2.59 [0.88;7.65]		2.58 [0.88;7.57]		0.89 [0.42;1.89]		0.86 [0.41;1.83]	
Salt intake	Up to 5g (Ref.)	1.00	0.721	1.00	0.588	1.00	0.221	1.00	0.201
	5g-10g	1.10 [0.47;2.60]		1.11 [0.48;2.59]		0.62 [0.36;1.07]		0.62 [0.36;1.07]	
	>10g	0.97 [0.41;2.3]0		0.93 [0.39;2.19]		0.67 [0.33;1.37]		0.65 [0.32;1.35]	
Stress	Low (Ref.)	1.00	0.412	1.00	0.442	1.00	0.381	1.00	0.379
	Moderate	0.75 [0.44;1.30]		0.73 [0.42;1.25]		1.40 [0.82;2.37]		1.42 [0.84;2.42]	
	High	1.27 [0.70;2.31]		1.25 [0.69;2.26]		1.30 [0.69;2.45]		1.30 [0.69;2.45]	

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey-Younès ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland.

e-mail: silvia.stringhini@chuv.ch

Supplementary Table 4: Association between SES indicators and lifestyle factors with dichotomized metabolic axis.

		Men (N=388) Adjusted for age a center	nd	Adjusted for age, lifestyle factors	center,	Women (N=415) Adjusted for age a center	nd	Adjusted for age,	center,
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Occupational	High (Ref.)	1.00	0.199	1.00	0.218	1.00	0.208	1.00	0.381
position	Middle Low	0.51 [0.22;1.18] 1.25 [0.57;2.70]		0.54 [0.22;1.33] 1.33 [0.58;3.07]		5.34 [0.97;29.47] 5.01 [0.95;26.51]		5.65 [0.97;32.84] 4.66 [0.83;26]	
Education	High (Ref.)	1.00	< 0.001	1.00	0.002	1.00	0.008	1.00	0.012
	Middle Low	1.47 [0.69;3.13] 3.48 [1.64;7.38]		1.67 [0.73;3.86] 3.8 [1.59;9.1]		2.16 [0.82;5.66] 3.49 [1.35;8.99]		2.52 [0.93;6.83] 3.63 [1.36;9.66]	
		Adjusted for age a center	nd	Adjusted for age, education and occ		Adjusted for age a center	nd	Adjusted for age, education and occ	
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Marital status	Living alone (Ref.) Living in a couple	1.00 2.35 [1.08;5.11]	0.031	1.00 2.5 [1.12;5.55]	0.025	1.00 0.87 [0.46;1.65]	0.678	1.00 0.88 [0.46;1.68]	0.700
Smoking	No (Ref.) Yes	1.00 0.99 [0.52;1.88]	0.967	1.00 0.93 [0.48;1.82]	0.840	1.00 0.84 [0.41;1.74]	0.645	1.00 0.76 [0.37;1.56]	0.450
Alcohol consumption	Abstainers Moderate (Ref.) Heavy drinkers	1.33 [0.68;2.62] 1.00 1.40 [0.58;3.38]	0.332	1.28 [0.65;2.55] 1.00 1.40 [0.56;3.53]	0.367	1.34 [0.74;2.45] 1.00 1.65 [0.59;4.62]	0.240	1.25 [0.68;2.3] 1.00 1.76 [0.62;5.02]	0.265
Physical activity	Low (Ref.) Moderate High	1.00 0.48 [0.23;1.01] 0.52 [0.27;1.01]	0.064	1.00 0.38 [0.17;0.85] 0.43 [0.22;0.88]	0.027	1.00 0.89 [0.46;1.73] 0.50 [0.25;1.01]	0.059	1.00 0.84 [0.43;1.64] 0.46 [0.23;0.94]	0.036
Fruits and vegetables	Low (Ref.) Moderate High	1.00 0.34 [0.17;0.69] 0.56 [0.27;1.14]	0.045	1.00 0.40 [0.20;0.81] 0.66 [0.31;1.39]	0.148	1.00 0.66 [0.32;1.36] 0.57 [0.27;1.18]	0.143	1.00 0.68 [0.33;1.39] 0.66 [0.31;1.40]	0.314
Meat	Low (Ref.) Moderate High	1.00 2.59 [0.82;8.24] 2.27 [0.70;7.40]	0.538	1.00 2.15 [0.64;7.19] 2.01 [0.59;6.84]	0.551	1.00 1.52 [0.63;3.66] 1.66 [0.62;4.44]	0.357	1.00 1.43 [0.59;3.49] 1.53 [0.57;4.09]	0.450
Salt intake	Up to 5g (Ref.) 5g-10g >10g	1.00 5.79 [1.53;21.95] 7.26 [1.89;27.84]	0.014	1.00 5.93 [1.51;23.34] 6.17 [1.57;24.25]	0.055	1.00 0.69 [0.35;1.36] 1.69 [0.71;4.03]	0.337	1.00 0.68 [0.35;1.35] 1.62 [0.67;3.92]	0.380
Stress	Low (Ref.) Moderate High	1.00 1.25 [0.63;2.50] 1.27 [0.59;2.75]	0.550	1.00 1.25 [0.61;2.55] 1.32 [0.60;2.94]	0.501	1.00 1.33 [0.69;2.54] 0.90 [0.40;2.02]	0.884	1.00 1.38 [0.72;2.65] 0.90 [0.40;2.03]	0.902

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey-Younès ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil
- 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland.

e-mail: silvia.stringhini@chuv.ch

Supplementary Table 3: Association between SES indicators and lifestyle factors with dichotomized cardiovascular axis.

		Men (N=388) Adjusted for age a center	nd	Adjusted for age, lifestyle factors	center,	Women (N=415) Adjusted for age a center	and	Adjusted for age, lifestyle factors	center,
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Occupational	High (Ref.)	1.00	0.548	1.00	0.733	1.00	0.455	1.00	0.619
position	Middle	0.96 [0.50;1.85]		0.09 [0.44;1.83]		1.17 [0.45;3.06]		1.14 [0.42;3.05]	
•	Low	0.84 [0.45;1.58]		0.88 [0.44;1.75]		1.35 [0.54;3.38]		1.24 [0.48;3.26]	
Education	High (Ref.)	1.00	0.126	1.00	0.101	1.00	0.103	1.00	0.134
	Middle Low	1.52 [0.78;2.96] 1.67 [0.89;3.11]		1.49 [0.73;3.06] 1.81 [0.90;3.63]		0.72 [0.36;1.44] 1.44 [0.76;2.73]		0.69 [0.33;1.43] 1.40 [0.71;2.77]	
	26,0	Adjusted for age a center	nd	Adjusted for age, education and occ		Adjusted for age a	and	Adjusted for age, education and occ	
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	n*
Marital status	Living alone (Ref.)	1.00	0.432	1.00	0.465	1.00	0.157	1.00	0.191
112411411141	Living in a couple	0.78 [0.43;1.44]	01.102	0.80 [0.43;1.47]	000	0.68 [0.40;1.16]	0.10 /	0.70 [0.41;1.19]	01171
Smoking	No (Ref.)	1.00	0.428	1.00	0.410	1.00	0.101	1.00	0.135
	Yes	1.23 [0.73;2.08]		1.25 [0.74;2.11]		1.64 [0.91;2.97]		1.57 [0.87;2.84]	
Alcohol	Abstainers	0.97 [0.55;1.73]	0.068	0.96 [0.54;1.70]	0.068	1.39 [0.84;2.29]	0.336	1.40 [0.84;2.31]	0.336
consumption	Moderate (Ref.) Heavy drinkers	1.00 2.11 [1.09;4.11]		1.00 2.16 [1.10;4.23]		1.00 1.15 [0.46;2.87]		1.00 1.16 [0.47;2.85]	
Physical	Low (Ref.)	1.00	0.032	1.00	0.032	1.00	0.016	1.00	0.014
activity	Moderate High	0.52 [0.27;1.00] 0.54 [0.30;0.95]		0.52 [0.27;1.00] 0.53 [0.30;0.94]		0.63 [0.35;1.11] 0.50 [0.29;0.88]		0.60 [0.34;1.06] 0.50 [0.29;0.88]	
Fruits and	Low (Ref.)	1.00	0.249	1.00	0.345	1.00	0.974	1.00	0.571
vegetables	Moderate	0.70 [0.41;1.20]		0.73 [0.42;1.27]		1.69 [0.91;3.15]		1.81 [0.97;3.37]	
_	High	0.74 [0.41;1.34]		0.78 [0.42;1.43]		1.13 [0.60;2.15]		1.33 [0.69;2.57]	
Meat	Low (Ref.)	1.00	0.854	1.00	0.806	1.00	0.961	1.00	0.916
	Moderate	0.68 [0.28;1.65]		0.67 [0.27;1.67]		1.82 [0.89;3.74]		1.76 [0.86;3.61]	
	High	0.75 [0.30;1.84]		0.73 [0.29;1.83]		1.20 [0.54;2.70]		1.17 [0.52;2.62]	
Salt intake	Up to 5g (Ref.)	1.00	0.176	1.00	0.145	1.00	0.913	1.00	0.758
	5g-10g >10g	0.59 [0.26;1.34] 0.51 [0.22;1.19]		0.60 [0.26;1.39] 0.50 [0.21;1.19]		0.98 [0.55;1.75] 0.96 [0.45;2.04]		0.97 [0.55;1.74] 0.88 [0.42;1.88]	
Stress	Low (Ref.)	1.00	0.209	1.00	0.217	1.00	0.730	1.00	0.657
D 61 633	Moderate	1.05 [0.59;1.88]	0.20)	1.05 [0.58;1.90]	0.21/	1.64 [0.94;2.88]	0.750	1.65 [0.95;2.88]	0.057
	High	1.49 [0.79;2.82]		1.49 [0.78;2.86]		1.08 [0.55;2.11]		1.12 [0.57;2.17]	

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey-Younès ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland.

e-mail: silvia.stringhini@chuv.ch

Supplementary Table 8: Association between SES indicators and lifestyle factors with dichotomized inflammation axis.

		Men (N=388) Adjusted for age an center		Adjusted for age, lifestyle factors		Women (N=415) Adjusted for age a center		Adjusted for age, lifestyle factors	
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Occupational position	High (Ref.) Middle Low	1.00 0.69 [0.24;1.96] 0.46 [0.16;1.29]	0.131	1 0.72 [0.24;2.16] 0.45 [0.15;1.33]	0.135	1 1.45 [0.39;5.34] 1.98 [0.57;6.89]	0.178	1 1.36 [0.36;5.17] 1.72 [0.47;6.25]	0.326
Education	High (Ref.) Middle Low	1.00 1.51 [0.54;4.21] 0.94 [0.33;2.63]	0.774	1 1.60 [0.53;4.90] 0.94 [0.31;2.89]	0.770	1 3.16 [1.20;8.35] 3.41 [1.32;8.84]	0.021	1 3.21 [1.18;8.72] 3.29 [1.22;8.87]	0.037
	Low	Adjusted for age a	nd	Adjusted for age,		Adjusted for age a	ınd	Adjusted for age,	
		center		education and occ		center		education and occ	upation
36 11 1 1 1	T:: 1 (D.C)	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Marital status	Living alone (Ref.) Living in a couple	1.00 1.21 [0.44;3.29]	0.709	1.00 1.30 [0.46;3.65]	0.617	1.00 0.72 [0.39;1.33]	0.298	1.00 0.73 [0.39;1.38]	0.336
Smoking	No (Ref.) Yes	1.00 1.91 [0.84;4.34]	0.121	1.00 2.05 [0.89;4.73]	0.093	1.00 1.14 [0.58;2.25]	0.700	1.00 1.06 [0.53;2.10]	0.879
Alcohol consumption	Abstainers Moderate (Ref.) Heavy drinkers	0.79 [0.30;2.05] 1.00 1.54 [0.53;4.48]	0.620	0.79 [0.30;2.09] 1.00 1.63 [0.55;4.86]	0.568	1.76 [0.96;3.25] 1.00 2.27 [0.86;6.03]	0.039	1.58 [0.85;2.96] 1.00 2.45 [0.90;6.65]	0.052
Physical activity	Low (Ref.) Moderate High	1.00 0.87 [0.30;2.48] 1.06 [0.42;2.69]	0.869	1.00 0.90 [0.30;2.68] 1.11 [0.43;2.88]	0.797	1.00 0.70 [0.34;1.44] 0.81 [0.42;1.55]	0.518	1.00 0.66 [0.32;1.37] 0.75 [0.38;1.48]	0.410
Fruits and vegetables	Low (Ref.) Moderate High	1.00 0.84 [0.34;2.08] 1.37 [0.52;3.59]	0.597	1.00 0.85 [0.33;2.18] 1.38 [0.50;3.76]	0.599	1.00 0.88 [0.43;1.80] 0.74 [0.35;1.54]	0.407	1.00 0.89 [0.43;1.82] 0.81 [0.37;1.74]	0.584
Meat	Low (Ref.) Moderate High	1.00 2.16 [0.36;13.13] 2.70 [0.42;17.30]	0.322	1.00 2.65 [0.41;17.04] 3.05 [0.45;20.66]	0.349	1.00 1.60 [0.64;4.00] 1.32 [0.47;3.67]	0.791	1.00 1.50 [0.59;3.81] 1.26 [0.44;3.55]	0.850
Salt intake	Up to 5g (Ref.) 5g-10g >10g	1.00 1.21 [0.27;5.35] 1.29 [0.29;5.73]	0.749	1.00 1.21 [0.27;5.43] 1.32 [0.29;5.95]	0.715	1.00 0.75 [0.38;1.48] 0.83 [0.35;1.96]	0.628	1.00 0.77 [0.39;1.53] 0.86 [0.36;2.06]	0.686
Stress	Low (Ref.) Moderate High	1.00 0.93 [0.35;2.44] 2.04 [0.71;5.92]	0.170	1.00 0.94 [0.35;2.53] 1.98 [0.66;5.93]	0.203	1.00 1.14 [0.59;2.23] 0.96 [0.43;2.11]	0.932	1.00 1.25 [0.63;2.45] 0.94 [0.42;2.10]	0.915

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories

Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey-Younès ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland.

e-mail: silvia.stringhini@chuv.ch

Supplementary Table 7: Association between SES indicators and lifestyle factors with dichotomized HPA axis.

		Men (N=388) Adjusted for age a center	nd	Adjusted for age, lifestyle factors	center,	Women (N=415) Adjusted for age a center	and	Adjusted for age, lifestyle factors	
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Occupational	High (Ref.)	1.00	0.888	1.00	0.893	1.00	0.021	1.00	0.035
position	Middle	0.71 [0.30;1.72]		0.85 [0.34;2.15]		1.18 [0.42;3.33]		1.10 [0.37;3.28]	
	Low	0.86 [0.37;1.98]		0.91 [0.37;2.20]		2.21 [0.82;5.97]		2.11 [0.73;6.14]	
Education	High (Ref.)	1.00	0.978	1.00	0.858	1.00	0.210	1.00	0.293
	Middle	0.87 [0.39;1.92]		0.96 [0.42;2.21]		0.95 [0.47;1.94]		0.92 [0.43;1.95]	
	Low	0.99 [0.45;2.16]		0.93 [0.40;2.14]		1.43 [0.73;2.83]		1.37 [0.66;2.87]	
		Adjusted for age a	nd	Adjusted for age,		Adjusted for age a	and	Adjusted for age,	
		OR (95% CI)	p*	OR (95% CI)	p*	center OR (95% CI)	p*	OR (95% CI)	upation *
Marital status	Living alone (Ref.)	1.00	0.189	1.00	0.193	1.00	0.268	1.00	0.407
Trial Itali Status	Living in a couple	1.67 [0.78;3.56]	0.109	1.66 [0.77;3.54]	0.175	0.72 [0.40;1.29]	0.200	0.78 [0.43;1.41]	0.107
Smoking	No (Ref.)	1.00	0.606	1.00	0.615	1.00	0.531	1.00	0.559
	Yes	0.83 [0.42;1.66]		0.84 [0.42;1.66]		1.21 [0.67;2.20]		1.20 [0.65;2.21]	
Alcohol	Abstainers	0.81 [0.40;1.64]	0.279	0.81 [0.40;1.64]	0.278	1.12 [0.68;1.87]	0.825	1.06 [0.62;1.80]	0.621
consumption	Moderate (Ref.)	1.00		1.00		1.00		1.00	
	Heavy drinkers	2.23 [0.85;5.84]		2.24 [0.85;5.88]		0.69 [0.26;1.86]		0.63 [0.23;1.71]	
Physical	Low (Ref.)	1.00	0.937	1.00	0.902	1.00	0.422	1.00	0.520
activity	Moderate	0.76 [0.34;1.73]		0.74 [0.33;1.70]		0.94 [0.51;1.73]		0.91 [0.49;1.68]	
	High	0.95 [0.46;1.95]		0.93 [0.45;1.92]		0.78 [0.43;1.43]		0.82 [0.44;1.51]	
Fruits and	Low (Ref.)	1.00	0.460	1.00	0.472	1.00	0.980	1.00	0.632
vegetables	Moderate	0.98 [0.49;1.95]		0.99 [0.49;2.00]		1.00 [0.53;1.88]		1.06 [0.55;2.03]	
	High	1.40 [0.64;3.09]		1.39 [0.62;3.11]		0.99 [0.52;1.90]		1.17 [0.59;2.33]	
Meat	Low (Ref.)	1.00	0.489	1.00	0.463	1.00	0.636	1.00	0.573
	Moderate	2.24 [0.69;7.24]		2.18 [0.67;7.13]		1.14 [0.55;2.35]		1.14 [0.54;2.41]	
	High	2.14 [0.63;7.20]		2.12 [0.63;7.15]		1.22 [0.54;2.77]		1.27 [0.55;2.94]	
Salt intake	Up to 5g (Ref.)	1.00	0.002	1.00	0.003	1.00	0.029	1.00	0.029
	5g-10g	3.52 [1.08;11.43]		3.45 [1.05;11.32]		1.50 [0.77;2.93]		1.61 [0.80;3.21]	
	>10g	6.46 [1.91;21.77]		6.34 [1.85;21.78]		2.61 [1.10;6.15]		2.71 [1.11;6.60]	
Stress	Low (Ref.)	1.00	0.959	1.00	0.924	1.00	0.179	1.00	0.266
	Moderate	0.87 [0.42;1.78]		0.85 [0.41;1.75]		0.58 [0.33;1.02]		0.61 [0.35;1.08]	
	High	0.98 [0.44;2.18]		0.96 [0.42;2.15]		0.66 [0.34;1.25]		0.70 [0.36;1.36]	

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.

Dusan Petrovic ¹, Edward Pivin ¹, Belen Ponte ^{1,2}, Nasser Dhayat ³, Menno Pruijm ⁴, Georg Ehret ⁵, Daniel Ackermann ³, Idris Guessous ^{1,4}, Sandrine Estoppey-Younès ¹, Antoinette Pechère-Bertschi ², Bruno Vogt ³, Markus Mohaupt ³, Pierre-Yves Martin ², Fred Paccaud ¹, Michel Burnier ⁴, Murielle Bochud ¹ and Silvia Stringhini ¹

- 1. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland
- 2. Department of Nephrology and Hypertension, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 3. University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital and University of Bern, Freburgstrasse 15, 3010 Bern, Switzerland.
- 4. Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland
- 5. Department of Nephrology and Hypertension, Lausanne University Hospital, Rue du Bugnon 17, 1011 Lausanne, Switzerland
- 6. Department of Cardiology, University Hospital of Geneva (HUG), Rue Gabrielle Perret-Gentil 4, 1205 Geneva, Switzerland

Correspondence:

Dr. Silvia Stringhini, Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Route de la corniche 10, 1010 Lausanne, Switzerland.

e-mail: silvia.stringhini@chuv.ch

Supplementary Table 6: Association between SES indicators (A) and lifestyle factors (B) with dichotomized oxidative stress axis.

		Men (N=388) Adjusted for age a center		Adjusted for age, lifestyle factors		Women (N=415) Adjusted for age a center		Adjusted for age, o	
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p* 0.991
Occupational position	High (Ref.) Middle Low	1.00 0.48 [0.25;0.93] 0.61 [0.33;1.12]	0.242	1 0.42 [0.21;0.84] 0.54 [0.28;1.03]	0.152	1 2.68 [0.32;22.25] 2.04 [0.25;16.27]	0.935	1 3.1 [0.35;27.16] 2.13 [0.25;18.09]	0.991
Education	High (Ref.) Middle Low	1.00 1.22 [0.64;2.30] 1.04 [0.57;1.90]	0.996	1 1.15 [0.59;2.25] 0.96 [0.51;1.83]	0.831	1 7.84 [0.99;62.32] 5.23 [0.65;41.92]	0.351	1 9.82 [1.2;80.34] 6.1 [0.73;51.27]	0.284
		Adjusted for age a center	nd	Adjusted for age, education and occ		Adjusted for age a center	nd	Adjusted for age, education and occ	
		OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*	OR (95% CI)	p*
Marital status	Living alone (Ref.) Living in a couple	1.00 1.39 [0.73;2.64]	0.312	1.00 1.46 [0.76;2.79]	0.255	1.00 1.50 [0.54;4.12]	0.435	1.00 1.44 [0.52;4.02]	0.485
Smoking	No (Ref.) Yes	1.00 0.94 [0.55;1.60]	0.813	1.00 0.95 [0.55;1.62]	0.846	1.00 0.53 [0.15;1.83]	0.315	1.00 0.49 [0.14;1.71]	0.265
Alcohol consumption	Abstainers Moderate (Ref.) Heavy drinkers	0.70 [0.38;1.28] 1.00 2.04 [1.05;3.95]	0.171	0.70 [0.38;1.28] 1.00 2.16 [1.10;4.22]	0.141	0.64 [0.27;1.49] 1.00 1.85 [0.59;5.83]	0.793	0.62 [0.26;1.46] 1.00 2.27 [0.69;7.47]	0.702
Physical activity	Low (Ref.) Moderate High	1.00 1.01 [0.55;1.83] 0.68 [0.39;1.18]	0.164	1.00 0.97 [0.53;1.78] 0.65 [0.37;1.15]	0.134	1.00 0.97 [0.40;2.32] 0.39 [0.13;1.14]	0.100	1.00 0.95 [0.39;2.30] 0.35 [0.12;1.05]	0.071
Fruits and vegetables	Low (Ref.) Moderate High	1.00 0.59 [0.34;1.02] 0.63 [0.35;1.14]	0.081	1.00 0.61 [0.35;1.06] 0.60 [0.33;1.11]	0.074	1.00 0.95 [0.35;2.54] 0.68 [0.24;1.91]	0.428	1.00 0.90 [0.33;2.44] 0.58 [0.19;1.73]	0.298
Meat	Low (Ref.) Moderate High	1.00 0.97 [0.38;2.49] 1.21 [0.47;3.16]	0.426	1.00 0.97 [0.37;2.55] 1.21 [0.45;3.22]	0.434	1.00 1.43 [0.40;5.10] 1.16 [0.28;4.84]	0.976	1.00 1.46 [0.40;5.34] 1.16 [0.27;4.95]	0.991
Salt intake	Up to 5g (Ref.) 5g-10g >10g	1.00 1.46 [0.56;3.82] 1.30 [0.49;3.43]	0.953	1.00 1.41 [0.53;3.75] 1.23 [0.46;3.31]	0.954	1.00 1.14 [0.45;2.90] 0.94 [0.25;3.51]	0.985	1.00 1.15 [0.45;2.94] 1.03 [0.27;3.90]	0.910
Stress	Low (Ref.) Moderate High	1.00 0.59 [0.34;1.03] 0.7 [0.38;1.3]	0.239	1.00 0.56 [0.32;0.99] 0.65 [0.34;1.22]	0.162	1.00 1.65 [0.68;4.02] 0.85 [0.23;3.06]	0.963	1.00 1.62 [0.67;3.93] 0.75 [0.20;2.72]	0.895

OR: Odds ratio; CI: Confidence interval; Ref: Reference level; *p-value for linear trend across >2 categories.