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Dynamics of dissipative Bose-Einstein condensation

S. Caspar, F. Hebenstreit, D. Mesterhazy, and U.-J. Wiese
Albert Einstein Center for Fundamental Physics, InstifieteTheoretical Physics, University of Bern, 3012 Bern, t3ariand

We resolve the real-time dynamics of a purely dissipasive 1/2 quantum spin or, equivalently, hard-core
boson model on a hypercubécdimensional lattice. The considered quantum dissipgireeess drives the
system to a totally symmetric macroscopic superpositiordoh of theS® sectors. Diferent characteristic
time scales are identified for the dynamics and we deterrigie finite-size scaling. We introduce the concept
of cumulative entanglement distribution to quantify mpétiticle entanglement and show that the considered
protocol serves as affeient method to prepare a macroscopically entangled Basstedin condensate.

PACS numbers: 75.10.Jm, 03.75.Gg, 67.85.De, 03.67.Bg

Introduction.After the ground-breaking discovery of Bose- usually known exactly by construction. However, the inter-
Einstein condensation in ultracold quantum gagbg [1, 2], thmediate real-time evolution of a macroscopic quantum gyste
cooling of clouds of atoms to nanokelvin temperatures hastarting from a given initial state has so far remained lgrge
become a daily routine in atomic physics laboratories world out of reach.
wide. However, our understanding of the underlying out-of- In this Rapid Communication, we study the purely dissipa-
equilibrium process from first principles is far from comgle  tive dynamics of a strongly correlated quantum spin system o
The reason for this is twofold. Conventional Monte Carloa hypercubid-dimensional lattice. We derive the equations
methods are typically not applicable to the problem of real-of motion for local observables and show that the resulting
time dynamics of quantum many-body systems due to the alsystem of linear equations can be solvéiiceently. This al-
sence of a positive-definite probability measure [3]. Thusjows us to investigate the real-time dynamics of Bose-[Einst
simulations of time evolution have been limited either t@m condensation via dissipation. We study the dependenceof th
numbers of particles that are amenable to exact diagoralizaissipative gap on the system size and find nontrivial sgalin
tion, or to one-dimensional gapped systems to which the-timebehavior. We demonstrate that this has interesting implica
dependent density matrix renormalization grdﬂ;ﬂ4, 5] can b tions for the mechanism of nonequilibrium condensation.
applied. On the other hand, the growth of quantum entangle- Dissipative s= 1/2 quantum spin modeln the following,
ment limits the applicability of the latter for late timé}@. we consider a purely dissipative process £ 0) for quan-

For practical purposes it is flicient to consider the time tum spins at zero temperature. The spin operagrs, %0'2,
evolution of the many-body system in terms of a quantuma = 1,2,3, ands = s! + is2, are defined in terms of Pauli
master equation for the reduced density matrix, where the denatrices on each of the = LY sites of a regular periodic lat-
grees of freedom of the environment have been traced outice. The real-time evolution of the reduced density matrix
This logic follows the reality of experiments, where it id-se is assumed to be governed by a quantum master equation in
dom possible to reconstruct the complete density matrik®f t the Lindblad form El] that is characterized by a single
full coupled system. When the coupling to the environment idissipative process,
weak and memoryfeects can be neglected, such an approach

. . ; ) 1
yields the Lindblad master equatian [L0-12]. Iffieet, this qr=Lr= yz (nyp Li, - E{Lj(nyy,p}) . 1)
leads to astochasticquantum state evolution composed of (xy)
two distinct parts: theontinuousnonunitary evolution with The LindbladianZ is defined in terms of non-Hermitian

respect to anféective HamiltoniarHes = H — %Za Yo LOTLY operatord_,y = %(sj; + §)(s; — §) that act on adjacent lat-
and the application of a set diiscretequantum jump oper- tice sites(x,y). They map any two-particle spin-singlet state
atorsL® [‘ﬁ? Generically, Hermitian jump operators result to the spin triplet, while conserving the total spin proieuct

in the inevitable heating of the system that ultimately kad S® = ¥, s along the quantization axis, and annihilate the spin
to an infinite-temperature ensemble, regardless of thmlinit triplet. Here,y is the rate that we assign to the process. Start-
state. Much more interesting are non-Hermitian jump operaing from an arbitrary initial state, EqlJ(1) eventually drs/
tors, which can be engineered in order to prepare specific irthe system into a totally symmetric global superpositi@est

put states for quantum simulatidn [13-16], e.g., usingteab  [1S,[21,[22]. Note that the = 1/2 quantum spin model can
ions ] or ultracold atoms in optical Iattic[20]. An be mapped to a system of hard-core bos [30], where the
intriguing proposal put forward in this context is a mecha-spin operators, s;, ands: on each of the lattice sites are
nism for “dissipative cooling” into a Bose-Einstein conden identified with the bosonic creation and annihilation opars
sate (BEC)@Q%EZ]. Similar considerations based asi-dis b}, by, andbib, — 1/2, respectively. Thus, by virtue of this
pative quantum dynamics also play an important role in quanmapping, the same dissipative procdds (1) can be viewed as
tum information processin@ 28] or entanglement genersymmetric delocalization of hard-core bosons over adjacen
ation ]. Essentially, for all of the considered case® th sites, with a BEC of hard-core bosons as the resulting final
system eventually reaches a nonequilibrium ensembleghat dark state.
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FIG. 1: The jump operator,, act on alldL? pairs of nearest-
neighbor sites on the regular periodic lattice with cooation num-
bern. = 2d. This is illustrated above for the example of the two-
dimensional lattice: (a) For each local operator, as, ¢hg. local
spin s, we attachn, jump operators (red) that contribute according
to Eq. [4). (b) For two-point functions, as, e.G.,, we need to con-

sider two cases: [k andy are nearest neighbors, we attach one jump

operator that connects both sitesandy (blue) [cf. Eq. [6)], while
n. — 1 jump operators are assigned separately smdy (red) [cf.

Eq. [@)]. On the other hand, ¥andy are nonadjacent, we attaok
jump operators to botk andy.

The nonvanishing eigenvalues of the Lindbladi@&mvith a
negative real part R§ < 0 determine the relaxational modes
that govern the real-time dynamics of the system. In patticu
lar, the mode corresponding to the eigenvalue with the &rge
real part,

(2)

maxReq; > 0,
I

dominates the asymptotic approach towards the nonequilib-

rium steady state. For the purely dissipative process[Bg. (1
the only scale in the problem is provided by the systemNize
(i.e., the total number of particles). In the following, weosv
that even in the absence of a Hamiltonian, [E¢. (1) leads to
nontrivial finite-size scaling of the dissipative gap foiffsu
ciently largeN. Note that the finite-size scaling afhas been
studied in detail for various bosonic and fermionic systéms
d = 1 dimension and Hermitian jump operatdfs| [|§1|—37].

For any observabl® = Q[ 5], the equation of motion for its
expectation valu@(t) = tr p(t) O is given by

d

Y
7°=5 Ztrp{Lj(y[O, Lyl + Ly Ollsy} - (3)

(xy)

In general, the commutator terms [ (3) will induce new oper-

ators. That is, the equations of motion forpoint functions
typically depend onrfi+ 1)-point functions — the dynamical

One- and two-point correlation functiondt is instructive
to consider first the evolution of the spin componed(s) =
tr p(t) £. Note that the commutator terms in Eg. (3) contribute
only if the jump operators,y are attached locally to the spin
operators? [cf. Fig.[D(a)]. We determine

Liy[i’ Lyy] + [Liy’ Sillxy = %(§ - ),

and obtain the following diusion equation for the local mag-
netization,

(4)

asd = (VDA (5)
whereA, fy = 22:1 (fx,;, - 2f  + fx+;,) corresponds to the dis-
cretized Laplacian, and denotes the unit vector in thedi-
rection on the spatial lattice.

Nontrivial correlations in the system are encoded in non-
local operators such &,y = sis; + 5;S) andDyy = S}s.
Note thatCyx = 4Dyx = 1, while the zero-momentum compo-
nent of the Fourier-transformed two-point functiog(t) =
tr p(t) Cxy corresponds to the condensate fraction. Note, that
in the following we use calligraphic fonts to denote ensem-
ble averaged quantities. Evaluating the commutators on the
right-hand side of Eq[{3) for the operatdyy,, we obtain

Lj(y[C)(y, L)(y] + [Lj(y, ny] ny =1- ZCXy - 4ny,

. 1
LLy[sz, I—xy] + [ sz] I—xy = E(Cyz - sz) s

(6)

L ()

Xy?
where x andy correspond to adjacent sites. We point out
that the operatoDyy is generateanly if x andy are nearest-
neighbor sites [cf. FigJ1(b)]. Considering the commutator
ferms forDyy, we get

L;I.(y[ny, ny] + [L;‘;y, ny] ny =0 s (8)
1
LiDxzs Lyl + [Liy DielLy = 2 (Dyz - sz) S C))

While the diagonal contributions are constant in tirg, =
4D« = 1, we obtain the following linear system for th&-o
diagonal contributions,

athy = %(AX + Ay) ny - %6<x,y>(C)(y + 4z)xy) N (10)

0Dy = %(Ax + Ay)ny - %&x,y}(l - 4ny) s (11)

equations form an infinite hierarchy which cannot be solvedvheredy,, is nonzero and equal to one onlyfandy are

in closed form. Notably, for Hermitian jump operators, cond

adjacent sites. Given initial data for the two-point funot

tions can be derived under which the hierarchy closds [38]. ICxy(t = 0) andD,y(t = 0), the first-order system of equations
seems that no definite statements have been made so far tli(C, D)™ = M(C, D)™ can be solved explicitly. The solu-
establish whether a given non-Hermitian Lindblad processions are expressed in terms of a superposition of expaalenti
will lead to a closed system of equations. Here, we providdunctions, whose characteristic rates of decay are detedni
an explicit example where the hierarchy also closes, namelypy the eigenvalueg; of the linear dfferential operatom.

for the non-Hermitian jump operatoLs,y. This allows us to
study the finite-size scaling @f as well as the real-time dy-
namics of the dissipative process in arbitrary dimensiooms f
first principles.

Using spatial translation invariance, we will characterize
real-time evolution in momentum space in terms of the Fourie
modesCp(t) = N2 3, €PN Oy (t), with p, = 27n,/L
andn, € {0,...,L-1).
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FIG. 2: Dissipative gap in units ofy as a function of system size FIG. 3: Real-time evolution of a systeman= 3 dimensions consist-
(total particle numberN on a double-logarithmic scale for dimen- ing of N = 36° particles initialized in the infinite-temperature ther-
sionsd = 1 (square$, d = 2 (dot9, andd = 3 (triangles. mal ensemble. Selected Fourier modgét), with p, = 27nd,,1/L,
n=1,...,L/2, are shown, illustrating the growth and subsequent de-
cay of correlations. The dashed lines indicate the asyneptatues

Cy; different points mark the two characteristic time scales|p|™>

Infinite-temperature initial ensemblEirst, we consider the (dots andt, ~ [p|-¥* (squares:

time evolution starting from an incoherent thermal ensembl
at infinite temperature, i.e.,

(t=0)=2"M1 (12) An intriguing consequence of this behavior is that the dissi
pt=4= ’ pative process Eql}(1) increases ffi@ency with dimension
for which all of-diagonal entries of the correlation functions d That s, for fl_xed_ pgrﬂcle numben‘,_the asymptotlc regime
vanish: Cy(t = 0) = Dyy(t = 0) = 0, x # y. The choice is reached earlier in time. The real-time evolution of some s

of initial conditions and subsequent dynamics can be Iilzlenelected Foune_r mogles is shawn in F@;' 3 and 4. We identify
to the following scenario: The system is initially prepaned three dyngmlc regimes for th? low-lying momentum modes.
the infinite-temperature ensemble and afterwards quertohed .Thereglme Of_ initial growthis chara}cterlzed .by the gener-
zero temperature, where the system is finally driven by thétion of correlatlon_s due to the quasilocal action of th(_adl-_ln
continuous application of quantum jump operatogs While blad operato_rs, which gradually corr_elate quantum Spires ov
the diagonal elementS,(t) = 4Dy(t) = 1 as well as the Ve larger _dlstances. Ea<_:h of the eigenmodes with e_lgenval
off-diagonal element®,(t) = 0 remain constant as the sys- U€S4i contributes to the time dependencey,. The time
tem evolves in time, we observe that nontrividil-diagonal tz, when the Iovy—lylng modesp(# 0) reach their mzi>2<|mum
correlations are generated Oy (t). This is clear, since by value, scales with inverse momentum squated |p|™*. Of

construction Eq[{1) leads to the following ensemble, course, this behavior is tied to the Laplacian EGs] (10) and
(@), which also explains the quadratic scaltag~ L? with

N N the linear lattice extent, independent of dimension.
p(t = c0) = 27N Z( )|D(N, n)}D(N, n)|, (13) The lowest-lying eigenmode with a characteristic rate of
hoo \N decayA starts to dominate the dynamics in the subsequent

transient regimeAll low-lying Fourier modes are seen to de-
cay exponentiallyCp.o ~ exp(At), until the influence of the
asymptotic valu€’’ , becomes relevant. Thus, the dynamics
of the condensate completely determines the behavior of the
higher momentum-modes. Owing to the nontrivial scaling be-

o 1 havior Eqs.[(Ib) -[{17), we observe a separation of scales be-
Cp = [im Cp(t) = 1/26p0+ 1/(2N) . (14) tweent; ~ L2 andA~* for the Fourier mode€ o (cf. Fig.[3).

where|D(N,n)) = |[N/2,-N/2 + n) corresponds to the to-
tally symmetric Dicke state, witt§2D(N,n)) = N(N +
2)/4/D(N, n)y andS3|D(N, n)) = (=N/2+n)|D(N, n)). Asymp-
totically, the ensemblé{13) is characterized by

Th i f totic decdy characterized bg, ~
We solve the equations of motion Eqls.](10) and (11) viacw eregime of asymptotic decay characterized by

ical di lizati fthe li atof. We ob p[1 + exp(-At)]. The transition between the transient and
numerical diagonalization of the finear operatel. We ob- asymptotic regime is most easily seen by examining the ab-
serve that the dissipative gapthat governs the asymptotic

behavior exhibits a nontrivial finite-size scaling thabsigly solute value ofd:InCy: On a log-linear plot, the transient
depends on the dimensioin(cf. Fig.[2): for largeN, we find regime is clearly identified by horizontal lines with height

~ A, whereas the leading asymptotic behavior corresponds

1 2 to straight lines with negative slopeA. We define the time
ALy ~ N<, (15) ' . . :

9 scalet, in terms of the intersection point of the correspond-
Az ~NINN, (16)  ing extrapolated curves and find that it scales nontriviaitp

Az ~N. (17)  momentunt, ~ |p|~*/2 for the low-lying momentum modes.
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,,,,,,, A , observe that there is no entangleméi{t, = 0) = 1. In the
10%¢ infinite time limit, we obtainC;_, = 1/2 + 1/N, and there-
fore &° = N. Note that well before the asymptotic regime
t — oo is reached, at timé ~ A™%, near toN particles are
mutually entangled&(t) ~ N[1- exp(At)]. This clearly
demonstrates thdfecacy of the purely dissipative process Eq.
(@) for the purpose of entanglement generation. The prepara
tion of a macroscopic BEC in a two-dimensional lattice and
Cr) ‘ ‘ J10-3 the time evolution of the corresponding cumulative entang|
0.01 ) 100 10 106 ment distribution is illustrated in Fi§] 4. Note that we have
chosen the same value of the total particle nunitbém both
Figs.[3 and® to show that, for fixed it takes longer for the

FIG. 4. Real-time evolution il = 2 dimensions for a system con- cond_ensaté,’p:q to regch Its asymptotic vaIL@;’:O_ln d=2 )
sisting ofN = 216 particles prepared in an incoherent initial ensem-than ind = 3 dimensions. Currently, the numerical determi-
ble with total spinS® = 0. We show the time-dependent cumulative nation of the time evolution for the low-lying modes allows u
entanglement distributio&i(t) (blue) and compare it to the behav- to solve for system sizes of up M~ 80° particles.
ior of the Fourier mode€,(t), with p, = 27n,/L, n, = 1,...,L/2
(labeled. The dashed line indicates the asymptotic value for the en-
tanglement distributiog™ = N. Conclusions.In this work, we have investigated the real-
time dynamics of a purely dissipatie= 1/2 quantum spin
system. This serves as an interesting model to study the ap-
plication of non-Hermitian jump operators for state prepar
tion and entanglement generation. The same dissipative pro
cess with competing unitary dynamics hbeen considered to
o some extent in previous work, e.g., in Ref.l[19] for a system
pt=0) _1sx1<;<N/zsL(|p(Xb S XD G0 X)) ,(18) of up toN = 10 particles in the framework of a discrete time
N evolution generated by a Kraus map, while a mean-field ap-
(X, . .., Xny2)) = (N/Z) SRR VR ()38 (19)  proach was used to study linearized theories around a weakly
perturbed dark statﬁlZl]. However, here we are able to re-
where|Q) = ||| --- | ). Starting from Eq.[(T8), the quantum solve the complete time evolution fomaacroscopimumber
dissipative procesE](1) drives the system into the Dickesta of particles, albeit in the absence of a competing Hamiéoni
dynamics. The large but finite system size provides a scale
p(t — o0) = |D(N, 0)XD(N, 0)|. (20)  that determines the characteristic time for the evolutiwoo-
o o o relations. This allows us to extract the asymptotic scatihg
Similar to the infinite-temperature initial ensemble, hehe o gissinative gap. In particular, we find a nontrivial finit
tlme evol_utlon is carried out _at Z€10 tempergture where t_h%ize scaling that depends on the dimension. The dissipative
Lindblad jump operators dominate the dynamics. To qu"Jmt'fyprocess becomes morgiieient as the coordination number of

the real-time dynamics of entanglement, we consider the Mqpe |attice is increased. This certainly has interestinglica-
ments of the total spin operat&f. Given an ensemble with g ‘e o for state preparation in ultracold atoms irioapt
no genuineM-particle entanglemepﬂ < N), we can derive  |agices  Furthermore, we have shown explicitly how multi-

an upper bound for these momerits/[39-41]. The measureth icle entanglement is generated in real time and how the

— 2 327 i
va_lue foGC_:o N 2trp[§ __(S_ )_] is used to check whether system evolves into a macroscopically entangled BEC.
this bound is violated. If this is indeed the case, then weehav

shown that the time-evolved ensemble hMagubit entangle-

ment. Note that the Lindblad process conseSand there- So far, we have neglected th@eet of a thermal bath as the

fore Dpo(t) = O for all t € [0, o) and trp(S%)? = (tr pSS)Z_ system is driven at zero temperature. We plan to investigate
To verify genuineM-particle entanglement at any given the efect of thermal fluctuations on the real-time dynamics

time, we need to check whether the following inequality isand the stability of the final dark state in a future publicati

satisfied:Cp-o > (M + 1)/(2N) [@]_ We use this relation to Anqthgr interesting quest_ion concerns the role of topalalgi
define thecumulative entanglement distribution excitations for the dynamics which we plan to address.
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BEC preparation and entanglement growth.the follow-
ing, we assume thail is even and that the system is initially
prepared in an incoherent ensemble vth= 0, i.e.,

-1
2

&(t) = max(1, 2NCp=o(t) - 21) . (21) _ )
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