
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
7
9
0
5
7
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
3
.
4
.
2
0
2
4

ar
X

iv
:1

51
1.

08
73

3v
2 

 [c
on

d-
m

at
.q

ua
nt

-g
as

]  
2 

F
eb

 2
01

6

Dynamics of dissipative Bose-Einstein condensation

S. Caspar, F. Hebenstreit, D. Mesterházy, and U.-J. Wiese
Albert Einstein Center for Fundamental Physics, Institutefor Theoretical Physics, University of Bern, 3012 Bern, Switzerland

We resolve the real-time dynamics of a purely dissipatives = 1/2 quantum spin or, equivalently, hard-core
boson model on a hypercubicd-dimensional lattice. The considered quantum dissipativeprocess drives the
system to a totally symmetric macroscopic superposition ineach of theS3 sectors. Different characteristic
time scales are identified for the dynamics and we determine their finite-size scaling. We introduce the concept
of cumulative entanglement distribution to quantify multiparticle entanglement and show that the considered
protocol serves as an efficient method to prepare a macroscopically entangled Bose-Einstein condensate.

PACS numbers: 75.10.Jm, 03.75.Gg, 67.85.De, 03.67.Bg

Introduction.After the ground-breaking discovery of Bose-
Einstein condensation in ultracold quantum gases [1, 2], the
cooling of clouds of atoms to nanokelvin temperatures has
become a daily routine in atomic physics laboratories world-
wide. However, our understanding of the underlying out-of-
equilibrium process from first principles is far from complete.
The reason for this is twofold. Conventional Monte Carlo
methods are typically not applicable to the problem of real-
time dynamics of quantum many-body systems due to the ab-
sence of a positive-definite probability measure [3]. Thus,
simulations of time evolution have been limited either to small
numbers of particles that are amenable to exact diagonaliza-
tion, or to one-dimensional gapped systems to which the time-
dependent density matrix renormalization group [4, 5] can be
applied. On the other hand, the growth of quantum entangle-
ment limits the applicability of the latter for late times [6–9].

For practical purposes it is sufficient to consider the time
evolution of the many-body system in terms of a quantum
master equation for the reduced density matrix, where the de-
grees of freedom of the environment have been traced out.
This logic follows the reality of experiments, where it is sel-
dom possible to reconstruct the complete density matrix of the
full coupled system. When the coupling to the environment is
weak and memory effects can be neglected, such an approach
yields the Lindblad master equation [10–12]. In effect, this
leads to astochasticquantum state evolution composed of
two distinct parts: thecontinuousnonunitary evolution with
respect to an effective HamiltonianHeff = H − i

2

∑

α γαL
α†Lα

and the application of a set ofdiscretequantum jump oper-
atorsLα [12]. Generically, Hermitian jump operators result
in the inevitable heating of the system that ultimately leads
to an infinite-temperature ensemble, regardless of the initial
state. Much more interesting are non-Hermitian jump opera-
tors, which can be engineered in order to prepare specific in-
put states for quantum simulation [13–16], e.g., using trapped
ions [17–19] or ultracold atoms in optical lattices [20]. An
intriguing proposal put forward in this context is a mecha-
nism for “dissipative cooling” into a Bose-Einstein conden-
sate (BEC) [19, 21, 22]. Similar considerations based on dissi-
pative quantum dynamics also play an important role in quan-
tum information processing [23–28] or entanglement gener-
ation [29]. Essentially, for all of the considered cases, the
system eventually reaches a nonequilibrium ensemble that is

usually known exactly by construction. However, the inter-
mediate real-time evolution of a macroscopic quantum system
starting from a given initial state has so far remained largely
out of reach.

In this Rapid Communication, we study the purely dissipa-
tive dynamics of a strongly correlated quantum spin system on
a hypercubicd-dimensional lattice. We derive the equations
of motion for local observables and show that the resulting
system of linear equations can be solved efficiently. This al-
lows us to investigate the real-time dynamics of Bose-Einstein
condensation via dissipation. We study the dependence of the
dissipative gap on the system size and find nontrivial scaling
behavior. We demonstrate that this has interesting implica-
tions for the mechanism of nonequilibrium condensation.

Dissipative s= 1/2 quantum spin model.In the following,
we consider a purely dissipative process (H = 0) for quan-
tum spins at zero temperature. The spin operators,sa

x ≡
1
2σ

a
x,

a = 1, 2, 3, ands±x = s1
x ± is2

x, are defined in terms of Pauli
matrices on each of theN = Ld sites of a regular periodic lat-
tice. The real-time evolution of the reduced density matrixρ
is assumed to be governed by a quantum master equation in
the Lindblad form [10, 11] that is characterized by a single
dissipative process,

d
dt
ρ = Lρ ≡ γ

∑

〈x,y〉

(

LxyρL†xy −
1
2
{

L†xyLxy, ρ
}

)

. (1)

The LindbladianL is defined in terms of non-Hermitian
operatorsLxy =

1
2(s+x + s+y )(s−x − s−y ) that act on adjacent lat-

tice sites〈x, y〉. They map any two-particle spin-singlet state
to the spin triplet, while conserving the total spin projection
S3 =

∑

x s3
x along the quantization axis, and annihilate the spin

triplet. Here,γ is the rate that we assign to the process. Start-
ing from an arbitrary initial state, Eq. (1) eventually drives
the system into a totally symmetric global superposition state
[19, 21, 22]. Note that thes= 1/2 quantum spin model can
be mapped to a system of hard-core bosons [30], where the
spin operatorss+x , s−x , ands3

x on each of the lattice sites are
identified with the bosonic creation and annihilation operators
b†x, bx, andb†xbx − 1/2, respectively. Thus, by virtue of this
mapping, the same dissipative process (1) can be viewed as
symmetric delocalization of hard-core bosons over adjacent
sites, with a BEC of hard-core bosons as the resulting final
dark state.

http://arxiv.org/abs/1511.08733v2
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FIG. 1: The jump operatorsLxy act on all dLd pairs of nearest-
neighbor sites on the regular periodic lattice with coordination num-
ber nc = 2d. This is illustrated above for the example of the two-
dimensional lattice: (a) For each local operator, as, e.g.,the local
spin sa

x, we attachnc jump operators (red) that contribute according
to Eq. (4). (b) For two-point functions, as, e.g.,Cxy, we need to con-
sider two cases: Ifx andy are nearest neighbors, we attach one jump
operator that connects both sitesx andy (blue) [cf. Eq. (6)], while
nc − 1 jump operators are assigned separately tox andy (red) [cf.
Eq. (7)]. On the other hand, ifx andy are nonadjacent, we attachnc

jump operators to bothx andy.

The nonvanishing eigenvalues of the LindbladianL with a
negative real part Reλi < 0 determine the relaxational modes
that govern the real-time dynamics of the system. In particu-
lar, the mode corresponding to the eigenvalue with the largest
real part,

∆ ≡ −max
i

Reλi > 0 , (2)

dominates the asymptotic approach towards the nonequilib-
rium steady state. For the purely dissipative process Eq. (1),
the only scale in the problem is provided by the system sizeN
(i.e., the total number of particles). In the following, we show
that even in the absence of a Hamiltonian, Eq. (1) leads to a
nontrivial finite-size scaling of the dissipative gap for suffi-
ciently largeN. Note that the finite-size scaling of∆ has been
studied in detail for various bosonic and fermionic systemsin
d = 1 dimension and Hermitian jump operators [31–37].

For any observableO = O[s], the equation of motion for its
expectation valueO(t) = tr ρ(t)O is given by

d
dt
O =

γ

2

∑

〈x,y〉

tr ρ
{

L†xy
[

O, Lxy
]

+
[

L†xy,O
]

Lxy

}

. (3)

In general, the commutator terms in (3) will induce new oper-
ators. That is, the equations of motion form-point functions
typically depend on (m+ 1)-point functions — the dynamical
equations form an infinite hierarchy which cannot be solved
in closed form. Notably, for Hermitian jump operators, condi-
tions can be derived under which the hierarchy closes [38]. It
seems that no definite statements have been made so far that
establish whether a given non-Hermitian Lindblad process
will lead to a closed system of equations. Here, we provide
an explicit example where the hierarchy also closes, namely,
for the non-Hermitian jump operatorsLxy. This allows us to
study the finite-size scaling of∆ as well as the real-time dy-
namics of the dissipative process in arbitrary dimensions from
first principles.

One- and two-point correlation functions.It is instructive
to consider first the evolution of the spin componentss

a
x (t) =

tr ρ(t) sa
x. Note that the commutator terms in Eq. (3) contribute

only if the jump operatorsLxy are attached locally to the spin
operatorsa

x [cf. Fig. 1(a)]. We determine

L†xy
[

sa
x, Lxy

]

+
[

L†xy, s
a
x
]

Lxy =
1
2
(

sa
y − sa

x
)

, (4)

and obtain the following diffusion equation for the local mag-
netization,

∂ts
a
x = (γ/4)∆xs

a
x , (5)

where∆x fx ≡
∑d
µ=1

(

fx−µ̂ − 2 fx + fx+µ̂

)

corresponds to the dis-
cretized Laplacian, and ˆµ denotes the unit vector in theµ di-
rection on the spatial lattice.

Nontrivial correlations in the system are encoded in non-
local operators such asCxy = s+x s−y + s−x s+y andDxy = s3

xs3
y.

Note thatCxx = 4Dxx = 1, while the zero-momentum compo-
nent of the Fourier-transformed two-point functionCxy(t) =
tr ρ(t)Cxy corresponds to the condensate fraction. Note, that
in the following we use calligraphic fonts to denote ensem-
ble averaged quantities. Evaluating the commutators on the
right-hand side of Eq. (3) for the operatorCxy, we obtain

L†xy
[

Cxy, Lxy
]

+
[

L†xy,Cxy
]

Lxy = 1 − 2Cxy− 4Dxy , (6)

L†xy
[

Cxz, Lxy
]

+
[

L†xy,Cxz
]

Lxy =
1
2
(

Cyz−Cxz
)

, (7)

where x and y correspond to adjacent sites. We point out
that the operatorDxy is generatedonly if x andy are nearest-
neighbor sites [cf. Fig. 1(b)]. Considering the commutator
terms forDxy, we get

L†xy
[

Dxy, Lxy
]

+
[

L†xy,Dxy
]

Lxy = 0 , (8)

L†xy
[

Dxz, Lxy
]

+
[

L†xy,Dxz
]

Lxy =
1
2

(

Dyz− Dxz

)

. (9)

While the diagonal contributions are constant in time,Cxx =

4Dxx = 1, we obtain the following linear system for the off-
diagonal contributions,

∂tCxy =
γ

4
(∆x + ∆y)Cxy−

γ

2
δ〈x,y〉

(

Cxy+ 4Dxy
)

, (10)

∂tDxy =
γ

4
(∆x + ∆y)Dxy −

γ

8
δ〈x,y〉

(

1− 4Dxy
)

, (11)

whereδ〈x,y〉 is nonzero and equal to one only ifx andy are
adjacent sites. Given initial data for the two-point functions
Cxy(t = 0) andDxy(t = 0), the first-order system of equations
∂t (C , D)⊤ = M (C , D)⊤ can be solved explicitly. The solu-
tions are expressed in terms of a superposition of exponential
functions, whose characteristic rates of decay are determined
by the eigenvaluesλi of the linear differential operatorM.
Using spatial translation invariance, we will characterize the
real-time evolution in momentum space in terms of the Fourier
modesCp(t) = N−2 ∑

x,y eipµ(x−y)µ Cxy(t), with pµ = 2πnµ/L
andnµ ∈ {0, . . . , L − 1}.
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FIG. 2: Dissipative gap∆ in units ofγ as a function of system size
(total particle number)N on a double-logarithmic scale for dimen-
sionsd = 1 (squares), d = 2 (dots), andd = 3 (triangles).

Infinite-temperature initial ensemble.First, we consider the
time evolution starting from an incoherent thermal ensemble
at infinite temperature, i.e.,

ρ(t = 0) = 2−N
1 , (12)

for which all off-diagonal entries of the correlation functions
vanish: Cxy(t = 0) = Dxy(t = 0) = 0, x , y. The choice
of initial conditions and subsequent dynamics can be likened
to the following scenario: The system is initially preparedin
the infinite-temperature ensemble and afterwards quenchedto
zero temperature, where the system is finally driven by the
continuous application of quantum jump operatorsLxy. While
the diagonal elementsCxx(t) = 4Dxx(t) = 1 as well as the
off-diagonal elementsDxy(t) = 0 remain constant as the sys-
tem evolves in time, we observe that nontrivial off-diagonal
correlations are generated forCxy(t). This is clear, since by
construction Eq. (1) leads to the following ensemble,

ρ(t→ ∞) = 2−N
N

∑

n=0

(

N
n

)

|D(N, n)〉〈D(N, n)| , (13)

where |D(N, n)〉 ≡ |N/2,−N/2 + n〉 corresponds to the to-
tally symmetric Dicke state, with~S2|D(N, n)〉 = N(N +
2)/4|D(N, n)〉 andS3|D(N, n)〉 = (−N/2+n)|D(N, n)〉. Asymp-
totically, the ensemble (13) is characterized by

C∞p ≡ lim
t→∞
Cp(t) = 1/2δp,0 + 1/(2N) . (14)

We solve the equations of motion Eqs. (10) and (11) via
numerical diagonalization of the linear operatorM. We ob-
serve that the dissipative gap∆ that governs the asymptotic
behavior exhibits a nontrivial finite-size scaling that strongly
depends on the dimensiond, (cf. Fig. 2); for largeN, we find

∆−1
1d ∼ N2 , (15)

∆−1
2d ∼ N ln N , (16)

∆−1
3d ∼ N . (17)

FIG. 3: Real-time evolution of a system ind = 3 dimensions consist-
ing of N = 363 particles initialized in the infinite-temperature ther-
mal ensemble. Selected Fourier modesCp(t), with pµ = 2πnδµ,1/L,
n = 1, . . . , L/2, are shown, illustrating the growth and subsequent de-
cay of correlations. The dashed lines indicate the asymptotic values
C∞p ; different points mark the two characteristic time scalest1 ∼ ||p||−2

(dots) andt2 ∼ ||p||−1/3 (squares).

An intriguing consequence of this behavior is that the dissi-
pative process Eq. (1) increases in efficiency with dimension
d. That is, for fixed particle numberN, the asymptotic regime
is reached earlier in time. The real-time evolution of some se-
lected Fourier modes is shown in Figs. 3 and 4. We identify
three dynamic regimes for the low-lying momentum modes.

The regime of initial growthis characterized by the gener-
ation of correlations due to the quasilocal action of the Lind-
blad operators, which gradually correlate quantum spins over
ever larger distances. Each of the eigenmodes with eigenval-
uesλi contributes to the time dependence ofCxy. The time
t1, when the low-lying modes (p , 0) reach their maximum
value, scales with inverse momentum squared,t1 ∼ ||p||−2. Of
course, this behavior is tied to the Laplacian Eqs. (10) and
(11), which also explains the quadratic scalingt1 ∼ L2 with
the linear lattice extent, independent of dimension.

The lowest-lying eigenmode with a characteristic rate of
decay∆ starts to dominate the dynamics in the subsequent
transient regime. All low-lying Fourier modes are seen to de-
cay exponentially,Cp,0 ∼ exp(−∆t), until the influence of the
asymptotic valueC∞p=0 becomes relevant. Thus, the dynamics
of the condensate completely determines the behavior of the
higher momentum-modes. Owing to the nontrivial scaling be-
havior Eqs. (15) – (17), we observe a separation of scales be-
tweent1 ∼ L2 and∆−1 for the Fourier modesCp,0 (cf. Fig. 3).

The regime of asymptotic decayis characterized byCp ∼

C∞p [1 + exp(−∆t)]. The transition between the transient and
asymptotic regime is most easily seen by examining the ab-
solute value of∂t lnCp: On a log-linear plot, the transient
regime is clearly identified by horizontal lines with height
∼ ∆, whereas the leading asymptotic behavior corresponds
to straight lines with negative slope−∆. We define the time
scalet2 in terms of the intersection point of the correspond-
ing extrapolated curves and find that it scales nontriviallywith
momentumt2 ∼ ||p||−1/3 for the low-lying momentum modes.
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FIG. 4: Real-time evolution ind = 2 dimensions for a system con-
sisting ofN = 2162 particles prepared in an incoherent initial ensem-
ble with total spinS3 = 0. We show the time-dependent cumulative
entanglement distributionE(t) (blue) and compare it to the behav-
ior of the Fourier modesCp(t), with pµ = 2πnµ/L, nµ = 1, . . . , L/2
(labeled). The dashed line indicates the asymptotic value for the en-
tanglement distributionE∞ = N.

BEC preparation and entanglement growth.In the follow-
ing, we assume thatN is even and that the system is initially
prepared in an incoherent ensemble withS3 = 0, i.e.,

ρ(t = 0) =
∑

1≤x1<...<xN/2≤N

|φ(x1, . . . , xN/2)〉〈φ(x1, . . . , xN/2)| ,

(18)

|φ(x1, . . . , xN/2)〉 ≡

(

N
N/2

)− 1
2

s+x1
s+x2
· · · s+xN/2

|Ω〉 , (19)

where|Ω〉 ≡ | ↓↓ · · · ↓ 〉. Starting from Eq. (18), the quantum
dissipative process (1) drives the system into the Dicke state,

ρ(t → ∞) = |D(N, 0)〉〈D(N, 0)| . (20)

Similar to the infinite-temperature initial ensemble, here, the
time evolution is carried out at zero temperature where the
Lindblad jump operators dominate the dynamics. To quantify
the real-time dynamics of entanglement, we consider the mo-
ments of the total spin operatorSa. Given an ensemble with
no genuineM-particle entanglement (M < N), we can derive
an upper bound for these moments [39–41]. The measured
value forCp=0 = 2 trρ [~S2 − (S3)2] is used to check whether
this bound is violated. If this is indeed the case, then we have
shown that the time-evolved ensemble hasM-qubit entangle-
ment. Note that the Lindblad process conservesS3 and there-

foreDp=0(t) = 0 for all t ∈ [0,∞) and trρ(S3)2 =
(

tr ρS3
)2

.
To verify genuineM-particle entanglement at any given

time, we need to check whether the following inequality is
satisfied:Cp=0 > (M + 1)/(2N) [41]. We use this relation to
define thecumulative entanglement distribution:

E(t) = max
(

1, ⌈2NCp=0(t) − 2⌉
)

. (21)

It serves as a measure for the total number of entangled qubits
in a given ensembleρ. Note that its time dependence is fully
determined by the condensate fractionCp=0. At initial time
t = 0, in the fully mixed state,Cp=0(t = 0) = 1/N, and we

observe that there is no entanglement,E(t = 0) = 1. In the
infinite time limit, we obtainC∞p=0 = 1/2 + 1/N, and there-
fore E∞ = N. Note that well before the asymptotic regime
t → ∞ is reached, at timet ∼ ∆−1, near toN particles are
mutually entangled:E(t) ≃ N

[

1− exp(−∆t)
]

. This clearly
demonstrates the efficacy of the purely dissipative process Eq.
(1) for the purpose of entanglement generation. The prepara-
tion of a macroscopic BEC in a two-dimensional lattice and
the time evolution of the corresponding cumulative entangle-
ment distribution is illustrated in Fig. 4. Note that we have
chosen the same value of the total particle numberN in both
Figs. 3 and 4 to show that, for fixedγ, it takes longer for the
condensateCp=0 to reach its asymptotic valueC∞p=0 in d = 2
than ind = 3 dimensions. Currently, the numerical determi-
nation of the time evolution for the low-lying modes allows us
to solve for system sizes of up toN ≈ 803 particles.

Conclusions.In this work, we have investigated the real-
time dynamics of a purely dissipatives = 1/2 quantum spin
system. This serves as an interesting model to study the ap-
plication of non-Hermitian jump operators for state prepara-
tion and entanglement generation. The same dissipative pro-
cess with competing unitary dynamics has been considered to
some extent in previous work, e.g., in Ref. [19] for a system
of up toN = 10 particles in the framework of a discrete time
evolution generated by a Kraus map, while a mean-field ap-
proach was used to study linearized theories around a weakly
perturbed dark state [21]. However, here we are able to re-
solve the complete time evolution for amacroscopicnumber
of particles, albeit in the absence of a competing Hamiltonian
dynamics. The large but finite system size provides a scale
that determines the characteristic time for the evolution of cor-
relations. This allows us to extract the asymptotic scalingof
the dissipative gap. In particular, we find a nontrivial finite-
size scaling that depends on the dimension. The dissipative
process becomes more efficient as the coordination number of
the lattice is increased. This certainly has interesting implica-
tions, e.g., for state preparation in ultracold atoms in optical
lattices. Furthermore, we have shown explicitly how multi-
particle entanglement is generated in real time and how the
system evolves into a macroscopically entangled BEC.

So far, we have neglected the effect of a thermal bath as the
system is driven at zero temperature. We plan to investigate
the effect of thermal fluctuations on the real-time dynamics
and the stability of the final dark state in a future publication.
Another interesting question concerns the role of topological
excitations for the dynamics which we plan to address.

We thank D. Banerjee, J. Berges, H. P. Büchler, S. Chan-
drasekharan, S. Diehl, E. Huffman, and P. Zoller for illuminat-
ing discussions. This research is funded by the European Re-
search Council under the European Union’s Seventh Frame-
work Programme, FP7/2007-2013, 339220.
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