STXBP1 encephalopathy
A neurodevelopmental disorder including epilepsy

Abstract

Objective: To give a comprehensive overview of the phenotypic and genetic spectrum of STXBP1 encephalopathy (STXBP1-E) by systematically reviewing newly diagnosed and previously reported patients.

Methods: We recruited newly diagnosed patients with STXBP1 mutations through an international network of clinicians and geneticists. Furthermore, we performed a systematic literature search to review the phenotypes of all previously reported patients.

Results: We describe the phenotypic features of 147 patients with STXBP1-E including 45 previously unreported patients with 33 novel STXBP1 mutations. All patients have intellectual disability (ID), which is mostly severe to profound (88%). Ninety-five percent of patients have neurologic comorbidities including autistic features and movement disorders. We also report 2 previously unreported adult patients with prominent extrapyramidal features.

Conclusion: De novo STXBP1 mutations are among the most frequent causes of epilepsy and encephalopathy. Most patients have severe to profound ID with little correlation among seizure onset, seizure severity, and the degree of ID. Accordingly, we hypothesize that seizure severity and ID present 2 independent dimensions of the STXBP1-E phenotype. STXBP1-E may be conceptualized as a complex neurodevelopmental disorder rather than a primary epileptic encephalopathy. Neurology® 2016;86:954–962

Glossary

- AED = antiepileptic drugs
- ESEE = early-onset epilepsy and encephalopathy
- ID = intellectual disability
- ILAE = International League Against Epilepsy
- STXBP1 = syntaxin-binding protein 1
- STXBP1-E = STXBP1 encephalopathy

Syntaxin-binding protein 1 (STXBP1) (also known as MUNC18-1) is a protein of the SEC1 family of membrane trafficking proteins predominantly expressed in the brain, which plays an important role in synaptic vesicle docking and fusion.1,2 Through interaction with both vesicle-associated (synaptobrevin 2 or vesicle-associated membrane protein 2) and target-associated (syntaxin-1 and synaptosomal-associated protein 25) soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins, STXBP1 modulates the presynaptic vesicular fusion reaction.3,4 STXBP1 is encoded by the STXBP1 gene (NM_003165.3), consisting of 20 exons and located on chromosome 9q34.11,2,5

In 2008, Saitsu et al.6 described de novo STXBP1 mutations in 5 patients with Ohtahara syndrome. Subsequently, mutations in STXBP1, including missense, frameshift, splice site, and nonsense mutations, and intragenic and whole gene deletions have been described in different patient cohorts, broadening the phenotypic spectrum of STXBP1 mutations to West syndrome, unclassified early-onset epileptic encephalopathy, Dravet syndrome, nonsyndromic epilepsy and intellectual disability, and autism.3,4,5,7–9

*Members of the STXBP1 study group.

Authors’ affiliations are listed at the end of the article.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
In this study, we aimed to provide a comprehensive picture of the phenotypic spectrum of \textit{STXBP1} encephalopathy (\textit{STXBP1}-E). We report 45 previously unreported patients with \textit{STXBP1}-E, carrying 33 unreported mutations, and summarize all \textit{STXBP1} mutations reported to date. We further discuss future treatment options and pitfalls in the genetic diagnosis of \textit{STXBP1}-E.

**METHODS** Characterization of novel patients with \textit{STXBP1}-E. Forty-five previously unreported patients with a \textit{STXBP1} mutation were included in this study. All patients were referred through a network of collaborating clinicians and geneticists. Mutations in \textit{STXBP1} were identified in research or diagnostic laboratories. Referring physicians were provided a standardized phenotyping sheet to assess relevant clinical characteristics, EEG, and neuroimaging findings. International League Against Epilepsy (ILAE) criteria were used for epilepsy syndrome classification, meaning that the diagnosis of Ohtahara syndrome, Dravet syndrome, West syndrome, or Lennox-Gastaut syndrome was only made when all criteria for seizure, developmental, and EEG characteristics were present. For the purpose of this review, we classified patients with frequent seizures and intellectual disability (ID), both with onset in the first 2 years of life but not fulfilling ILAE criteria for any specific syndrome, as early-onset epilepsy and encephalopathy (EOEE; see Discussion). In case of preexisting developmental delay or ID with epilepsy onset after age 2 years, a diagnosis of ID and nonsyndromic epilepsy was made.

**RESULTS** \textit{STXBP1} The phenotypic spectrum. In total, we reviewed the phenotypic features of 147 patients with \textit{STXBP1}-E, including 45 previously unreported patients described in this article (tables e-1, e-2, and e-3 on the Neurology® Web site at Neurology.org). Age at inclusion ranged from 6 months to 56 years (median 5.75 years). At onset, the majority of patients had a clinical diagnosis of EOEE (n = 71; 53\%) or Ohtahara syndrome (n = 28, 20.9\%), 27 of whom showed evolution to West syndrome over time. \textit{STXBP1} mutations were also identified in patients initially presenting with West syndrome (n = 13; 9.7\%), ID with nonsyndromic epilepsy (n = 8; 6\%), ID without epilepsy (n = 9; 6.7\%), or Dravet syndrome (n = 3; 2.2\%). One patient had early myoclonic encephalopathy and 1 patient had ID with 2 possible seizures. For 13 patients, no clinical description was available. Four of the 9 patients with ID without epilepsy were identified in the group of previously unreported patients.

**Seizures in \textit{STXBP1}-E.** If present, epilepsy onset in \textit{STXBP1}-E tends to be early in life, with a median age at onset of 6 weeks (range 1 day–12 years). Childhood-onset epilepsy has been described in 8 patients with first seizures occurring at up to 12 years of age.

A broad spectrum of seizure types is seen in patients with \textit{STXBP1}-E. Most frequently, epileptic spasms occur at some stage during the disease course (65.3\%). Other frequent seizure types are focal seizures (57.9\%) and tonic seizures (41.3\%).

Treatment of seizures is often difficult early in the disease. Fifty-six of 104 (53.8\%) patients for whom this information was available were treated with more than 3 antiepileptic drugs (AEDs) (steroid treatment and ACTH included). At last follow-up, 29 of 101 patients (28.7\%) for whom information was available still had frequent seizures (more than once a week) despite treatment. Forty-six patients out of 105 for whom information was available (43.8\%) nevertheless became seizure-free between the ages of 1 month and 4 years with a median age of 8 months. One patient became seizure-free after corpus callosotomy; in another patient, epilepsy surgery with resection of a focal cortical dysplasia greatly reduced seizure frequency.

For the 40 newly diagnosed patients with epilepsy, different combinations of AEDs led to seizure...
freedom. Although numbers are small, the AEDs most frequently reported to be effective were valproic acid, which led to seizure freedom in 4 patients (patients 4, 9, 32, and 39), levetiracetam in 3 patients (patients 2, 36, and 43), and vigabatrin in 2 patients (patients 28 and 41). In 8 out of 14 patients who became seizure-free, treatment with AEDs eventually could be discontinued. It should be noted that epilepsy relapse after a longer period of seizure freedom has been reported in 6 older patients with STXBP1 mutations.5,12,16

EEG and MRI characteristics. In most patients with STXBP1-E, focal or multifocal epileptic activity on EEG was described (64.1%). A burst-suppression pattern was present at some point in disease history in 42 patients (35.9%) and hypersrrhythmia in 44 patients (40%).

Following the recent description of MRI characteristics in patients with STXBP1-E by García et al.,25 we reviewed all patients for the presence of cerebral atrophy, thin corpus callosum, and an aberrant myelination pattern on brain MRI. Information on MRI was present in 117 patients. Atrophic changes were described in 39 (33.3%) patients and thin corpus callosum or hypomyelination/delayed myelination in 19 patients each (16.2%). In 55 patients (47%), MRI was reported as normal.

Development, behavior, and neurologic features. All patients had some degree of ID, and in 107 out of 121 patients (88.4%) for whom information was available severe to profound ID was reported. In only 1 patient with a de novo p.Asp285Tyr mutation, cognitive impairment was limited to learning difficulties.27 More detailed information regarding development was available for all 45 of our previously unreported patients: of the 28 patients with epilepsy onset after the neonatal period (after 30 days), 18 (64.3%) had preexisting developmental delay (information of early development not available in 1 patient). Out of all 45 unreported patients, 4 showed developmental regression (patients 1, 16, 34, and 37). In one patient (patient 34), regression occurred prior to epilepsy onset. Twenty-one out of 45 patients obtained the ability to walk (some steps) independently, acquiring this skill between the ages of 14 months and 6 years. Two learned to walk and then lost this ability later. Seven patients were able to speak more than a few words, allowing for some degree of verbal communication.

Autism or autistic features have been reported in 25 of the 147 patients reviewed. Fourteen of these patients (31.1% out of 45 patients) were identified in our cohort of previously unreported patients where this feature was specifically addressed in the questionaire. Stereotypies have been described in 31 out of 147 patients. Other behavioral problems mentioned were hyperactivity (n = 6) and acting out or aggressive behavior (n = 5).

Finally, a number of neurologic symptoms have been associated with STXBP1-E, including pyramidal, extrapyramidal, and cerebellar features suggesting involvement of various neurologic systems. The most frequent findings were (axial) hypotonia (n = 39), ataxia or ataxic gait (n = 34), (intentional) tremor (n = 31), spasticity (n = 20), dyskinesia (n = 17), and dystonia (n = 14). Following a recent report of a patient with STXBP1-E and juvenile-onset parkinsonism, we reviewed all new patients for features of parkinsonism.30 We identified 2 adult patients (both aged 20 years; 2/12 patients older than 12 years) with prominent extrapyramidal features; 2 additional patients had only hypomimic facies.

Table 1 and figure 1 provide a summary of the phenotypic features associated with STXBP1-E.

Mutation spectrum and inheritance. Table e-2 provides an overview of all 147 STXBP1 mutations reported to date, accounting for 123 different mutations including 33 previously unreported mutations. Out of 147 mutations, 56 (38.1%) were missense mutations (figure 2), and 91 (61.9%) were truncating mutations including nonsense (n = 21), splice site (n = 24), and frameshift mutations (n = 19), partial and whole gene deletions, and larger microdeletions including STXBP1 (n = 25) (figure e-1). One patient (patient 28 of the new cohort) had a de novo synonymous mutation in an essential splice site, predicted to lead to a loss of the donor splice site (Human Splice Finder), and one patient had a small in-frame deletion. None of the mutations was present in the ExAC database (http://exac.broadinstitute.org/). Forty-one missense mutations were predicted deleterious or possibly/probably damaging by both SIFT and PolyPhen-2, 14 only by SIFT, and 1 was predicted benign by both tools (de novo p.His445Pro mutation in a patient with Dravet syndrome). Out of all mutations, 124 (84.4%) mutations were demonstrated to be de novo. One STXBP1 mutation was inherited from a father carrying a mosaic mutation. Two mutations were absent in the mother and for 20 mutations information on inheritance was not available, including 6 mutations of previously unreported patients. Five of these 6 mutations were truncating and thus considered to be pathogenic. The sixth mutation (patient 25) was a recurrent missense mutation, absent in the mother, and proven to occur de novo in 2 other unrelated patients.

In total, 13 recurrent mutations have been reported, including the missense mutations p.Arg406His in 7 patients and p.Arg551Cys in 4 patients. Seven recurrent mutations occurred at CpG dinucleotides leading to the substitution of an arginine residue.
There was no obvious clustering of mutations in any of the 3 STXBP1 domains (figure 2, figure e-1).

**Genotype-phenotype correlations.** We examined whether truncating mutations are associated with a more severe phenotype than missense mutations, and whether recurrent mutations lead to similar phenotypes. Forty-one of 45 patients with missense mutations for whom information on cognition was available had severe to profound ID (91.1%), compared to 66 out of 76 in patients with truncating mutations (86.8%). Out of the 9 patients without epilepsy, 3 carried missense mutations and 6 carried truncating mutations. In the group of 31 patients who became seizure-free within 1 year after seizure onset, 9 carried missense mutations and 22 truncating mutations. These data suggest that truncating mutations do not necessarily lead to a more severe phenotype. The 7 patients with the most frequent recurrent mutation p.Arg406His all had onset of epilepsy in the first 2.5 months of life with severe to profound ID while the seizure phenotype and cognitive outcome was more variable for the other recurrent mutations including p.Arg292Cys, p.Arg292His, and p.Arg551Cys.

We next performed a statistical analysis of phenotype-genotype relationships (e-Methods and e-Results). No significant correlation was found between mutation type (missense vs truncating) and cognitive outcome (learning difficulties, mild to moderate ID, vs severe to profound ID; $\chi^2$, 2-sided $p = 0.478$) or between mutation type and seizure outcome (seizure-free vs not seizure-free; $\chi^2$, 2-sided $p = 0.127$). There was also no significant difference between the different mutation types regarding age at seizure onset (Mann-Whitney $U$, 2-tailed $p = 0.333$) or age at seizure freedom (Mann-Whitney $U$, 2-tailed $p = 0.225$, figure e-2). Furthermore, there was no significant correlation between seizure outcome and cognitive outcome (Fisher exact, 2-sided $p = 0.486$), and no statistical difference between the groups with learning difficulties, mild or moderate ID, and severe to profound ID with regard to age at seizure onset (Mann-Whitney $U$, 2-tailed $p = 0.393$), age at seizure freedom (Mann-Whitney $U$, 2-tailed $p = 0.603$, figure e-3), and duration of seizures (time between seizure onset and seizure freedom or age at inclusion; Mann-Whitney $U$, 2-tailed $p = 0.809$).

**Frequency of STXBP1-E.** Seven Danish children born between 2001 and 2010 were referred to the Danish Epilepsy Centre and diagnosed with STXBP1-E. None was treated outside the Epilepsy Centre. According to the 10-year Danish birth cohort from 2001 to 2010, the number of live births in Denmark in this period was 643,039. Based on these numbers, we estimated that the frequency of STXBP1-E in the Danish population is at least 1: 91,862.

**DISCUSSION** STXBP1 plays an important role in vesicular docking and fusion, a necessary mechanism for neurotransmitter secretion. An STXBP1 knockout mouse model showed that total disruption of STXBP1 leads to a complete loss of neurotransmitter secretion from synaptic vesicles. STXBP1 knockout mice further showed neurodegeneration after an initially normal brain assembly, indicating that neurotransmitter secretion, and thus functional STXBP1, is important for the maintenance of neuronal synapses. Reduced STXBP1 expression was further shown to

---

**Table 1  Clinical features of STXBP1 encephalopathy**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Frequency/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epilepsy</td>
<td>Approximately 95% of patients</td>
</tr>
<tr>
<td>Most frequent seizure types</td>
<td>Epileptic spasms (65.3%), focal seizures (57.9%), and tonic seizures (41.3%)</td>
</tr>
<tr>
<td>Seizure freedom</td>
<td>Achieved in more than 1 in 3 patients, almost 1 in 3 remain therapy-resistant</td>
</tr>
<tr>
<td>EEG</td>
<td>&gt;60% have focal or multifocal epileptic activity</td>
</tr>
<tr>
<td>Burst suppression</td>
<td>(35.9%) and hypersarrhythmia (40%) are frequent EEG findings</td>
</tr>
<tr>
<td>Intellectual disability</td>
<td>All patients; the majority has severe to profound intellectual disability (88.4%)</td>
</tr>
<tr>
<td>Behavioral problems</td>
<td>Autism or autistic features are seen in almost 1 in 5 patients</td>
</tr>
<tr>
<td>Motor features</td>
<td>Axial hypotonia, ataxia or ataxic gait, (intentional) tremor, spasticity and dyskinesia, or dystonia are frequently seen</td>
</tr>
<tr>
<td>Imaging (brain MRI)</td>
<td>Normal in almost 1/2</td>
</tr>
<tr>
<td>Cerebral atrophy</td>
<td>(33.3%), thin corpus callosum (16.2%), and hypomyelination or delayed myelination (16.2%) are frequent (age related) findings</td>
</tr>
</tbody>
</table>

---

**Figure 1  Spectrum of STXBP1-associated phenotypes**

Epilepsy syndrome classification made as of age at onset of seizures. EME = early myoclonic encephalopathy; EOE = early-onset epilepsy and encephalopathy; ID = intellectual disability; NSE = nonsyndromic epilepsy and intellectual disability; OS = Ohtahara syndrome.
increase synaptic depression at both GABAergic and glutamatergic synapses with a greater impact on GABAergic interneurons. This might result in a net hyperexcitability and epileptic activity in case of \textit{STXBP1} haploinsufficiency.

Over recent years, the phenotypic spectrum of patients with \textit{STXBP1} mutations has expanded. One goal of our study was to assess the phenotypic spectrum of \textit{STXBP1}-E. We found that ID and epilepsy present the 2 major, independent, phenotypic dimensions of \textit{STXBP1}-E. All patients with \textit{STXBP1}-E have some degree of ID, which is severe to profound in almost 90% of patients. Ninety-five percent of patients have epilepsy, although a recruitment bias towards patients with epilepsy might be present in many articles that were reviewed for our study.

Although stagnation of development can be seen at seizure onset, some degree of developmental delay is already present prior to seizure onset in many patients. Regression is rarely seen, and does not always seem to be related to seizure activity. We did not find a relationship between the age at onset or duration of seizures and the degree of intellectual impairment, although the power of our analyses was limited. This reinforces the notion that \textit{STXBP1} plays an important role in many aspects of neurodevelopment and that \textit{STXBP1}-E is not a pure epileptic encephalopathy. A similar, but less evident, observation has been made in other severe genetic epilepsies such as Dravet syndrome. For the purpose of this article, we therefore chose to define EOEE as early-onset epilepsy and encephalopathy, rather than early-onset epileptic encephalopathy.

With regards to the epilepsy phenotype, about one-third of patients present with either Ohtahara or West syndrome. Approximately one-quarter of patients with EOEE or Ohtahara syndrome evolve to West syndrome over time. While most patients do not fulfill precise ILAE criteria for these particular electroclinical syndromes, the majority of the patients with epilepsy have epileptic spasms or tonic seizures at some point in their disease history. Accordingly, this constellation may be considered the core seizure phenotype of \textit{STXBP1}-E. More than one-third of the patients eventually become seizure-free; however, in some patients, epilepsy remains difficult to control.

The main EEG finding is (multi)focal epileptic activity, while burst-suppression or hypsarrhythmia are seen in approximately one-third of patients. MRI of the brain is normal in almost half of the patients. Nevertheless, cortical atrophy, delayed myelination, and thin corpus callosum are recurrent findings. Since MRI features are partially age-dependent, aberrant MRI findings might be underreported because of the young age of some of the patients reported.

Most patients with \textit{STXBP1}-E present with additional neurologic features after infancy besides ID and epilepsy. Autism or autistic features are present in almost 20% of published cases, but might also be underreported due to the focus of most studies on the epilepsy phenotype. The combination of stereotypies, autistic features, and regression in some patients explains the identification of \textit{STXBP1} mutations in a few patients with atypical Rett syndrome. Furthermore, patients with \textit{STXBP1}-E frequently have additional neurologic features, including dyskinesia, dystonia, tremor, (axial) hypotonia, and ataxia, which suggest an impairment of various neurologic systems. Moreover, in our cohort of previously unreported patients, we identified 2 patients with extrapyramidal features at age 20 years. Levodopa-responsive parkinsonism has been described in adult patients with Dravet syndrome. Further studies in adult patients with \textit{STXBP1}-E are warranted to establish the prevalence of parkinsonism at older age, and to study the effect of treatment with levodopa.

Treatment of \textit{STXBP1}-E warrants a multidisciplinary approach, and currently consists of symptomatic treatment of seizures and behavioral and locomotor...
problems with physical therapy and occupational therapy to maximize the developmental potential. A good response of epileptic spasms to vigabatrin has been reported in several studies,7–12,13,19,24,25,37 as has a good effect of valproic acid12,23 and levetiracetam.40,46 The latter is an interesting observation given that levetiracetam acts through modulation of synaptic vesicle release.46–48 However, these beneficial effects are only seen in some selected patients and larger prospective studies are needed to identify the most favorable anti-epileptic treatment regimen for STXBP1-E. Improvement of prognosis on both seizure and cognitive outcome may further come from the development of a targeted disease-modifying treatment. For example, protein–protein interaction inhibition has been suggested as a possible therapeutic strategy in STXBP1 haploinsufficiency.48 Finally, STXBP1 was recently shown to play a role in endothelial granule exocytosis, and a significantly impaired histamine and stimulated von Willebrand Factor secretion was observed in a patient with STXBP1-E.49 Although this was insufficient to result in clinical symptoms, this decrease might be a good biomarker to monitor the effect of future targeted therapies.

Both de novo missense mutations and truncating mutations or deletions can lead to STXBP1-E. In our analyses, we did not find any correlation between mutation type and the presence of seizures, age at seizure onset, or cognitive outcome. Also taking into account the phenotypic variability seen in patients with some of the recurrent de novo mutations, other factors such as genetic background or environmental factors may play a role in defining the eventual phenotype.

Confirming a pathogenic mutation and making a diagnosis of STXBP1-E is not always straightforward. Truncating mutations in STXBP1 are generally considered to be pathogenic. However, different truncating variants have been described in the ExAC database. All are located at the end of the last exon, outside the last domain 2, while all causative STXBP1 truncating mutations are positioned prior to this region (figure e-1). Possibly, the truncating ExAC variants escape nonsense-mediated decay and may lead to a functional protein. Moreover, it remains unclear whether the 6 individuals carrying any of the 4 truncating variants are healthy controls or derived from cohorts with late-onset neuropsychiatric disorders who were recruited for ExAC.

Missense variants can be found in both healthy individuals and patients with STXBP1-E. Four of the 21 STXBP1 missense variants occurring more than once in the ExAC database are predicted deleterious by both SIFT and PolyPhen-2 (figure 2), demonstrating the limitations of in silico prediction tools alone for clinical interpretation of missense variants. On the other hand, one missense mutation, p.His445Pro, identified in a patient with Dravet syndrome, was predicted benign by both SIFT and PolyPhen-2.27 This variant was classified as pathogenic based on its de novo status. Therefore, interpretation of novel STXBP1 missense variants will remain challenging in the absence of segregation data.

In this study, we describe 45 previously unreported patients with STXBP1-E, resulting in a total of 147 reported patients. These numbers suggest that STXBP1 mutations are among the most frequent causative mutations in patients with epilepsy and ID next to genes like SCN1A, CDKL5, MECP2, and KCNQ2. We estimate a frequency of 1:91,862 in a Danish birth cohort, but this number might be an underestimate since STXBP1-E is a heterogeneous condition and some patients may be undiagnosed. We illustrate the phenotypic spectrum of STXBP1-E and hypothesize that STXBP1-E should be considered a complex neurodevelopmental disorder rather than a primary epileptic encephalopathy.

AUTHOR AFFILIATIONS

Neurogenetics Group (H.S., P.D.J., S. Weckhuysen) and the Neurodegenerative Brain Diseases Group (K. Sleegers), Department of Molecular Genetics, VIB, Antwerp; Laboratory of Neurogenetics, Institute Born-Bunge (H.S., K. Sleegers, P.D.J., S. Weckhuysen), and Department of Neurology, Antwerp University Hospital (H.S., P.D.J.), University of Antwerp, Belgium; Danish Epilepsy Centre (M.N., P.U., R.S.M.), Diamantland, Denmark; Departments of Human Genetics (M.H.W.) and Pediatric Neurology (C.E.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Division of Child Neurology (P.A., L.G.), Spedali Civili di Brescia, Italy; Child Neurology and Neurorehabilitation Unit (M.A., G. Casari), Department of Pediatrics, Central Hospital of Bolzano, Italy; Department for Epileptology (H.B., N.M.), Smaira Klinikum ZIR Südwestturyberg, Ravensburg; Klinik für Kinderneurologie und Kinderepidemiologisches Zentrum (I.B.-H.), Sana Kliniken Düsseldorf, Germany; Centre de Génétique Humaine (V.B., M.D., A.D., D.L.), Institut de Pathologie et Généétique, Charleroi (Gosselies), Belgium; Unità Specialistica di Neurologia Pediatrica (M.B.), Presidio Ospedaliero di Cava de’ Tirreni, Salerno, Italy; Institute of Human Genetics (A.C.), Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Germany; Child Neuropsychiatry Unit (G. Cantalupo, L.Z.), Department of Life and Reproduction Sciences, University of Verona; Neuropsychiatric Infantile (G. Capovilla), Dipartimento Materno-Infanfale, Azienda Ospedaliero Carlo Poma, Mantova, Italy; Division of Human Genetics (C.C.), Department of Pediatrics, Inselspital, University of Bern, Switzerland; Servizio di Epileptologia e Neurofisiopatologia Pediatrica, Neurofisiopatologia (R.D.), Fondazione IRCCS Ca’Grande Ospedale Maggiore Policlinico, Milan, Italy; Department of Medical Genetics (M.F., R.F.), Oslo University Hospital; University of Oslo (R.F.), Norway; Division of Clinical Genomics (K.L.H.), Ambray Genetics, Alto Viejo, CA; Institute of Human Genetics (H.O.H., J.R.L.) and Department of Women and Child Health, Hospital for Children and Adolescents (A.M., S.S.), University of Leipzig, Germany; Children’s Hospital Aschaffenburg (J.K.), Am Hausenkopf, Aschaffenburg, Germany; Neuropsychiatric Clinic and Clinic for Neurorehabilitation (G.J.K.), Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Germany; PMU Salzburg (G.J.K.), Austria; Pediatric Neurology Unit and Epilepsy Center “Fatebenefratelli e Oftalmico” Hospital (M.L., A.R., M.V.), Milan, Italy; Department of Child Neurology, Development and Rehabilitation (KER-Zentrum) (O.M.), Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland; Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of...
AUTHOR CONTRIBUTIONS

Hannah Stammerger: drafting/revising the manuscript, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, statistical analysis. Marina Nikanorova: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, contribution of vital reagents/tools/patients. Mary-Jane H. Willemse: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, collection and clinical description of patients. Patrizia Acconci: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data study supervision. Marco Angriman: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval. Hartmut Bauer: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Ira Benkel-Hovenbrueck: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Valérie Benoit: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Maura Budetta: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Antonio Canziani: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Giampaolo Caporilla: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Gianluca Casara: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Marija Derose: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Robertino Dielen: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Annemarie Elbracht: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Corrie E. Erasmus: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, contribution of vital reagents/tools/patients. Tiziana Fontana: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Lucio Giordano: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Jennifer G. Heyne: analysis or interpretation of data, accepts responsibility for conduct of research and final approval: Joerg Klapper: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Gerhard Klinger: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Damien Ledeven: drafting/revising the manuscript, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Monica Lodi: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Olaf M. Mielke: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, contribution of vital reagents/tools/patients. Andreas Merkenschlager: drafting/revising the manuscript, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Nina Michelberger: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Carlo Minetti: drafting/revising the manuscript, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, study supervision. Hilbrit Mühle: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Jens Schäfler: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval. Ina Schanze: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, contribution of vital reagents/tools/patients. Marwan Shinawi: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Kristel Sloepenga: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, statistical analysis. Karolin Steinhövel: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Janna Suttorp: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Anna Tatsch: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Peter Ullfahl: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Ruby van Cobergen: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Héloïse Verdel: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Helene Verhulst: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Karolin Vertes: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Aude Vinet: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Roberta Winter: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Martin Zenker: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Marco Angriman: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Peter De Jonghe: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Martin Zenker: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Leonardo Zuccante: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Peter De Jonghe: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, study supervision, obtaining funding. Ingó Hoffig: drafting/revising the manuscript, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Caspari Strisci: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Italo Strisci: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Mark Wolfs: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Peter Van Cobergen: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Eike P. Möller: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Hansjörg Schuller: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Andreas Tschach: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Madeleine Antin: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Werner Müller: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Hans-Dieter Müller: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Patrizia Acconci: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval, acquisition of data. Giampaolo Caporilla: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Giampaolo Caporilla: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Giampaolo Caporilla: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Giampaolo Caporilla: analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data.
interpolation of data, accepts responsibility for conduct of research and final approval, study supervision. Sarah Weckhuysen: drafting/ revising the manuscript, study concept or design analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data, study supervision.

ACKNOWLEDGMENT

The authors thank the patients and their families; all referring physicians and geneticists for providing detailed genetic and clinical data of their patients; Caroline van Cauwenbergh for advice regarding the statistics; and their neurogenetics group colleagues for advice.

STUDY FUNDING

Supported by the Eurocores program EuroEPINOMICS, the Fund for Scientific Research Flanders (FWO), the International Coordination Action (ICA) grant G0E8614N, and the University of Antwerp (research fund).

DISCLOSURE

H. Stambberg, M. Nikanorova, M. Willemsen, P. Accorsi, M. Angi-
man, H. Baier, I. Benkel-Herrenbrueck, V. Benoit, M. Budetta, A. Cal-
ibe, G. Cantalupo, G. Cantalupo, C. Courage, M. Deprez, A. Destrée, R. Difena,
C. Eramus, M. Fannemel, R. Fier, and L. Giordano report no disclo-
sures relevant to the manuscript. K. Helbig is employed by and receives a salary from Ambry Genetics. Exome sequencing is among its commer-
cial available tests. H. Heyne, J. Klepper, G. Kluger, D. Lederer,
fund). H.S. is PhD fellow of the Fund for Scientific Research Flanders (FWO), the International Coordination Action (ICA) grant G0E8614N, and the University of Antwerp (research fund).

REFERENCES

2. Swanson DA, Steel JM, Valle D. Identification and char-
acterization of the human ortholog of rat STXBP1, a pro-
3. Gerber SH, Rah JC, Min SW, et al. Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Sci-
ence 2008;321:1507–1510.
5. Hamdan FF, Pitton A, Gauthier J, et al. De novo STXBP1 mutations in mental retardation and nonsyndromic epi-
**STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy**

Hannah Stamberger, Marina Nikanorova, Marjolein H. Willemsen, et al.

*Neurology* 2016;86:954-962 Published Online before print February 10, 2016

DOI 10.1212/WNL.0000000000002457

This information is current as of February 10, 2016

<table>
<thead>
<tr>
<th><strong>Updated Information &amp; Services</strong></th>
<th>including high resolution figures, can be found at: <a href="http://www.neurology.org/content/86/10/954.full.html">http://www.neurology.org/content/86/10/954.full.html</a></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Supplementary Material</strong></td>
<td>Supplementary material can be found at: <a href="http://www.neurology.org/content/suppl/2016/02/11/WNL.0000000000002457.DC1.html">http://www.neurology.org/content/suppl/2016/02/11/WNL.0000000000002457.DC1.html</a></td>
</tr>
<tr>
<td><strong>References</strong></td>
<td>This article cites 48 articles, 12 of which you can access for free at: <a href="http://www.neurology.org/content/86/10/954.full.html##ref-list-1">http://www.neurology.org/content/86/10/954.full.html##ref-list-1</a></td>
</tr>
</tbody>
</table>
| **Subspecialty Collections**  | This article, along with others on similar topics, appears in the following collection(s):  
All Epilepsy/Seizures [http://www.neurology.org/cgi/collection/all_epilepsy_seizures](http://www.neurology.org/cgi/collection/all_epilepsy_seizures)  
All Genetics [http://www.neurology.org/cgi/collection/all_genetics](http://www.neurology.org/cgi/collection/all_genetics)  
Autism [http://www.neurology.org/cgi/collection/autism](http://www.neurology.org/cgi/collection/autism)  
Mental retardation [http://www.neurology.org/cgi/collection/mental_retardation](http://www.neurology.org/cgi/collection/mental_retardation) |
| **Permissions & Licensing**   | Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: [http://www.neurology.org/misc/about.xhtml#permissions](http://www.neurology.org/misc/about.xhtml#permissions) |
| **Reprints**                  | Information about ordering reprints can be found online: [http://www.neurology.org/misc/addir.xhtml#reprintsus](http://www.neurology.org/misc/addir.xhtml#reprintsus) |