Modelling the impact of deferring HCV treatment on liver-related complications in HIV coinfected men who have sex with men

Cindy Zahnd¹, Luisa Salazar-Vizcaya¹, Jean-François Dufour², Beat Müllhaupt⁷, Gilles Wandeler¹,³, Roger Kouyos⁴, Janne Estill¹, Barbara Bertisch¹,⁸, Andri Rauch³,⁺,₁, Olivia Keiser¹,⁺, and the Swiss HIV, and the Swiss Hepatitis C Cohort Studies

¹Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; ²Hepatology, University Clinic for Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland; ³Department of Infectious Diseases, University of Dakar, Dakar, Senegal; ⁴Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and Institute of Medical Virology, University of Zurich, Switzerland; ⁵Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Switzerland; ⁶Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital, St-Gallen, Switzerland; ⁷Swiss Hepato-Pancreato-Biliary Center and Department of Gastroenterology and Hepatology, University Hospital Zurich, Switzerland

Background & Aims: Hepatitis C (HCV) is a leading cause of morbidity and mortality in people who live with HIV. In many countries, access to direct acting antiviral agents to treat HCV is restricted to individuals with advanced liver disease (METAVIR stage F3 or F4). Our goal was to estimate the long term impact of deferring HCV treatment for men who have sex with men (MSM) who are coinfected with HIV and often have multiple risk factors for liver disease progression.

Methods: We developed an individual-based model of liver disease progression in HIV/HCV coinfected MSM. We estimated liver-related morbidity and mortality as well as the median time spent with replicating HCV infection when individuals were treated in liver fibrosis stages F0, F1, F2, F3 or F4 on the METAVIR scale.

Results: The percentage of individuals who died of liver-related complications was 2% if treatment was initiated in F0 or F1. It increased to 3% if treatment was deferred until F2, 7% if it was deferred until F3 and 22% if deferred until F4. The median time individuals spent with replicating HCV increased from 5 years if treatment was initiated in F2 to almost 15 years if it was deferred until F4.

Conclusions: Deferring HCV therapy until advanced liver fibrosis is established could increase liver-related morbidity and mortality in HIV/HCV coinfected individuals, and substantially prolong the time individuals spend with a replicating HCV infection.

Keywords: Hepatitis C; HIV; Cirrhosis; Hepatocellular carcinoma; Mathematical model.

Introduction

Liver disease has become a leading cause of mortality in people who live with HIV (PWLH); it is often caused by infection with the Hepatitis C virus (HCV) [1,2]. In high-income countries, about 30% of HIV-positive individuals are coinfected with HCV, though the proportion varies by risk group. As many as 70–90% of HIV-positive intravenous drug users are coinfected with HCV [3]. In the population of HIV-positive men who have sex with men (MSM) [4–6], HCV incidence has increased in recent years. The accelerated fibrosis progression observed in some studies [7–9], and the high incidence of HCV seroconversions and re-infections underscore the need for reliable predictions of the HCV disease burden and of the optimal therapeutic interventions in this population. Successful HCV treatment greatly reduces the risk of decompensated cirrhosis, hepatocellular carcinoma (HCC) and extrahepatic complications, but does not eliminate it [10–15]. Because HIV coinfected individuals have multiple risk factors for liver disease, including drug toxicity and metabolic liver disease, they might be at increased risk to have liver-related complications even after they clear HCV [12,14,16]. We do not know if treatment can be deferred until METAVIR stages ≥F3 without increasing the risk of liver-related complications [17].

For the last decade, the standard of care for people infected with HCV has been treatment with pegylated-interferon-α (PegIFN) plus ribavirin (RBV). This interferon (IFN) -based regimen is challenging to use, especially in HIV coinfected individuals who are at high-risk for serious side effects and have a low probability of cure [18–20]. Recently, new direct acting antivirals (DAAs) have revolutionized the treatment of HCV. These
compounds are very effective, easy to use, and have few contraindications. These are factors that greatly increase the proportion of PWLH eligible for HCV treatment [21–24]. Yet the very high cost of the DAAs represents a major barrier to widespread treatment scale-up and is a matter of debate [25]. Although the European Association for the Study of the Liver (EASL) now recommends that individuals coinfected with HIV are prioritized for treatment regardless of their fibrosis stage [26], reimbursement of HCV therapy is often restricted to individuals with advanced liver fibrosis [17–29].

We set out to estimate the impact of deferring HCV treatment on liver-related complications in HIV coinfected individuals by using a model of liver disease progression and care. Our main outcomes of interest were liver-related morbidity and mortality as well as the time spent with replicating HCV.

Materials and methods

Data sources

We parameterized the model with data from the Swiss HIV Cohort Study (SHCS) and published literature. The SHCS (www.shcs.ch) is a prospective cohort study of PWLH that includes 73% of all diagnosed HIV-infections in Switzerland [30]. Detailed demographic, clinical and laboratory characteristics, HCV genotypes, treatment rates, and estimated duration of HIV infection are collected at baseline and during follow-up visits every six months.

Model structure and inputs

We developed the model using ‘gems’, an R package that enables the creation of multistate models with generalized hazard functions [31,32]. Fig. 1 shows the structure of the model, which is organized in two dimensions: progress of liver disease and cascade of HCV care. We defined the stages of liver disease, from healthy liver to compensated liver cirrhosis (F0–F4) based on the META VIR scoring system. Individuals in META VIR stage F4 could progress to decompensated cirrhosis or HCC. Progression from decompensated cirrhosis to HCC was also possible. At any disease stage, individuals were allowed to progress along the cascade of care: they could be diagnosed, treated, and succeed or fail treatment. Individuals could also spontaneously clear the infection. Death could occur in any state.

We present the model’s input parameters in Supplementary Table 1. Simulated individuals were assigned the following characteristics at time of HCV infection: age, HCV genotype, and META VIR stage (details in Supplementary material). We derived the distribution of these characteristics from the SHCS dataset (Table 1). When we calculated the HCV diagnosis rate, we assumed that individuals were screened annually for HCV antibodies, with a sensitivity that increased from 25% at time of HCV infection to 95% after one year [33], and that elevated liver enzymes would reveal 88% of infections within the first three months of infection [33]. We assumed the progress of liver disease was the same across the META VIR stages, and increased with older age at time of infection with HCV [34]. We assumed that clearing HCV decreased the rate at which fibrosis progressed from F0 to F4 (rate ratio RR = 0.1), from F4 to decompensated cirrhosis (RR = 0.1), and from F4 to HCC (RR = 0.38) [10] (details in Supplementary material). The probability of spontaneously clearing HCV followed a logistic decrease over a year, with an overall probability of 32%. Treatment rates and outcomes differed across scenarios.

We modelled one baseline scenario (“SHCS scenario”) and 5 interventions (“DA A scenarios”). The SHCS scenario was designed to reproduce current practice in the SHCS before second generation DAAs were introduced. Individuals were treated with PegIFN/RBV. Those with chronic HCV genotype 1 infection also received a first generation DAA. We assumed that adding a first generation DAA (telaprevir, boceprevir or faldaprevir) to PegIFN/RBV increased the probability of treatment success in chronic infection (RR = 2.17) [35]. The probability of treatment success followed a logistic decrease from 0.9 at the time of HCV infection to the genotype-dependent probabilities described for chronic HCV two years after (details in Supplementary material). Treatment response rates were lower in people who had compensated cirrhosis than in non-cirrhotic people (RR = 0.74) [36].

In our DAA scenarios, all diagnosed individuals were treated with second generation DAAs; the probability of treatment success differed by HCV genotypes and cirrhosis status (Supplementary Table 1). We modelled five scenarios, in which individuals were treated when they reached META VIR stages F0, F1, F2, F3 or F4.

Model outcomes

The clinical outcomes of the model were cirrhosis, decompensated cirrhosis, HCC, liver-related deaths, and time spent with replicating HCV.

Sensitivity analysis

The uncertainty around the key parameter, the fibrosis progression rate by age at HCV infection (Supplementary Table 1), was taken into account in the main analysis by sampling these parameters from a multivariate normal distribution. To assess the robustness of our main results, we investigated the effect of modifying our assumptions on the following parameters: progression of liver fibrosis between F0 and F4 before and after HCV clearance, and progression from F4 to the outcomes (details in Supplementary material).

The impact of HCV reinfections was assessed by building an alternative model. In this model we assumed that either 5% of the individuals who had cleared an HCV infection were reinfected after a median time of 3.3 years as observed in the SHCS [37], or that 22% were reinfected after a median time of 2.1 years as described by Martin et al. [38]. In these scenarios, reinfected individuals were not retreated in order to obtain an estimate of the “worst-case-scenario”.

Cost calculations

We calculated the cost per 100 HCV infections in our five DAA scenarios by adding the cost of disease stages to the treatment costs. We estimated the mean patient cost by disease stage based on data collected at the University Hospital Zurich, Switzerland. The data included the whole population of HCV infected individuals (not only HIV coinfected). We used the cost of a 12-week course regimen with sofosbuvir + ledipasvir in Switzerland.

Journal of Hepatology 2016 vol. 65 | 26–32

Fig. 1. Model structure. Individuals can progress vertically through the META VIR fibrosis stages (F0 to F4) and the endpoints: decompensated cirrhosis (DC) and hepatocellular carcinoma (HCC). From any of those stages individuals can also progress horizontally along the care cascade and be diagnosed, put onto treatment, fail treatment or be cured. Individuals who clear HCV, either spontaneously or because they succeeded treatment have undetectable HCV. The rates of progression through the META VIR stages depends on several factors including whether the individual has undetectable HCV or not.
Results

The SHCS scenario

This scenario is based on current HCV treatment strategies prior to the availability of second generation DAAs. We estimate that 46% of the simulated HIV/HCV infected individuals developed liver cirrhosis over their lifetime, 11% experienced decompensated cirrhosis and 17% HCC (Fig. 2). Of the simulated individuals, 27% died of liver-related causes, and 0.8% died of liver-related complications after they cleared HCV.

The second generation DAAs scenarios

The effect of deferring HCV treatment until later stages of liver fibrosis is shown in Fig. 3A. The percentage of simulated individuals who died of liver-related complications was 2% if treatment was initiated in F0 or in F1. It rose to 3% if treatment was deferred until F2, 7% if deferred until F3, and 22% if deferred until F4.

Less than 1% died after clearing HCV if they were treated as they reached F0 or F1. This percentage increased to 2% if treatment was deferred until F2, 6% if it was deferred until F3, and 17% if it was deferred until F4 (Fig. 3B). A large proportion of liver-related deaths occurred in individuals without replicating HCV if treatment was deferred until advanced fibrosis or cirrhosis as the model assumed that SVR substantially reduces the risk of liver disease progression but does not eliminate it [10-15]. The median time spent with replicating HCV increased from 5 years if treatment was initiated in F2 to almost 15 years if treatment was deferred until F4 (Fig. 4). The percentages of individuals who died from liver-related complications depending on the follow-up time since HCV infection are shown in Supplementary Table 2.

Sensitivity analysis

Supplementary Fig. 1 shows the impact of varying the key input parameters on the percentage of individuals who die of liver-related complications. Our base analysis is the one described above (all 5 DAA scenarios). Results are described in the appendix. The claim that early treatment can prevent liver-related deaths was true in most analyses, unless we assumed an extremely high rate of fibrosis progression (Supplementary Fig. 1E), or that liver disease never progressed after HCV was cleared (Supplementary Fig. 1B).

Supplementary Figs. 2 and 3 show the impact of HCV reinfections. Assuming that 9% of the individuals who cleared HCV infection were reinfected [37], the difference in the proportion of liver-related deaths between the different scenarios was lower compared to the base scenarios. The percentage of individuals who died of liver-related complications was 7% if individuals were treated in METAVIR stage F0 or F1 and 8% if they were treated in F2. It increased to 12% if treatment was deferred until F3 and to 26% if it was deferred until F4. When we assumed that 22% experienced a reinfection as observed by Martin et al. [38], the percentage of individuals who died of liver-related complications was 15% if individuals were treated in F0, F1 or F2. It increased to 18% if treatment was deferred until F3 and to 30% if it was deferred until F4.

Table 1. Characteristics at HCV diagnosis.

<table>
<thead>
<tr>
<th>Characteristic at HCV diagnosis</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age in years (IQR)</td>
<td>34 (21-47)</td>
<td>SHCS data</td>
</tr>
<tr>
<td>Duration of HIV infection in years (%)</td>
<td>SHCS data</td>
<td></td>
</tr>
<tr>
<td>≤5</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>6-10</td>
<td>26.2</td>
<td></td>
</tr>
<tr>
<td>11-15</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>16-20</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>>20</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Median CD4 cells/μl (IQR)</td>
<td>459 (320-649)</td>
<td>SHCS data</td>
</tr>
<tr>
<td>With suppressed HIV RNA (%)</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>HCV genotype (%)</td>
<td>66.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>METAVIR stage at HCV infection (%)</td>
<td>Simulated using duration of HIV infection and RR of liver fibrosis progression (see appendix for details)</td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>85.9</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

1 Modelled with a Weibull probability density function of the form \(f(x) = \frac{\frac{\kappa}{\lambda}}{\Gamma\left(\frac{1}{\kappa}\right)} \cdot \left(\frac{x}{\lambda}\right)^{\kappa-1} e^{-\left(\frac{x}{\lambda}\right)^{\kappa}} \) with \(\kappa = 4.23 \) and \(\lambda = 40.22 \).

2 Not used in the model.

SHCS, Swiss HIV Cohort Study; IQR, Interquartile range.

Fig. 2. The SHCS (Swiss HIV cohort study) scenario. (A) Cumulative incidence of any METAVIR fibrosis stages (F0-F4), decompensated cirrhosis (DC) and hepatocellular carcinoma (HCC) over time. (B) Percentage of individuals who experience F4, DC, HCC over their lifetime or die of liver-related complications.
Discussion

Principal findings

Over a lifetime, deferring HCV treatment until advanced liver disease stages is likely to substantially increase liver-related complications, increase the time individuals spend with replicating HCV, and may not save money.

In many settings, cost considerations and related limitations in reimbursement by health insurances have led the authorities to recommend that HCV treatment be deferred until METAVIR stage F3 or more. Our model showed that in HIV positive MSM, initiating HCV therapy in METAVIR stage F2 instead of deferring treatment until stage F3 or F4 could prevent 4–19 liver-related deaths per 100 HCV infections. In the scenario where all diagnosed individuals are treated with DAAs in METAVIR stages F3 or F4, most liver-related deaths were caused by liver disease progression after HCV clearance, rather than because of treatment failure or a lack of diagnosis. Thus, if treatment is deferred until advanced fibrosis or cirrhosis has developed, most liver-related deaths will occur after HCV is cleared. HCV clearance is often associated with fibrosis regression, but liver fibrosis may progress in some individuals after HCV clearance [10,12,16,17,39–42]. Accordingly, deferring treatment until advanced fibrosis increased liver-related morbidity and mortality in all scenarios except when we assumed that liver fibrosis never progressed after SVR, or in a scenario with an extremely fast fibrosis progression. This is plausible since many risk factors associated with fibrogenesis, including drug toxicity, alcohol use, coinfections or metabolic liver disease, persist after cure. HCC can occur in those with cirrhotic livers even after they clear HCV [10]. Reinfections have been observed in up to 22% of patients following spontaneous or treatment-induced HCV clearance [38]. As expected, the benefit of treating individuals earlier was partially offset through reinfections and the proportion of patients who experienced liver-related events was higher if reinfections were considered (Supplementary Figs. 2 and 3). However, even in a worst-case-scenario assuming a very high reinfection rate and no retreatment, treating earlier reduced liver-related complications. We show that initiating HCV therapy in F2, instead of F3 or F4, reduced the time individuals spent with replicating HCV by 47–64% as compared to when therapy is started in F1. Initiating therapy in F1, instead of waiting until F3 or F4 reduced the median time spent with replicating HCV by 85–90%. Early treatment reduced the median time with replicating HCV even in our worst-case-scenario where reinfected individuals were not retreated. This may decrease the risk of further HCV transmission in those with high-risk behavior. This is particularly important for HIV-positive MSM since this population is in the midst of an increase in HCV transmissions. Earlier initiation of treatment could be a valuable preventive strategy, akin to the concept of treatment-as-prevention in HIV, which was established as a very effective measure to reduce HIV transmissions [43]. A recent study in the SHCS found that increased treatment uptake and efficacy can reduce the proportion of individuals with replicating HCV infection [37].

Our cost calculations suggest that, despite the very high cost of treatment, early treatment might not increase total spending,
Research Article

since the increase in treatment cost is balanced by the savings in health care costs. This is assuming that prices of DAA therapy do not decrease in the coming years.

Comparison with other studies

Three other studies modelled the effect of timing of HCV therapy. The first investigated the effect of deferring HCV therapy in HCV genotype 1 monoinfected individuals [44]. Researchers compared the cost-effectiveness of initiating therapy in different stages of liver disease and found it did not have much impact on the life expectancy. The second study examined the cost-effectiveness of early HCV treatment for individuals with HCV mono-infection and concluded that treating those with moderate or advanced fibrosis was cost-effective; the cost-effectiveness of treating those with minimal or no fibrosis depended on the cost of treatment [45]. The third study estimated the quality-adjusted life-years (QALY) for a 40 years old patient to increase from 23.9 if treatment was started in F4 to 33.7 if treatment started in F0 assuming and SVR rate of 90% [46]. These studies considered only cohorts of HCV mono-infected individuals. The first study assumed that successful HCV treatment would eliminate further risk of liver disease progression, the second and the third studies assumed that only individuals treated in F4 were still at risk of liver disease progression after HCV clearance. In contrast, our model assumes that liver fibrosis progresses in some individuals [13,14,16,40], which led to an increase in liver-related events if therapy was deferred until F3.

Of note, a recent cost-effectiveness analysis among HIV/HCV coinfected patients suggested that IFN-free regimens will be cost-effective if treatment costs were below 109'000 USD, which is now the case in many settings [47]. For the Swiss setting, a recent study suggested that DAA-based therapies were cost-effective even at current prices if a threshold of 100,000 CHF per QALY was assumed [48]. Another study published in 2015 demonstrated that cost-effectiveness is highly sensitive to drug prices and that treating patients in F0 would be cost-effective if treatment costs were below 50'000 USD [49]. A recent study [50] showed that the life expectancy of HCV mono-infected individuals who had been successfully treated in an advanced liver disease stage was comparable to that of the general population. The apparent inconsistency between this finding and our results can be explained by the differences between the cohorts, including different patient characteristics and very different follow-up times. The median follow-up time in that study was 8.4 years, while we make predictions over a lifetime. In fact, when we simulated a cohort of individuals cured in an advanced stage of the disease, our model predicted a very low percentage (1.2%) of liver-related deaths after 8.4 years of follow-up (see Supplementary material). A recent meta-analysis [10] estimated a 5-year risk of HCC after SVR of 2.9% in the overall population, and 5.3% among cirrhotic individuals.

Strengths and limitations

Our study was strengthened by our access to observed data from a large and nationally representative cohort of PWLH. Data were collected prospectively during regular follow-up visits and include detailed demographic, clinical and laboratory data on HIV and HCV infections. The individual-based design of our model enabled us to exploit this detailed information. The use of the R package ‘gems’ allowed us to model time-dependant transition rates for spontaneous HCV clearance and treatment success. The very flexible structure of the model also allowed us to adapt parameters quickly as new data became available.

Our study also has several limitations. First, we derived some input parameters from the literature, which implies heterogeneity in both data collection and reporting. Second, the results apply primarily to HIV-positive MSM and might not be generalizable to HIV-positive people who acquired HCV through injecting drug use with different demographic and clinical characteristics. Third, disease-costs for each fibrosis stage were calculated as total health care costs excluding treatment as described before [51]. As these costs include potential costs due to IFN-related side effects, the disease stage costs could overestimate the true costs in the interferon-free DAA era. Fourth, cost calculations are highly dependent on the future developments in DAA prices and differ substantially between countries and recommended regimens. Therefore, cost estimates from this study might not be applicable to other settings. Fifth, the costs averted by preventing complications after secondary HCV infections was not considered, leading to an underestimation of the benefit of early treatment on costs. Sixth, we did not explicitly model that, after cure, liver fibrosis regresses in some individuals while it progresses in others [12,39–41]. We instead used an average between individuals who continue to have liver fibrosis progression, those who remain stable, and those who regress their fibrosis, corresponding to a tenfold reduction in fibrosis progression after HCV clearance. Given published data on liver disease progression in both HIV-monoinfected individuals, as well as in HIV/HCV coinfected individuals after SVR, this is a conservative estimate of the risk of liver disease progression after HCV clearance. Seventh, we did not consider possible discrepancies between the measured and the real stage of liver disease, though we are aware that non-invasive diagnostic tools are not ideal predictors of liver fibrosis [52]. People classified as F3 could already be cirrhotic, but this is only an additional argument against deferring HCV therapy. Eighth, in the SHCS scenario, we did not model explicitly the side effects of IFN-based treatment. However, to some extent this was accounted for by the lower cure rates in the SHCS if side effects were present. Ninth, the impact of resistant variants emerging after relapse on the effectiveness of DAA therapies could not be investigated with the present model.

Implications of findings

Deferring HCV therapy until advanced liver fibrosis is established may increase the percentage of liver-related complications in people who have multiple risk factors for liver disease progression, such as HIV coinfected MSM. Our model predicts that the time individuals spend with replicating HCV can be greatly shortened by early treatment. This may decrease further HCV transmissions in those with high-risk behavior. Both findings support arguments that HCV therapy should be accessible to everyone at an early stage. To make this affordable for health insurances and governments, the costs for DAA drugs need to be lowered substantially. Our findings support current recommendations to start HCV treatment irrespective of fibrosis stage in those with risk factors for accelerated fibrosis progression including HIV coinfected MSM, and in persons at elevated risk of HCV transmission [26].
Financial support

This study has been financed within the framework of the Swiss HIV and Hepatitis C Cohort Studies, supported by the Swiss National Science Foundation (SNF grant #148522, #146143 and #148417). Additional funding for this study came from Cancer Research Switzerland (grant #2938-02-2012) and IeDEA Southern Africa (grant #U01AI069924). The funders had no role in study design, data collection, data analysis, data interpretation, writing of the report, and in the decision to submit the article for publication. All authors declare that they are independent from their funders. All authors had full access to all of the data in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of interest

AR reports honoraria for advisory boards and/or travel grants from Janssen-Cilag, MSD, Gilead Sciences, Abbvie, and Bristol-Myers Squibb, and an unrestricted research grant from Gilead Sciences, all remuneration went to his home institution and not to AR personally, and all remuneration was provided outside the submitted work. BM reports grants and personal fees from Gilead, personal fees from Abbvie, personal fees from BMS, personal fees from Roche, personal fees from MSD, personal fees from Janssen, personal fees from Boehringer Ingelheim, outside the submitted work. OK and BB received an unrestricted grant from Gilead outside the submitted work. JE, JFD and GW have nothing to disclose. There are no other relationships or activities that could appear to have influenced the submitted work.

Authors’ contributions

CZ, JE, AR and OK designed the study. CZ and LS formulated the model. CZ, RK and GW analysed the cohort data. CZ performed the model analyses. BB, JFD, BM contributed cohort data and enrolled patients. All authors contributed to the interpretation of the data and results. CZ, AR and OK drafted the manuscript, which was then revised by all the other authors. CZ is the guarantor.

Acknowledgements

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jhep.2016.02.030.

References

Research Article

