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Abstract: We describe and test a nonperturbatively improved single-plaquette lattice

action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of

the plaquette, without requiring the naive continuum limit for smooth fields. We tune

the action parameters based on torelon masses in moderate cubic physical volumes, and

investigate the size of cut-off effects in other physical quantities, including torelon masses

in asymmetric spatial volumes, the static quark potential, and gradient flow observables.

In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic

reduction of cut-off effects, down to the permille level, in a wide variety of physical quan-

tities. In the gauge theories, we find significant reduction of lattice artifacts, and for some

observables, the coarsest lattice result is very close to the continuum value. We estimate

an improvement factor of 40 compared to using the Wilson gauge action to achieve the

same statistical accuracy and suppression of cut-off effects.
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1 Introduction

Cut-off effects are a major source of systematic errors in lattice QCD calculations. Im-

proved lattice actions are valuable for obtaining reliable continuum results, but usually

imply an increased numerical effort. The Symanzik improvement program is a systematic

method to eliminate cut-off effects, order by order in the lattice spacing a, by including

additional operators in the lattice action, beyond the standard plaquette term [1–4]. These

operators, which have a larger space-time extent than the standard term, lead to greater

numerical cost in Monte Carlo simulations. The coefficients of the additional operators

can be fixed either perturbatively, by expanding the lattice operators in continuum opera-

tors of increasing dimension, or nonperturbatively by adjusting them to satisfy continuum

physics constraints. A more radical improvement strategy underlies the perfect action

approach, which attempts to eliminate cut-off effects to all orders of a, at least at the

classical level [5–9]. The classically perfect fixed point action, which is located on the crit-

ical surface at the end of a renormalized trajectory, is very complicated. Still, it can be

parametrized to high accuracy with a relatively large number of terms, which is thus costly.

The parametrized fixed point action is then used for numerical simulations of the quantum

theory away from the critical surface. This has led to a substantial reduction of cut-off

effects in a variety of asymptotically free field theories, ranging from the 2-d O(3) model

to QCD. A different approach uses mixed fundamental-adjoint actions to reduce cut-off

effects without extending the space-time extent of the operators beyond a single plaquette,

and thus with only a moderate increase of the computational cost [10–13]. In [14, 15] the
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cut-off effects were studied using a modified single-plaquette gauge action proposed in [16]

for theoretical purposes.

2-d O(N) models share several features, including asymptotic freedom and a nonper-

turbatively generated mass gap, with 4-d non-Abelian gauge theories. Hence, they serve as

a good testing ground for lattice improvement studies. Interestingly, in contrast to what

Symanzik improvement suggests, the cut-off effects in the 2-d O(3) model appeared to be

O(a) instead of O(a2) [17, 18]. A careful analysis of this apparent contradiction verified the

Symanzik O(a2) prediction, but showed that easily accessible lattice spacings are affected

by large logarithmic corrections, which mimic O(a) behavior [19, 20]. Recently, different

lattice actions have been studied with the goal to improve the cut-off effects [21]. In ad-

dition to the standard action, this study used a topological action [22], which constrains

the maximal angle between neighboring spins and is therefore invariant under small field

deformations. Although it does not have the correct naive continuum limit and it violates

the Schwarz inequality between the action and the topological charge, it still yields the

correct quantum continuum limit [21]. Combining this action with the standard action one

gets an improved constrained action, which eliminates the lattice spacing effects almost

entirely. Using this improved action, it was possible to study the θ-vacuum angle in the

2-d O(3) model, which turned out to be a relevant parameter of the theory that does not

get renormalized non-perturbatively. For the first time, this numerically confirmed the

conjectured exact S-matrix results at θ = π [23] beyond any reasonable doubt. This also

confirmed the existence of a conformal fixed point at θ = π, where the model reduces to the

WZNW model at low energies. This study has also been a basis for further investigations

to demonstrate walking near the conformal fixed point close to θ ≈ π [24]. The essential

features of walking technicolor models are shared by this toy model and can be accurately

investigated by numerical simulations. Optimized lattice actions have also been studied

intensively in [25] for 2-d O(N) models, where it has been shown that cut-off effects can

be reduced to the per mille level. A topological lattice action has also been used in a

recent study of 4-d U(1) gauge theory, to demonstrate that the correct continuum limit

is obtained, to examine the effect of the lattice action on monopole condensation in the

confined phase, and to test a method to measure the free energy [26].

In this work, we apply a similar strategy to non-Abelian gauge theories. Our approach

is different from Symanzik’s improvement program [1], where one adds operators with

higher dimensions to the standard action to eliminate the leading cut-off effects. The

Symanzik improved action is perturbative, even if the coefficients are determined non-

perturbatively. The experience with the O(N) non-linear sigma model suggests that at

moderate lattice spacing used in the numerical simulations the main cause of the cut-off

effects are the large local fluctuations of the action density. A truly non-perturbative action,

like the topological action or the constrained action with negative β performs surprisingly

well in that case. With one extra parameter (and a “cheap” action) one can reach a strong

suppression of cut-off effects.

For the SU(2) and SU(3) pure gauge theory here we study a slight modification of

the constrained action. We found that the improved action decreases the cut-off effects of

many quantities including torelon masses on asymmetric lattices, the static potential, and

– 2 –
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observables related to the gradient flow of the gauge fields. We choose a gauge action form

which could possibly be included in simulations of gauge theories with dynamical fermions.

Our approach differs from those used in [13] and [14, 15] in two aspects. Our set

of single-plaquette actions considered is broader — it includes the possibility β ≤ 0 (see

below). In other words, we do not restrict ourselves to actions having a naive continuum

limit, hence we can optimize the action on coarser lattices as well. Secondly, we use the

torelon masses in small boxes to optimize the action — these are much easier to measure

than the string tension σ or the temperature of the deconfinement phase transition Tc.

This paper is organized as follows. In section 2 we discuss the parametrization of

the improved action, the procedure for optimization of the action parameters, and some

basic properties of torelon states. Section 3 shows our simulation results for SU(2) gauge

theory, where we describe the tuning of the action parameters and the reduction of lattice

artifacts for torelons on asymmetric spatial volumes and for the static quark potential. In

section 4 we present similar findings for SU(3) gauge theory, as well as a study of the cut-off

dependence of observables obtained from the gradient flow of the gauge fields. Section 5

details what algorithms we use and the numerical cost of Monte Carlo simulations with

this novel action. We finish with our conclusions in section 6.

2 Determination of the parameters of the action

Consider the constrained action for pure Yang-Mills theory with the action density associ-

ated with the plaquette

Sp =

{
βw , for w < δ ,

∞ , otherwise .
(2.1)

Here w = 1− 1
N TrUp, where Up is the standard plaquette matrix, and plaquette values larger

than the constraint δ are prohibited. Keeping in mind that the gauge action could be used

in Hybrid Monte Carlo simulations, we have chosen a smooth version of the constrained

action with

Sp = βw + γwq . (2.2)

For large power q this has the same effect as the constrained action with δ ≈ γ−1/q. In our

simulations we used a fixed value of the power, q = 10. We have utilized two simulation

algorithms: the standard Metropolis method, and a pseudo-heatbath update followed by an

accept/reject step.1 More details of the algorithms and their numerical costs are given in

section 5. To reduce the cut-off effects one can choose two appropriate physical quantities.

One of them is used to set the lattice spacing a, the other to estimate the size of the cut-off

effects at the given resolution. For the 2-d O(N) spin model these were [25] the mass gap

measured on a long strip with spatial sizes L and 2L (cf. step scaling function, [27]).

For the gauge theory we considered the energy gap between the vacuum state and

states with given electric flux wrapping around the periodic spatial directions [28], in short

the “torelon masses”. The two quantities used for optimizing the action were the torelon

1When using the standard Metropolis update, we could have chosen the constrained action as well.
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Figure 1. Histograms of the plaquette variable w for the Wilson action and the improved action

in the SU(2) and SU(3) case. The vertical lines show the corresponding effective cut γ−1/q. The

distributions were generated from simulations on (L′/a)4 = 104 volumes, where the lattice spacing

was set to its coarsest value, defined by L/a = 4 and m100(L)L = 1.375 and 1 for SU(2) and SU(3)

respectively.

masses m100(L) and m110(L) in an L3 spatial box, corresponding to fluxes wrapping around

along an axis and along a diagonal. Our procedure was the following. Taking first a lattice

of size L3 × Lt we determined a line β = β(γ) along which u100(L) ≡ m100(L)L = u? is

fixed. (For SU(2) we took u? = 1.375, while for SU(3) u? = 1.0.) Note that β(γ) is a

decreasing function, and at some γ it becomes negative. It is important that we do not

restrict ourselves to the β > 0 region.2 The distributions of the plaquette variable w for

the standard Wilson action and for the improved action at the same lattice spacing are

shown in figure 1, where the lattice spacing is measured in units of the torelon mass. The

corresponding bare couplings are listed in tables 1 and 2. For comparison with a more

familiar quantity, namely the temperature of the deconfinement phase transition, at these

bare couplings the Wilson action lattice spacing corresponds to aTc ∼ 1/4 for both SU(2)

and SU(3) gauge theory.

The optimization of the action is done by moving along the β(γ) line to minimize the

deviation of u110(L) ≡ m110(L)L from its continuum limit. The latter was obtained by

measuring the corresponding torelon masses at the same physical point u100(L) = u? and

finer resolutions with the Wilson action and extrapolating to a/L = 0. This way one obtains

the pair of couplings (β, γ) which are optimal for this resolution (and the given choice of

observables). One could proceed further on lattices with larger L/a, similarly to the case

of the O(N) spin model. Instead, we have chosen a less ambitious optimization: for finer

resolutions we kept the same γ as obtained on the coarse lattice L/a = 4, and tuned only

β to obtain u100(L) = u? for L/a = 6 and 8. Then using these pairs of couplings (β(a), γ)

we measured different quantities, like torelon masses on spatial lattices of different shapes,

the static qq potential, and observables related to the gradient flow of the gauge fields.

It is worth to discuss briefly our choice of the basic physical quantity used for optimiza-

tion. The torelon is an excitation characterized by an electric flux wrapping through the

2The negative β values are needed to compensate the absence of coarse plaquettes. To reach the given

lattice spacing one needs to suppress simultaneously the very smooth plaquettes as well.
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torus L1×L2×L3×∞ in one (or several) periodic spatial directions. The Hilbert space of

the transfer matrix is split into sectors characterized by quantum numbers k = (k1, k2, k3),

where ki = 0, . . . , N−1 for SU(N). In particular, the value k1 describes the transformation

property of the corresponding state (the wave function in the strong-coupling basis) with

respect to the multiplication by z = exp(2πi/N) of links U1(x1, x2, x3, t) at some plane

with a given fixed x1. Such a state can be created from a state in the vacuum sector

k = (0, 0, 0) by multiplying it by a product of traces of Polyakov loops, or by the trace

of a single Polyakov type loop wrapping around (k1, k2, k3) times the spatial volume. We

denote the trace of the Polyakov loop Φi in the direction i on time slice t by3

φi(t) = Tr Φi(t) , i = 1, 2, 3 , (2.3)

and

φk(t) = φ1(t)
k1φ2(t)

k2φ3(t)
k3 , ki = 0, . . . , N − 1 . (2.4)

With this the torelon mass mk = mk(L1, L2, L3) is obtained from the exponential fall-off

of the correlation function

〈φk(0)φ†k(t)〉 ∼ A exp(−mkt) . (2.5)

The torelon mass (more precisely the energy difference between the lowest state in the

sector characterized by electric flux k and the vacuum state) has a special dependence on

the size and shape of the 3-volume. For small volumes L� 1/Tc it is extremely small (it is

given by a tunneling through a high barrier [29]). In this case the flux is completely spread

in the transverse direction. In a cubic 3-volume L3 with increasing L the flux assumes a

finite width (“flux tube”) while its energy increases as m100(L) ∼ σL, where σ is the string

tension. There is a relatively sharp transition between these two regimes, and we have

chosen our physical lattice sizes (i.e. the value of u?) to be roughly in this region.

For asymmetric volumes m100(L1, L2, L3) increases with L1, and decreases with in-

creasing transverse sizes L2, L3. For L1 = 1/Tc, L2 = L3 = ∞ the system undergoes

a phase transition. We work here, however, in volumes where all spatial sizes Li are of

O (1/Tc), hence the observables are smooth functions of β.

3 The SU(2) case

On a cubic spatial volume L3 we define the fixed physical volume via the dimensionless

combination m100L ≡ u100(L) = u? = 1.375 i.e. the lattice size is measured in torelon mass

units. At the chosen u? value we measured the diagonal torelon state u110(L) on cubic

spatial lattices of size L/a = 4, 6, 8, 10 using the Wilson action. The temporal extent Lt

was chosen to be either 10L or 20L, the former corresponding to free boundary conditions

in the time direction and the latter to periodic boundary conditions in the time direction.

The advantage of free boundary conditions is that one can use a smaller lattice volume,

with the drawback that time-like correlators can only be measured sufficiently far way from

3Suppressing the coordinates in the transverse direction.

– 5 –



J
H
E
P
0
3
(
2
0
1
6
)
1
1
6

the ends. We used both setups to cross-check that they give consistent determinations of

the torelon mass. The extrapolation to the continuum limit using a linear fit in a2 gave

u110(L) = 2.888(5) (cf. figure 2).

To optimize the couplings in eq. (2.2) we tried first the choice q = 2 on a 43×80 lattice,

but a more significant improvement of the cut-off effect has been found by increasing the

power, and for the rest of our simulations we took q = 10. Increasing γ from the standard

action case (γ = 0) helps to decrease the cut-off effect for u110(L). We went up with this

until γ = 52, corresponding to an effective cut δ = γ−1/q = 0.67 for w. At L/a = 4 and

γ = 52 the condition

u100(L) ≡ m100(L)L = u? (3.1)

yields β = −2.4811 (cf. table 1). Increasing γ further — i.e. decreasing the effective

constraint δ — lowers β, and the action density becomes restricted practically to a narrow

region for w closely below δ. This would slow down significantly the effectiveness of the

Monte Carlo simulations. We repeated the procedure for the improved action on L/a = 6

and 8, holding q = 10 and γ = 52 fixed.

The u110 torelon masses measured using the standard Wilson action and separately the

improved action are plotted in figure 2, together with the extrapolations to the continuum

limit. The couplings of the actions are given in table 1, where we include an extrapolation

from simulations to the chosen value of the physical point u100(L) = u? = 1.375. For the

error propagation we used du110(L)/du100(L) ≈ 1.8, measured by repeating the simulation4

at slightly different β.

In contrast to the situation with the O(N) non-linear sigma model, for the SU(N)

case we could not completely eliminate the cut-off effects for the chosen pair of physical

quantities, u100(L) and u110(L), on the coarsest L/a = 4 lattice using the single-plaquette

improved action with only one tunable parameter. However, the improved action signifi-

cantly reduces the cut-off effect at L/a = 4 down to 1%, compared to 6% for the Wilson

action, and by L/a = 6 the improved action result is essentially compatible with the con-

tinuum value. For both actions, the lattice artifacts appear to be O(a2) and we make our

continuum extrapolations assuming quadratic dependence on the lattice spacing. We see

very good agreement between the extrapolated values for the two lattice actions. We could

make a more accurate determination for the continuum value of u110(L) with a constrained

fit of Wilson and improved action data which demands that they have a common contin-

uum limit, but that would not serve our purpose here to check for consistency between the

two independent sets of simulations.

3.1 Scaling tests

Once the parameters of the action have been set as described above, we can proceed to

examine the cut-off dependence of other physical quantities, to see what improvement the

new action delivers. We start with a discussion of torelon masses measured on asymmetric

spatial volumes.

4The derivative ∂uk/∂β can also be obtained at the given β by measuring an appropriate correlation

function. We used this method in a few cases.
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Figure 2. Cut-off effects of u110(L) on cubic lattices L3 for the Wilson action and the improved

action at u100(L) = 1.375 for SU(2).

L/a β γ u100(L) u110(L) u?110(L) a[fm]

4 2.29342 0. 1.3746(8) 2.7148(71) 2.7154(72) 0.175

6 2.42660 0. 1.3754(4) 2.8100(23) 2.8093(24) 0.112

8 2.51350 0. 1.3756(7) 2.8450(44) 2.8438(46) 0.082

10 2.58220 0. 1.3769(13) 2.8667(58) 2.8633(63) 0.064

4 −2.4811 52. 1.3737(16) 2.8544(81) 2.8568(85)

6 −1.3720 52. 1.3735(19) 2.8670(89) 2.8697(95)

8 −0.7770 52. 1.3730(13) 2.8683(46) 2.8719(51)

Table 1. Parameters of the SU(2) action and u100(L), u110(L) on cubic lattices at different lattice

spacings, for the Wilson and the improved actions. The column u?110(L) is the value extrapolated

to u100(L) = 1.375. For reference we include for the Wilson action the value of the lattice spacing

as set via the string tension with
√
σ = 420 MeV [30].

We have measured the torelon masses on asymmetric spatial lattices both for the im-

proved action and the standard Wilson action. Note that this is a completely independent

set of lattice simulations from the ones which were used to tune the action parameters.

We have considered shapes of type (L,L, 3L/2), (L, 3L/2, 3L/2), (L,L, 2L) and (L, 2L, 2L),

with the shorthand notation (LLr), (Lrr), (LLR) and (LRR) in the plots and text. The

corresponding results are shown in figures 3–5 for torelons which wrap around either one

or two of the short spatial directions. One could also try to detect lattice artifacts in the

heavier states such as the u111 torelon in symmetric and asymmetric spatial volumes, but

we found these masses could not be extracted with sufficient accuracy to be useful for

comparison of cut-off dependence.

Let us first examine the u100 states. As discussed earlier, the torelon wrapping around

the shortest distance gets lighter as the transverse spatial directions increase in size. For

example the u100(LRR) state is 2.5 times lighter than u100(L) = 1.375. This makes their

determination from the exponential decay of Polyakov loop correlators somewhat easier, as

the signal persists for larger time separation. We see that both for the improved and the
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Figure 3. The u100 torelon mass for SU(2) measured on spatial volumes (left) (L,L, 3L/2) and

(right) (L,L, 2L).

Wilson actions the lattice artifacts again appear to be O(a2). Once extrapolated to the

continuum, there is very good agreement between the two sets of simulations, except for

some possible tension for u100(LRR). Note that there is no tuning done at this stage: the

bare couplings β and γ have been fixed by requiring u100(L) = u? = 1.375. The improved

action has consistently smaller lattice artifacts than the Wilson action, and on the coarsest

lattice L/a = 4, the cut-off dependence in e.g. the u100(LRR) is reduced from ∼ 25% with

the Wilson action to ∼ 4% for the improved action.

We next discuss the u110 states. An interesting empirical observation is that, while

the u100 masses approach the continuum limit from above, the u110 masses approach it

from below. Unfortunately, the statistical precision is not good enough to make a strong

statement about reduced artifacts with the new action at finite lattice spacing. It is im-

portant however that we find consistency in the continuum results between the Wilson and

improved action simulations, which are both determined with better than 1% precision.

Given that our tuning of the action parameters used u100(LLL) and u110(LLL), both

measured on cubic L3 spatial volumes, one of the limitations was the reduced statistical

accuracy of the heavier u110 state. An alternative strategy would be to fix the optimal

couplings by choosing the pair u100(LLL) and u100(Lrr), the second state having a lighter

mass and hence being easier to measure. However there is the drawback that one needs

two full sets of simulations on both symmetric and asymmetric spatial lattices to complete

the tuning.5 We pursued this approach and found the results were similar: with the new

lattice action we could not completely eliminate the cut-off dependence on the coarsest

L/a = 4 lattice. Hence we do not show these results here.

At this point it is interesting to note that the SU(2) case is special. Considering

a large spatial volume L3, the flux tubes going along the diagonal directions, say along

(1, 1, 0) and (1,−1, 0) are obviously two different states. However, they belong to the same

sector k = (1, 1, 0) in the SU(2) case. As a consequence, these states are mixed, and the

eigenstates of the transfer matrix are even/odd w.r.t. 90◦ rotation in the 1-2 plane. The

5Another drawback is connected to our choice of L being close to 1/Tc. In this case increasing the

transversal size one gets closer to the critical situation and the fluctuation of the Polyakov loops get larger.
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Figure 4. The u100 torelon mass for SU(2) measured on spatial volumes (left) (L, 3L/2, 3L/2) and

(right) (L, 2L, 2L).
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Figure 5. The u110 torelon mass for SU(2) measured on spatial volumes (left) (L,L, 3L/2) and

(right) (L,L, 2L).

operators producing these mass eigenstates from the vacuum sector can be constructed by

φ
(±)
110(t) = Tr

(
Φ1(t)Φ2(t)± Φ1(t)Φ

†
2(t)
)
. (3.2)

One expects that the energy difference between the odd and even lowest states is relatively

large for small L (where the width of the flux spreads over the available volume, and there

is a large overlap between fluxes going along the two diagonals) and tiny for large L. Note

that the operator given in (2.4) is an even one. Similar eigenstates also appear in the 111

sector. Although for some cases we measured the odd torelon masses like m
(−)
110(L), we did

not use them in this work.

3.2 Static potential

In this section we present the scaling behavior of quantities related to the static potential.

Usually the force between quarks is used as a practical and simple way to fix the scale,

relating the bare coupling and the lattice spacing in physical units [31]. Here we consider

the reverse approach. We investigate the approach to the continuum limit of the force

between static quarks after fixing the scale with the torelon mass.

We have performed numerical simulations of SU(2) Yang-Mills theory comparing the

standard Wilson action and the improved one. We have considered the bare couplings
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Figure 6. Approach to the continuum limit of r1/L0 (left) defined by H(r1) = 1 and r2/L0 (right)

defined by H(r2) = 1.65 as a function of (a/L0)2. L0 is defined by u100(L0) = 1.375 .

tuned with the torelon mass m100(L) for L = 4, 6 and 8 and listed in table 1. The

actual sizes of the simulated lattices were 244, 364 and 363 × 48, respectively, for the three

above parameter sets. The static potential has been measured on axis from the two-point

correlation function of Polyakov loops at distance r

V (r) = − 1

L0
log〈Φ(0)Φ(r)〉 (3.3)

where L0 is the lattice size along the temporal direction. The Monte Carlo simulations

have been carried out using the multi-level algorithm [32]. The force F is obtained from

the static potential by

F (r′) = V (r)− V (r − 1) , (3.4)

where r′ is a properly chosen point between r and r− 1. The simplest case is the midpoint

r′ = r − 1/2. The cut-off effects can be somewhat reduced by choosing r′ = rI(r), the

tree-level improved midpoint distance between r and (r − 1) [31]. We present here the

naive choice r′ = r− 1/2, but the qualitative behavior of the cut-off effect is the same with

the other choice as well.

The force is a dimensionful physical observable and it is useful to investigate its scaling

behavior by considering the dimensionless quantity

H(r) = F (r)r2. (3.5)

We have studied the approach to the continuum limit of two scales, r1 and r2 defined

as the distances where H(r) has the values 1.0 and 1.65, respectively. Note that — as

we mentioned above — one usually fixes the scale by defining the Sommer parameter,

r0 = 0.5 fm, as the distance where H(r0) = 1.65. In figure 6 we show the scaling behavior

of r1/L0 and r2/L0 as a function of (a/L0)
2 where the scale L0 is defined by the torelon

mass through L0m100(L0) = 1.375. With the improved action, the reduction of lattice

artifacts in the static force is less pronounced than in the torelon masses. For both actions

the artifacts appear to be linear in a2 and there is very good agreement between the

continuum extrapolation results.
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It is important to note that the lattice artifacts of the static potential can be only

partially attributed to the properties of the lattice action. The choice of the operator (say

smeared Polyakov loops versus naive ones) also contributes, and it is not easy to separate

these effects. Even in continuum electrostatics, the force between two charges of cubic

shape is not exactly proportional to 1/r2, it also depends on the relative orientation of

the cubes.

4 The SU(3) case

Due to its obvious relevance as part of QCD, and as a possible prelude for future work, we

also tuned and tested the improved action in SU(3) gauge theory, and compared it to the

standard Wilson action to see how much the cut-off effects could be suppressed. Because

much of the procedure is similar to the SU(2) work described above, we avoid a detailed

description of the common aspects.

We use the same parametrization of the gauge action as in eq. (2.2) and the same

value q = 10 to curb large fluctuations of the plaquette. For the tuning procedure, we

again choose to keep the physical volume fixed in units of the torelon mass, with the

precise value being m100(L)L ≡ u100(L) = u?100 = 1.0. Note that for the same value of

L/a this corresponds to a somewhat finer lattice spacing than in our SU(2) study. Starting

on the coarsest lattice L/a = 4, we tested a range of values of γ, for each one finding the

tuned coupling β(γ) where the above condition was satisfied. We simultaneously measured

the u110 torelon mass at the same γ and β(γ) values. We found that for γ = 200 the

cut-off effects in the u110 state were largely removed at this coarse lattice spacing. This

corresponds to an effective cut on the plaquette values at δ = γ−1/q = 0.59. Going to

larger values of γ significantly reduces the efficiency of the Monte Carlo simulations, with

decreasing improvement in reducing lattice artifacts. For this reason, we used the fixed

value γ = 200 for the remainder of the SU(3) study.

We repeated the tuning exercise for the improved action at L/a = 6 and 8, as well

as finding the corresponding bare couplings for the Wilson action over a range of lattice

sizes from L/a = 4 to 12. Our procedure to tune the action parameters was technically

slightly different for the SU(3) case. We measured simultaneously the torelon masses at

∼ 40 nearby β values, and fitted the β-dependence by a 5-th order polynomial. Then

from these fits we determined the appropriate β value from u100(L) = u? and used this to

determine u110(L). The errors were determined by a bootstrap procedure. To present the

data in a similar way as in table 1, in table 2 we give the value u110(L) corresponding to

“fixed β” and u?110(L) corresponding to “fixed u100(L) = u?”.

We show the results for the u110(L) torelon mass for both improved and Wilson actions

in figure 7. At the coarsest lattice spacing, the cut-off effects for the improved action are

∼ 1% compared to ∼ 5% for the Wilson action. Although both are small effects, at the

level of accuracy we could reach they are clearly observable. Similar to SU(2), by L/a = 6

the improved action measurement lies almost on top of the continuum extrapolated value.

The overall smaller size of the cut-off effects compared to the SU(2) case is possibly due

to the choice of a smaller value of u?100. One contrast with respect to the SU(2) findings is
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L/a β γ u100(L) u110(L) u?110(L) a[fm]

4 5.7299 0. 1.0000(11) 2.0990(32) 2.0990(37) 0.159

6 5.9806 0. 1.0000(9) 2.1797(28) 2.1797(33) 0.096

8 6.1749 0. 1.0000(25) 2.2050(53) 2.2050(74) 0.070

10 6.3364 0. 1.0000(36) 2.2066(100) 2.2066(126) 0.056

12 6.4741 0. 1.0000(35) 2.2141(110) 2.2141(130) 0.047

4 −2.4104 200. 1.0000(28) 2.1811(74) 2.1811(96)

6 0.2174 200. 1.0000(16) 2.1965(37) 2.1965(51)

8 1.4882 200. 1.0000(71) 2.2057(70) 2.2057(89)

Table 2. Parameters of the SU(3) action and u100(L), u110(L) on cubic lattices for the Wilson

and the improved actions. The column u?110(L) includes in its error the propagated uncertainty in

determining the location of u100(L) = 1. For reference we include for the Wilson action the value

of the lattice spacing as set via the Sommer parameter r0 = 0.5 fm [33].

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

(a/L)
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2.25

u
1
1
0
(L
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Wilson action
improved action

Figure 7. Cut-off effects of u110(L) on cubical lattices L3 for the Wilson action and the improved

action at u100(L) = 1 for SU(3).

that at this level of accuracy, the continuum extrapolation must be quadratic in a2 for the

Wilson action if one wishes to include the L/a = 4 data point. For the improved action,

an extrapolation linear in a2 describes the data perfectly well.

4.1 Scaling tests

As before for SU(2), once we complete the tuning procedure for γ and β(γ) on symmetric

spatial volumes, we next move to asymmetric spatial volumes to examine what improve-

ment the new action brings. The torelon mass results are shown in figures 8–10. The first

question is whether or not there is good consistency between the continuum extrapolated

results using the two lattice actions, to which the answer is yes. For the u100 states the

cut-off effects are largely suppressed on the coarsest L/a = 4 lattice with the new action.

For the Wilson action on L× L× 2L and L× 2L× 2L volumes, again the continuum ex-

trapolation of the u100 mass is quadratic in a2 for the Wilson action, whereas the improved

action extrapolation appears to be linear in a2. The relative cut-off effect for the Wilson
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Figure 8. The u100 torelon mass for SU(3) measured on spatial volumes (left) (L,L, 3L/2) and

(right) (L,L, 2L).
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Figure 9. The u100 torelon mass for SU(3) measured on spatial volumes (left) (L, 3L/2, 3L/2) and

(right) (L, 2L, 2L).
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Figure 10. The u110 torelon mass for SU(3) measured on spatial volumes (left) (L,L, 3L/2) and

(right) (L,L, 2L).

action increases as we go towards the largest spatial volume L × 2L × 2L, at which point

the torelon is very light with u100(LRR) ≈ 0.035, given that the same state on a symmet-

ric volume corresponds to u100 = 1. The u110 masses are determined with 1% accuracy

or better, but as for SU(2), there is no clear reduction of lattice artifacts with the newly

proposed action.

To compare these lattice artifacts to those for the mixed fundamental-adjoint action we

also measured the torelon masses for the action used in [13]. Fixing the adjoint coupling
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to βa = −4.0 as in [13], with the fundamental coupling βf = 9.398 for L/a = 4 we

obtained u100(L) = 1.0036(8) and u110(L) = 2.1502(27). This yields the extrapolated

value u?110(L) = 2.1435(31), which is halfway between values for the Wilson action and the

newly proposed action (cf. table 2 and figure 7). Hence the mixed fundamental-adjoint

action brings some improvement, but not as much as the new action we present.

4.2 Gradient flow observables

The gradient flow is a recently developed method which smooths out lattice fields in a

controlled fashion and from which renormalized observables can be measured with very

high accuracy [34]. In the following we make use of the fact that the gauge field obtained

at flow time t/a2 > 0 is a smooth renormalized field [35]. Hence, the expectation values of

local gauge invariant expressions in this field are well-defined physical quantities that probe

the theory at length scales on the order of
√
t. In particular, we will consider observables

related to the action density E(t) at flow time t, and the set of its derivatives

W (n)(t) = (t · ∂t)n
(
t2E(t)

)
.

One possible discretization of the action density on the lattice makes use of the sum of

unoriented plaquettes with a common lower-left corner [34] and is denoted by Eplaq(t), but

we also used a more symmetric clover-type discretization Esym(t).

One way to exploit the gradient flow is to extract the lattice spacing. For example,

one can define the lattice scale
√
t0 via the requirement that

W
(0)
0 ≡ t2〈E(t)〉

∣∣
t0

= c, (4.1)

where in the original investigation [34] the value c = 0.3 was chosen. The corresponding

value of t0/a
2 can be measured with very good precision and be used as a reference scale

when taking the continuum limit a → 0. Similarly one can define a scale w0 set by the

requirement that

W
(1)
0 ≡ 〈W (1)(t)〉t=w2

0
= c′, (4.2)

where again there is freedom in the choice of the parameter c′, which in the literature has

first been tested for the choice c′ = 0.3 [36]. Note that for a given choice of c and c′, the

dimensionless ratio t0/w
2
0 is physical and has a well-defined value in the continuum limit.

Further derivatives of the action density renormalized at flow time t0 can be determined

by evaluating

W
(n)
0 ≡ 〈W (n)(t0, L)〉 (4.3)

and the continuum limit of these quantities is taken by lima→0W
(n)
0 .

Unlike the mass spectrum of the theory, gradient flow observables are not spectral

quantities, therefore their cut-off dependence follows from (a) the lattice action used in

the Monte Carlo generation of the ensembles, (b) the lattice action used in implementing

the flow, and (c) the lattice discretization of the action density. Only in step (a) do we

utilize both the standard Wilson and improved lattice gauge actions, where we generated

separate ensembles for each over a range of lattice volumes and lattice spacings. For both
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Figure 11. Continuum limit of W (0)(t0) using the symmetrized definition for the action density

while t0 is determined from the plaquette definition. Original data (left) and O(a2) corrected

data (right).

sets, in step (b) we use the Wilson action in the discretization of the gauge field flow. For

the choice of the discretization of the action density in step (c) we consider both Eplaq

and Esym to facilitate the continuum limit. It turns out that the gradient flow observables

in lattice units are essentially independent of the volume above L/
√
t0 & 8.0 − 8.5. As a

consequence, we restricted our analysis of the results to simulations for which L/
√
t0 > 10.0.

The quantification of the lattice artifacts due to the specific choice of the gradient

flow action is beyond the scope of the present work, but the ones due to the discretization

of the action density operator can be estimated by comparing the observables evaluated

with Eplaq and Esym. In figure 11 we show the continuum limit of W (0)(t0) using the

symmetrized definition for the action density while t0 is determined from the plaquette

definition. By construction W (0)(t0) takes the value 0.3 in the continuum, independent

of the discretization employed for the action density. The continuum limits displayed in

figure 11 show that within two standard deviations this is indeed the case for our simulation

results, both for the Wilson and the improved gauge action. In order to enhance the

differences between the two actions, we removed the average O(a2) correction which one

can assume stems from the discretization of the action density using the Wilson action. We

fit the results of the Wilson and improved action separately with an ansatz c0+c1a
2+c2a

4,

then average c1 from both fits, and subtract c1,avea
2 from the original data. This is a

convenient way to magnify the deviations. The result is displayed in the right plot of

figure 11 and illustrates that the continuum extrapolations can be achieved by employing an

O(a2) correction for the improved action, while O(a2) and O(a4) corrections are necessary

for the Wilson action. However, it is clear that the differences between the results from the

Wilson and the improved gauge action are very small. We assign this to the fact that the

lattice artifacts introduced through the discretization of the operator and/or the choice of

the flow procedure are so large that they dominate the ones due to the choice of the action

for Monte Carlo simulation.

Yet another part of the challenge in quantifying the magnitude of cut-off effects is

the ambiguity in the choice of lattice scale. To illustrate this, in figure 12 we consider

the dimensionless ratio t0/w
2
0 as a function of the lattice spacing expressed in units of
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Figure 12. Continuum limit of the dimensionless ratio t0/w
2
0 using the plaquette and the sym-

metrized definition for the action density in terms of a2/t0 (left plot) and in terms of (am100)2

(right plot).

t0 (left plot) and in units of the torelon mass m100 (right plot) determined earlier in the

spectroscopy study. On the coarsest lattices, corresponding to am100 = 1/4 for the new

action, cut-off effects are now significantly smaller with the improved action. Still, the

dominant effect at finite lattice spacing is the choice of the action density operator. We

tried to separate out the effect of the operator by considering a linear combination of Eplaq

and Esym, so as to reduce the lattice artifacts stemming from the discretization of the action

density operator. However, even in the improved combination the difference between the

standard and new lattice actions is not dramatic.

Given the high precision of the gradient flow method, it is interesting to investigate

how many derivatives of the action density can be accurately measured. In figure 13 we

show the continuum limit of the first and second derivatives of the action density calculated

from both the plaquette and symmetrized definition, and for both gauge actions, with t0
always being determined from the corresponding definition. We see that lattice artifacts

remain large and are again dominated by the choice of operator, not the lattice action used

to generate the ensemble. Most important, we see consistent continuum results across the

various discretizations, and cut-off effects which are always well described by O(a2) and

O(a4) corrections.

4.3 Plaquette distribution

To investigate further the origin of cut-off effects in observables related to the gradient

flow, we studied the distribution of the plaquette and its evolution along the flow. This

is shown in figures 14–16. The plaquette distribution on the original gauge configurations

generated during the Monte Carlo simulation are very different, by design: the new action

essentially suppresses large fluctuations, with the peak occurring further from the limiting

value where the plaquette is unity. As we tune to finer lattice spacing, the distributions

move smoothly. If we inspect the plaquette distributions at flow time t0 in figures 15 and 16,

a different picture emerges. The Wilson and improved action ensembles have very similar

distributions once the coarse fluctuations are smoothened out, with a rapidly decreasing

tail of plaquette values away from 1. Using higher resolution to probe the region closest to
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Figure 13. Continuum limit of the dimensionless derivatives W (1)(t0) and W (2)(t0) using the

plaquette and the symmetrized definition for the action density.
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Figure 14. Distribution of the plaquette values of the original gauge field configurations. The

left panel corresponds to the Wilson ensembles while the right panel shows the improved action

ensembles.

1, we see again the strong similarity between the ensembles. The gradient flow washes out

lattice artifacts contained in the original lattice action, which are replaced by discretization

effects of the flow scheme instead. Obviously, the matching of the distributions between

the two actions is in line with matching the lattice spacings from the gradient flow, and this

is the reason why the gradient flow observables from the two actions show rather similar

lattice artifacts.

5 Algorithms and cost estimates

The obvious drawback to using an improved action in lattice simulations is the increased

numerical cost, both in construction and in the Monte Carlo simulation, where smaller

updates are needed for e.g. the Metropolis algorithm to have a reasonable acceptance rate.

Hence an increased time is necessary in reaching a given numerical accuracy for a fixed

computational resource. This has to be balanced against the expectation of being able

to determine continuum results using coarser lattices than for the standard action. The

motivation to examine a new action as parametrized in eq. (2.2) is that using only powers of
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Figure 15. Distribution of the plaquette values of the gauge field configurations at flow time t0.

The left panel corresponds to the Wilson ensembles while the right panel shows the improved action

ensembles, both at flow time t0.

0.99 0.992 0.994 0.996 0.998 1
plaquette at t

0

1

10

100

1000

10000

5.70, L=12

5.80, L=12

5.90, L=14

6.00, L=18

6.20, L=24

0.99 0.992 0.994 0.996 0.998 1
plaquette at t

0

1

10

100

1000

10000

-2.410, L=16

 0.210, L=26

 1.491, L=36

Figure 16. Magnification of the distribution of the plaquette values of the gauge field configura-

tions. Left plot for Wilson ensembles, right plot for improved action ensembles at flow time t0.

the basic plaquette minimizes the numerical cost, while the suppression of large plaquette

fluctuations is achieved in a way very different than for lattice actions constructed along

the Symanzik improvement program.

Let us consider the numerical slowdown. For one sweep of a lattice volume, the CPU

time taken for the improved action relative to the Wilson action is timp/tWil = 1.9, both for

SU(2) and SU(3) gauge theory. In order to estimate the autocorrelation time, we compare

the squared relative error of the Polyakov loop correlator at distance t = L, normalized to

the same number of sweeps, (∆C(t)/C(t))2×nsweep, which we found for SU(3) is 1.4 times

larger with the improved action than for the Wilson action (for an acceptence rate ∼ 0.5 for

both actions). For a different determination of the autocorrelation time, we also examined

the torelon mass error, also normalized to the same number of sweeps, (∆m)2 × nsweep.

For this quantity we find an increase by a factor of 1.5 going from the standard to the new

action, essentially the same value. Hence to achieve a given statistical accuracy our new

action is about 3 times more expensive in computer time than the Wilson action. However,

the reduction in cut-off effects more than compensates for the increased cost. As a rough

estimate, taking into account that the a2 cut-off effect is reduced by a factor ∼ 5, to reach

– 18 –



J
H
E
P
0
3
(
2
0
1
6
)
1
1
6

the same cut-off error and statistical error one gains in computer time a factor 53/3 ≈ 40,

assuming the CPU time needed for an independent configuration grows like (L/a)6 (lattice

volume × critical slowing down). We can only speculate that for full QCD the gain could

be even larger.

We use two different algorithms for Monte Carlo simulations with the improved action.

One is a standard Metropolis update, where a trial gauge link is generated by a rotation

of the original gauge link, followed by an accept/reject decision. The rotation has an

adjustable parameter, which allows one to tune to whatever desired acceptance rate. A

different algorithm is where a trial gauge link is generated using the standard heathbath

algorithm for the Wilson action, but with a bare coupling β′ 6= β. The trial gauge link

is then accepted or rejected with a Metropolis step based on the change of the action

(β − β′)w + γwq. The adjustable parameter here is β′ which can be tuned to improve

the acceptance rate, however the rate cannot be made arbitrarily close to 100%. We find

similar efficiency between the two algorithms in our Monte Carlo results.

6 Conclusions

The type of lattice action we propose and study in this paper is somewhat unusual, given

that it does not have the usual naive continuum limit. On the basis of universality, the

essential elements are the dimensionality of the system and that the lattice action has

the correct internal symmetries. Our numerical results fully support this view and show

beyond any doubt that our chosen discretization gives the correct continuum theory.

The findings regarding suppression of lattice artifacts depend on the observable in

question. In the case of spectral quantities such as the torelon masses it was possible

to almost fully remove cut-off dependence on the coarsest lattice we simulate. For non-

spectral quantities such as the static quark potential and force, and observables given by

the gradient flow such as the lattice scales t0 and w0, improvement in the operators is

necessary beyond just improvement of the action, as can be seen from the reduction but

not the removal of artifacts. We did not measure other spectral quantities such as the

glueball spectrum, the critical temperature Tc and the string tension σ, since those studies

would require larger numerical simulations. The tuning strategy we choose is based on the

torelon spectrum. The parametrization is general — one could extend it without increasing

the numerical cost by adding an adjoint plaquette term to the action, which opens up the

possibility that additional tuning of the extra parameters would give even further reduction

of lattice artifacts.

Our study of the gradient flow and its use in scale setting, as well as observables

given by higher order derivatives of the renormalized action density, is a useful test of the

accuracy of the scheme and of the systematics due to lattice artifacts, as well as a test

for universality.

The newly proposed lattice gauge action is cheap. It remains to be investigated if the

gauge action can be efficiently incorporated into simulations with dynamical fermions and

what reduction of lattice artifacts might be carried over.

– 19 –



J
H
E
P
0
3
(
2
0
1
6
)
1
1
6

Acknowledgments

The research leading to these results has received funding from the Schweizerischer Na-

tionalfonds and from the European Research Council under the European Union’s Seventh

Framework Programme (FP7/2007-2013)/ ERC grant agreement 339220. We also acknowl-

edge support by the US National Science Foundation under the grants NSF 0970137 and

1318220. KH wishes to thank the Institute for Theoretical Physics and the Albert Einstein

Center for Fundamental Physics at the University of Bern for their support.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and φ4

theory, Nucl. Phys. B 226 (1983) 187 [INSPIRE].

[2] K. Symanzik, Continuum limit and improved action in lattice theories. 2. O(N) nonlinear

σ-model in perturbation theory, Nucl. Phys. B 226 (1983) 205 [INSPIRE].
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[36] S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010

[arXiv:1203.4469] [INSPIRE].

– 22 –

http://dx.doi.org/10.1016/0550-3213(94)90473-1
http://arxiv.org/abs/hep-lat/9310022
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9310022
http://dx.doi.org/10.1088/1126-6708/2001/09/010
http://arxiv.org/abs/hep-lat/0108014
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0108014
http://dx.doi.org/10.1016/S0550-3213(01)00582-X
http://arxiv.org/abs/hep-lat/0108008
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0108008
http://dx.doi.org/10.1007/JHEP08(2010)071
http://arxiv.org/abs/1006.4518
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4518
http://dx.doi.org/10.1007/JHEP02(2011)051
http://arxiv.org/abs/1101.0963
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0963
http://dx.doi.org/10.1007/JHEP09(2012)010
http://arxiv.org/abs/1203.4469
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4469

	1
	Introduction
	Determination of the parameters of the action
	The SU(2) case
	Scaling tests
	Static potential

	The SU(3) case
	Scaling tests
	Gradient flow observables
	Plaquette distribution

	Algorithms and cost estimates
	Conclusions

