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STEINER’S FORMULA IN THE HEISENBERG GROUP

ZOLTÁN M. BALOGH, FAUSTO FERRARI, BRUNO FRANCHI,
EUGENIO VECCHI AND KEVIN WILDRICK

Abstract. Steiner’s tube formula states that the volume of an ε -neighborhood of a smooth regular
domain in Rn is a polynomial of degree n in the variable ε whose coefficients are curvature integrals

(called also as quermassintegrals). We prove a similar result in the sub-Riemannian setting of

the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an
ε-neighborhood with respect to the Heisenberg metric is an analytic function of ε that is generally
not a polynomial. The coefficients of the series expansion can be explicitly written in terms of
integrals of iteratively defined canonical polynomials of just five curvature terms.
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1. Introduction

Let us denote by Ω ⊆ Rn a bounded regular domain in Euclidean space, and by Ωε its ε neigh-
borhood with respect to the usual Euclidean metric. The celebrated Steiner’s formula expresses
the volume vol(Ωε) as a polynomial in ε

(1.1) vol(Ωε) =
n∑
k=0

akε
k,

where the coefficients ak are the so called quermassintegrals of Ω.
This formula goes back to J. Steiner who proved it in two and three dimensional Euclidean

spaces for convex polytopes. It has been generalized later by H. Weyl to the setting of arbitrary
smooth submanifolds of Rn. We refer the interested reader to the monograph of A. Gray [?] for
an exhaustive overview of this subject, as well as [?]. A localized version of the above formula still
holds even for non-smooth submanifolds as shown by H. Federer [?]. Recently these notions have
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been widely used to obtain new results concerning nonlinear PDEs and Sobolev inequalities, see
e.g. [?], [?] and [?], and relative isoperimetric inequalities, see [?].

The purpose of this paper is to prove a similar result also in the sub-Riemannian setting of
the first Heisenberg group H. Indeed, it is well known that H can be endowed with its canonical
left-invariant Carnot-Carathéodory metric, and therefore it is natural to search for a formula akin
to (1.1), where the ε-neighborhood Ωε should be replaced by an ε-neighborhood with respect to
the Carnot-Carathéodory metric (basic notation and results about the metric structure of the
Heisenberg group can be found in Section 2). This interest is motivated by the recent progress in
the geometric measure theory of Lie groups (e.g.[?, ?, ?, ?, ?, ?]). In the aforementioned papers,
many tools of the Euclidean theory related to rectifiability and perimeter, such as co-area and
divergence formulae, have been developed in the sub-Riemannian setting of non-commutative Lie
groups. Nevertheless, the notions of higher order curvatures even in the simplest instance of H are
still far from being fully understood. We hope this paper can provide some hints in this direction.
For a general overview of these results we refer to the monograph [?].

Our approach is inspired by the work of R.C. Reilly [?], [?] which is based on expressing the
coefficients ak in Steiner’s formula (1.1) in terms of integrals of iterated divergences of the signed
Carnot-Carathéodory distance function δ associated to Ω.

In our setting of the first Heisenberg group, instead of the full divergence, we consider the so
called horizontal divergence of a horizontal vector field X = u1X1 +u2X2 where X1 and X2 are the
canonical left-invariant horizontal vector fields in H and u1 and u2 are arbitrary smooth functions.

In this situation, the horizontal divergence of X is given by divHX := X1u1 + X2u2. If u is
a smooth function in an open set of H we shall consider the iterated horizontal divergences of u
according to the relations:

divH
(0)∇Hu = 1, divH

(i)∇Hu = divH

(
(divH

(i−1)∇Hu) · ∇Hu
)
, i ≥ 1,

where ∇Hu := (X1u)X1 + (X2u)X2 is the horizontal gradient of u. With this notation our first
statement reads as follows:

Theorem 1.1. Let Ω ⊆ H be a bounded smooth domain with C∞-regular boundary and Q ⊆ H be
a localizing set with the property that ∂Ω∩Q is free from characteristic points. We denote by δ the
signed Carnot-Carathédory distance function defined in a neighborhood of ∂Ω ∩Q.

For ε ≥ 0, let Ωε∩Q be a localized Heisenberg ε-neighborhood of Ω. Then the function ε 7→ vol(Ωε∩Q)
is real-analytic, and has a power series expansion given by

vol(Ωε ∩Q) = vol(Ω ∩Q) +
∞∑
i=1

ai
εi

i!
,

where

ai =
∫
∂Ω∩Q

(divH
(i−1)∇Hδ) dH3

dcc .

The remarkable fact is that, although the (i−1)st iterated divergence, i > 1, of a smooth function
u contains, a priori, derivatives of order i, for the signed distance function δ this is not the case. It
turns out that all coefficients ai appearing in Theorem 1.1 are integrals of polynomials of certain
second order derivatives of the function δ.

To simplify the notation for iterated applications of the vector fields Xi, i = 1, 2 we will use for
Xi(Xj) the notation Xij .
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The main result of our paper gives a precise recursive formula for the iterated divergences in
terms of the following quantities:

A := ∆Hδ := X11δ +X22δ, B := −(4X3δ)2, C := −4 ((X1δ)(X32δ)− (X2δ)(X31δ)) ,

D := 16X33δ, E := 16
(
(X31δ)2 + (X32δ)2

)
.

Theorem 1.2. Under the conditions of Theorem 1.1, the following relations hold:

divH
(1)∇Hδ = A, divH

(2)∇Hδ = B + 2C,

divH
(3)∇Hδ = AB + 2D, divH

(4)∇Hδ = B2 + 2BC + 2AD − 2E,

and for all j ≥ 2,

divH
(2j−1)∇Hδ = Bj−2 (AB + 2(j − 1)D) ,(1.2)

divH
(2j)∇Hδ = Bj−2

(
B2 + 2BC + 2(j − 1)(AD − E)

)
.(1.3)

Generally speaking, it is feasible to think that the integrals of iterated horizontal divergences ap-
pearing in the above expressions should carry important geometric information about the Heisenberg
geometry of the domain Ω. In particular the expression

divH
(1)∇Hδ = ∆Hδ := X11δ +X22δ

is currently the accepted notion of the horizontal mean curvature of ∂Ω, and indeed of the level
sets {δ = ε} for sufficiently small values of ε [?]. This notion of mean curvature plays a crucial role
in the study of minimal surfaces in the Heisenberg group.

Analogously, the expression

divH
(2)∇Hδ = −(4X3δ)2 − 8 ((X1δ)(X32δ)− (X2δ)(X31δ))

may provide a useful notion of theof a surface in the Heisenberg group. While the above expression
has not yet been investigated in depth, recent results [?], indicate however that this formula comes
out as the limit of the sectional curvature of a surface in the Riemannian approximation of the
Heisenberg group and gives an appropriate version of the Gauss-Bonnet theorem in the Heisenberg
setting.

Some further information about the existing literature is now in order. By homogeneity, it is
easy to prove that Steiner’s formula for a Carnot-Carathéodory ball in the Heisenberg group is
a polynomial of degree 4; in [?], the coefficients of this polynomial have been explicitly found,
computing the flow of the horizontal gradient of the signed distance function; a track of this flow
is called a metric normal, the theory of which has been developed in [?], [?]. While this approach
does not relate the iterated divergences to volume nor allow for localization, it is very effective in
computing the volume function for explicit sets.

The paper is structured as follows: in Section 2 notations are fixed and background results of the
Heisenberg calculus are recalled. Section 3 is devoted to a careful analysis of localizing sets and the
link between the derivatives of the volume function and the integrals of the iterated divergences is
established. In Section 4 we prove the recursive formulae stated in Theorem 1.2 and Theorem 1.1.
In Section 5 we present an example in which Steiner’s formula is not a polynomial and where the
coefficients in Theorem 1.1 can be computed explicitly.

Acknowledgements. We thank the referee for carefully reading the paper and for all the useful
comments and suggestions to improve the style and the content of the paper.
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2. Notation and basic results

Given points x = (x1, x2, x3) and x′ = (x′1, x
′
2, x
′
3) in R3, the Heisenberg product is given by

x ∗ x′ = (x1 + x′1, x2 + x′2, x3 + x′3 + 2(x2x
′
1 − x1x

′
2),

defining the Heisenberg group H. The corresponding Lie algebra is generated by the left-invariant
vector fields

X1 =
∂

∂x1
+ 2x2

∂

∂x3
, X2 =

∂

∂x2
− 2x1

∂

∂x3
, X3 =

∂

∂x3
.

We employ this somewhat unusual notation for the readability of the computations to be made in
Section 4.

The horizontal distribution
HH := span{X1, X2} ⊆ TR3

is equipped with the inner product 〈·, ·〉H in which X1 and X2 form an orthonormal basis. This
induces the horizontal norm || · ||H.

Since [X1, X2] = −4X3, the horizontal distribution HH is non-integrable. It follows that any
pair of points x, x′ ∈ H can be connected by an absolutely continuous curve γ : [0, 1]→ R3 with the
property that γ′(s) ∈ Hγ(s)H for almost every s ∈ [0, 1]; such a curve is called horizontal. Measuring
the length of horizontal curves by using || · ||H results in the Carnot-Carathéodory metric on H,
which is denoted

dcc(x, x′) := inf
{∫

γ
||γ′(s)||H ds : γ is a horizontal curve connecting x to x′

}
.

The Haar measure on H, the 3-dimensional Lebesgue measure L3, and the 4-dimensional Hausdorff
measure H4

dcc
of the metric dcc all coincide up to a scaling. We will most often employ the Lebesgue

measure.
Throughout this paper, we will work with the following standing assumptions and notations:

(1) We consider a fixed but arbitrary open set Ω ⊆ R3 whose boundary ∂Ω is a C∞-smooth
surface.

(2) The signed distance of a point g ∈ H from ∂Ω is denoted by δ : H→ [0,∞), where

(2.1) δ(g) =

{
distcc(g, ∂Ω) g ∈ H \ Ω,
−distcc(g, ∂Ω) g ∈ Ω̄.

(3) The characteristic set of ∂Ω is defined by

char(∂Ω) = {g ∈ ∂Ω : Tg∂Ω = HgH} .

This set is pathological from the perspective of the regularity of the distance function δ.
We consider an arbitrary bounded, connected, and relatively open set U0 ⊆ ∂Ω with the
property that

distcc(U0, char(∂Ω)) > 0.

A basic result of [?] implies that there is a connected, bounded, and open set U ⊆ R3 that
contains U0 and on which δ has one degree of regularity less than ∂Ω. Hence, we will have
that δ is C∞-smooth on U0.

(4) The Euclidean gradient field ∇δ : U → R3 is non-vanishing and normal (in the Euclidean
sense) to the level set δ−1(ε) near any point of U . The projection of this vector field onto
the horizontal distribution HH yields the embedded horizontal normal N : U → R3 defined
by

N = (X1δ)X1 + (X2δ)X2,
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The basis of this work is the fact that the signed distance function satisfies the eikonal
equation in the following sense (see [?]):

(2.2) ‖N(g)‖H = 1, for L3-almost every g ∈ U .

In fact, the smoothness of δ implies that N is also C∞-smooth, and so (2.2) holds every-
where on U . It follows that the Euclidean gradient ∇δ does not vanish at any point of U .
Therefore, δ can be considered as a defining function for the level set δ−1(ε) near any point
of U . This implies that these level sets are C∞-smooth near any point of U .

(5) Given a differentiable function α : U → R, we define the horizontal gradient of α to
be the projection of the Euclidean gradient of α onto the horizontal distribution, i.e.,
∇Hα : U → R3 is given by

∇Hα = (X1α)X1 + (X2α)X2.

Note that we have defined ∇Hα to be a vector field in R3, and not as the two-dimensional
vector field (X1α,X2α) : U → R2, as is often the case. In particular, N = ∇Hδ. We will
use both notations to denote this object: N will be employed when its role is geometric in
nature, and ∇Hδ will be employed when its role is more analytic in nature.

(6) Let V = aX1 + bX2 : U → R3 be a differentiable vector field with values in the horizontal
distribution. A key role in this paper is played by the horizontal divergence of V , which is
defined by

divH V = X1a+X2b.

3. The derivatives of the volume function

3.1. The construction and properties of the localizing set Q. If Ω is unbounded, the volume
of its Heisenberg ε-neighborhood is infinite. To avoid this, we consider a localized version of the
volume function. In the setting of R3, this can be done as follows. One assumes that Ω has positive
reach, meaning that there is a number r > 0 such that if distR3(x,Ω) < r, then there is a unique
point πΩ(x) ∈ Ω of minimal distance to x. For each bounded Borel subset Q ⊆ R3 and ε ∈ [0, r),
one considers the set

T (Q,Ω, ε) = {x ∈ R3 : distR3(x,Ω) ≤ ε and πΩ(x) ∈ Q}

and seeks a Taylor series expansion of the function

ε 7→ L3(T (Q,Ω, ε))

at ε = 0.
The requirement that Ω have positive reach is far weaker than our assumptions on Ω. Since

we have assumed that ∂Ω is C∞-smooth, we may view the set T (Q,Ω, ε) above as the union of
Ω ∩Q and the tracks of ∂Ω ∩Q under the gradient flow of the Euclidean distance-to-∂Ω function
distR3(·, ∂Ω) for time ε. This gradient flow can also be viewed as the flow associated to the Euclidean
outward-pointing normal to the level sets of distR3(·, ∂Ω). The volume of Ω ∩ Q is the constant
term of the desired Taylor series.

It is (roughly) this later approach that we will adapt to the Heisenberg setting. Instead of
considering an arbitrary Borel set Q ⊆ R3 for localization, we begin with any sufficiently regular
set B0 ⊆ U0 ⊆ (∂Ω \ char(∂Ω)) and define the localizing set Q to be the image of the flow
associated with the embedded horizontal normal N . As mentioned in the introduction, this flow
has been studied in depth as the metric normal in [?] and [?].

We now implement the above approach. For simplicity, we consider B0 ⊆ U0 ⊆ ∂Ω to be of the
form

B0 := BR3(p, r) ∩ ∂Ω,
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where p ∈ H and r > 0 are chosen so that B0 is homeomorphic to a closed disk; this situation
generalizes easily to the situation that B0 is the closure of any connected open subset of U0 with
Lipschitz boundary components.

Because of this simplification, we may parametrize the boundary ∂B0 of B0 with a single smooth
function

β : [−τ, τ ] −→ ∂B0

for some τ > 0.
The following proposition states that the flow of the embedded horizontal normal exists on any

short time interval containing 0.

Proposition 3.1. There exists s0 > 0 such that for any g0 ∈ U0 ⊆ ∂Ω, the Cauchy problem

(3.1)

{
ϕ̇(s) = N(ϕ(s)),
ϕ(0) = g0 ∈ U0,

has a local solution ϕg0 : [−s0, s0]→ U satisfying

(3.2) dcc(g0, ϕg0(σ)) ≤ |σ| and δ(ϕg0(σ)) = σ,

for each σ ∈ [−s0, s0].

Remark 3.2. The inequality in (3.2) becomes an equality if and only if the local solution ϕg0 is a
geodesic.

We define the localizing set of depth s0 generated by the set B0 ⊆ U0 ⊆ ∂Ω by

(3.3) Q := {ϕg(s) : g ∈ B0, |s| ≤ s0} .

For 0 ≤ ε ≤ s0, we consider the localized Heisenberg ε-tube

(3.4) TH(B0,Ω, ε) := {g ∈ Q : −s0 ≤ δ(g) ≤ ε}

and we seek to give a Taylor series expansion of the function

ε 7→ L3(TH(B0,Ω, ε))

near ε = 0. Note that we may write TH(B0,Ω, ε) as the disjoint union

TH(B0,Ω, ε) =
(
Ω ∩Q

)
∪Qε,

where

Qε := {g ∈ Q : 0 < δ(g) < ε}

is the track of B0 under the flow of the embedded horizontal normal N for positive time ε. Hence,
our localization procedure is in direct analogy with the Euclidean case. As in the Euclidean case,
the volume of Ω∩Q will be the constant term of the desired Taylor series, and so we will be mostly
concerned with estimating the volume of Qε.

The key tool in doing so is a version of the divergence theorem adapted to the structure of the
Heisenberg group and of our localizing set Q. For this we will need to identify the boundary of
certain sets related to Qε. For −s0 < s < t < s0, denote

Qs,t := {g ∈ Q : s < δ(g) < t} = δ−1((s, t)) ∩Q,
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so that Qε = Q0,ε. We define the initial boundary, the lateral boundary, and the final boundary of
Qs,t by

∂iQs,t := {ϕg(s), g ∈ B0} = δ−1(s) ∩Q,

∂lQs,t := {ϕg(ε) : g ∈ ∂B0, s < ε < t} ,

∂fQs,t := {ϕg(t), g ∈ B0} = δ−1(t) ∩Q.

respectively. An elementary argument shows that

(3.5) ∂(Qs,t) = ∂iQs,t ∪ ∂lQs,t ∪ ∂fQs,t.

Define a vector field µ : ∂(Qs,t)→ R3 by

µ(p) =


− ∇δ(p)
||∇δ(p)||R3

p ∈ ∂iQs,t,
w(p) p ∈ ∂lQs,t,
∇δ(p)

||∇δ(p)||R3
p ∈ ∂fQs,t,

where w : ∂lQs,t → R3 is the Euclidean outward unit normal vector to ∂(Qs,t). Then µ is the
Euclidean unit outward-pointing normal vector field to ∂(Qs,t). Denote its projection onto the
horizontal distribution by µH, so that

(3.6) µH(p) =


− N(p)
||∇δ(p)||R3

p ∈ ∂iQs,t,
wH(p) p ∈ ∂lQs,t,

N(p)
||∇δ(p)||R3

p ∈ ∂fQs,t,

where wH is the projection of w onto the horizontal distribution.

The next result shows that on the lateral boundary, the vector wH is perpendicular to the
embedded horizontal normal N with respect to the scalar product 〈·, ·〉H. The analogous result in
the Euclidean case is obvious.

Lemma 3.3. Let p ∈ ∂lQs,t. Then

(3.7) 〈N(p), wH(p)〉H = 0.

Proof. Recall that we have already parametrized B0 by the smooth function β : [−τ, τ ] → ∂B0.
Therefore, a parametrization of the lateral boundary ∂lQε is given by ψ : [−τ, τ ]× (0, ε), where

ψ(t, s) = ϕβ(t)(s).

The Euclidean tangent space to ∂lQε at a point p = (p1, p2, p3) = ψ(t0, s0) is thus spanned by

v = (v1, v2, v3) :=
∂ψ

∂t
(t0, s0), and

N(p) =
∂ψ

∂s
(t0, s0).

For convenience, denote N(p) = n1X1(p) + n2X2(p). Taking the cross product of v and N(p) now
shows that w(p) is a multiple of (w1, w2, w3), where

w1 = 2v2(p2n1 − p1n2)− v3n2

w2 = −2v1(p2n1 − p1n2) + v3n1

w3 = v1n2 − v2n1.
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The projection wH(p) of (w1, w2, w3) onto the horizontal tangent space HpH is given by

(w1 + 2p2w3)X1(p) + (w2 − 2p1w3)X2(p).

The result now follows from a simple calculation. �

Now, we recall that away from the characteristic set, the Heisenberg surface measure is mutually
absolutely continuous with respect to the Euclidean 2-dimensional surface measure, and the Radon-
Nikodym derivative is precisely the Euclidean length of the gradient of δ. The relevant result is given
in [?], which in our setting translates to the following: for any s ∈ [−s0, s0] and any measurable
function F : Q→ R,

(3.8)
∫
δ−1(s)∩Q

F dH3
dcc =

∫
δ−1(s)∩Q

F · ‖∇δ‖−1
R3 dH2

R3 .

The general version of the Heisenberg divergence theorem (c.f. [?, Corollary 7.7]) takes a partic-
ularly simple form when adapted to our setting.

Proposition 3.4. Let c : U → R be a C1-function and let −s0 < s < t < s0. Then the vector field
cN : U → R3 satisfies∫

Qs,t

divH(cN) dL3 =
∫
δ−1(t)∩Q

c dH3
dcc −

∫
δ−1(s)∩Q

c dH3
dcc ,

Proof. Let us start with V = aX1+bX2 : U → R3 being any C1-smooth vector field with values in the
horizontal distribution. Applying the Euclidean divergence theorem, Lemma 3.3 and calculating,
we see that

(3.9)

∫
Qs,t

divH V dL3 =
∫
Qs,t

div
(
(a, b, 2ax2 − 2bx1)

)
dL3

=
∫
∂(Qs,t)

〈(a, b, 2ax2 − 2bx1), µ)〉R3 dH2
R3

=
∫
∂(Qs,t)

〈V, µH〉H dH2
R3 .

We are interested in the particular case V = cN . Using formula (3.5), Lemma 3.3, the fact that
‖N‖H = 1 and formula (3.8), we have that

(3.10)

∫
Qs,t

divH(cN) dL3 =
∫
∂fQs,t

〈cN,N〉H ||∇δ||
−1
R3 dH2

R3 −
∫
∂iQs,t

〈cN,N〉H ||∇δ||
−1
R3 dH2

R3

=
∫
δ−1(t)∩Q

c dH3
dcc −

∫
δ−1(s)∩Q

c dH3
dcc .

as desired. �

3.2. Derivatives and iterated divergences. In this section, we investigate the smoothness of
the function

ε 7→ L3
(
TH(B0,Ω, ε)

)
on the interval [0, s0) by relating the function to the iterated divergences of δ.

For each integer i ≥ 0, we define the function divH
(i)∇Hδ : U → R by

divH
(0)∇Hδ = 1,

divH
(i+1)∇Hδ = divH

((
divH

(i)∇Hδ
)
·N
)
.
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We will show that the sequence of derivatives a(i) : [0, s0)→ R inductively expressed by

a(0)(ε) = L3
(
TH(B0,Ω, ε)

)
,

a(i+1)(ε) =

{
lims↘0

a(i)(s)−a(i)(0)
s ε = 0,

lims→0
a(i)(ε+s)−a(i)(ε)

s ε > 0,

is indeed well-defined and can be expressed in terms of the above iterated divergences.

Theorem 3.5. For each integer i ≥ 1 and number ε ∈ [0, s0), the limit a(i)(ε) exists and is given
by

(3.11) a(i)(ε) =
∫
δ−1(ε)∩Q

(divH
(i−1)∇Hδ) dH3

dcc .

We will need the following result regarding the continuity of integrals with respect to level sets
of δ. The proof is just a consequence of the Euclidean divergence theorem.

Lemma 3.6. Let F : Q→ R be a C1 function. Then, for every ε ∈ (−s0, s0),

(3.12) lim
s→ε

∫
δ−1(s)∩Q

F dH2
R3 =

∫
δ−1(ε)∩Q

F dH2
R3 .

Proof of Theorem 3.5. To begin, note that for ε > 0,

a(0)(ε) = L3
(
Ω ∩Q

)
+ L3(Qε),

while a(0)(0) = L3
(
Ω ∩Q

)
.

Using the Euclidean co-area formula, the continuity of the integral provided by Lemma 3.6, the
mean value theorem, and the measure relationship given by (3.8), we see that for ε ≥ 0,

lim
s↘0

L3(Qε,ε+s)
s

= lim
s↘0

1
s

∫
Qε,ε+s

||∇δ||R3

||∇δ||R3

dL3

= lim
s↘0

1
s

∫ ε+s

ε

(∫
δ−1(σ)∩Q

||∇δ||−1
R3 dH2

R3

)
dσ

=
∫
δ−1(ε)∩Q

||∇δ||−1
R3 dH2

R3

=
∫
δ−1(ε)∩Q

dH3
dcc .(3.13)

Setting ε = 0 above now shows that

a(1)(0) =
∫
δ−1(0)∩Q

dH3
dcc = H3

dcc(∂Ω ∩Q).

When 0 < ε < s0, a similar argument for s↗ 0 now implies that

a(1)(ε) =
∫
δ−1(ε)∩Q

dH3
dcc .

We now assume the inductive hypothesis that for an integer i ≥ 1 and all 0 ≤ ε < s0,

a(i)(ε) =
∫
δ−1(ε)∩Q

(divH
(i−1)∇Hδ) dH3

dcc .
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It follows that

lim
s↘0

a(i)(ε+ s)− a(i)(ε)
s

= lim
s↘0

1
s

(∫
δ−1(ε+s)∩Q

(divH
(i−1)∇Hδ) dH3

dcc −
∫
δ−1(ε)∩Q

(divH
(i−1)∇Hδ) dH3

dcc

)
.

Proposition 3.4 and the definition of the iterated divergences now yield

lim
s↘0

a(i)(ε+ s)− a(i)(ε)
s

= lim
s↘0

1
s

∫
Qε,ε+s

(divH
(i)∇Hδ) dL3.

Using the same argument that led to (3.13), we conclude that

lim
s↘0

a(i)(ε+ s)− a(i)(ε)
s

=
∫
δ−1(ε)∩Q

(divH
(i)∇Hδ) dH3

dcc .

Using a similar line of reasoning in the case that ε > 0 and s ↗ 0, we now conclude that for all
ε ∈ [0, s0),

a(i+1)(ε) =
∫
δ−1(ε)∩Q

(divH
(i)∇Hδ) dH3

dcc ,

as desired. �

4. Calculating the iterated divergences

4.1. A recursive formula. Now that we have related the iterated divergences to the derivatives
of the volume function, it behoves us to calculate the iterated divergences. The goal of this section
is to show that all iterated divergences can be expressed using second-order derivatives of the signed
distance function δ, although a priori divH

(i)∇Hδ involves (i+ 1)st-order derivatives.
To simplify the notation in the coming computation, in this section we will denote the composition

of vector fields Xi(Xj) by Xij and Xi(Xj(Xk)) by Xijk, for i, j, k ∈ {1, 2, 3}. Products of vector
fields will only be used once the vector fields have been applied to a function, namely δ. For
example,

(Xiδ)(Xjkδ) = (Xiδ)(Xj(Xkδ)).

We give here the proof of Theorem 1.2. The basic idea is to differentiate the eikonal equation to
find relationships between various first, second, and third order derivatives of the signed distance
function.

Lemma 4.1. The following relations hold:

(4.1)

 (X1δ)(X11δ) + (X2δ)(X12δ) = 0,
(X1δ)(X21δ) + (X2δ)(X22δ) = 0,
(X1δ)(X31δ) + (X2δ)(X32δ) = 0.

(4.2)

 (X11δ)(X22δ) = (X21δ)(X12δ),
(X11δ)(X32δ) = (X31δ)(X12δ),
(X21δ)(X32δ) = (X31δ)(X22δ).

(4.3)

 (X11δ)2 + (X1δ)(X111δ) + (X12δ)2 + (X2δ)(X112δ) = 0,
(X21δ)2 + (X1δ)(X221δ) + (X22δ)2 + (X2δ)(X222δ) = 0,
(X31δ)2 + (X1δ)(X331δ) + (X32δ)2 + (X2δ)(X332δ) = 0.
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(4.4)
{

(X11δ)(X31δ) + (X1δ)(X131δ) + (X12δ)(X32δ) + (X2δ)(X132δ) = 0,
(X21δ)(X31δ) + (X1δ)(X231δ) + (X22δ)(X32δ) + (X2δ)(X232δ) = 0.

(4.5) X33δ =
1
4

(X321δ −X312δ).

(4.6)
{

8X32δ = −X122δ +X221δ,
8X31δ = −X112δ +X211δ.

Proof. The eikonal equation (2.2) can be stated as

(4.7) (X1δ)2 + (X2δ)2 = 1.

Therefore (4.1) follows from differentiating (4.7), by X1, X2, and X3.
The equations in (4.1) show that the 3 × 2 matrix whose entries are Xij , with i = 1, 2, 3 and

j = 1, 2, has a non-trivial kernel. Therefore this matrix has rank at most 1, and the equations in
(4.2) follow.

For (4.3), it is sufficient to differentiate the ith equation of (4.1) by Xi, for i = 1, 2, 3. Similarly,
the equations in (4.4) follow from differentiating the third equation of (4.1) by X1 and X2.

Finally, (4.5) and (4.6) hold because X3 commutes with both X1 and X2, indeed:

X33δ = −1
4
X3(X12δ −X21δ) =

1
4

(−X312δ +X321δ),

and

2X32δ = X32δ +X23δ = −1
4

(X12 −X21)X2δ +X2

(
−X12δ +X21δ

4

)
=

1
4

(−X122δ +X212δ −X212δ +X221δ).

The second equation of (4.6) is obtained in an analogous way. �

Recall that the embedded horizontal normal N is equal to the horizontal gradient of δ. Hence,
by definition, for i ≥ 1,

divH
(i)∇Hδ = divH

(
(divH

(i−1)∇Hδ) · ∇Hδ
)

= (divH
(i−1)∇Hδ)∆Hδ + 〈∇H(div(i−1)

H ∇Hδ),∇Hδ〉,

where ∆Hδ is the horizontal Laplacian of δ, defined by

∆Hδ := divH(∇Hδ).

The second part of the above expression behaves very nicely. Indeed, the operator g defined by

g(α) := 〈∇Hα,∇Hδ〉,

is linear and satisfies the Leibniz rule, i.e., given another differentiable function β : U → R,

g(α+ β) = g(α) + g(β),

g(αβ) = g(α)β + αg(β).

With this notation in hand, we may write

(4.8) divH
(i)∇Hδ = A

(
divH

(i−1)∇Hδ
)

+ g
(

divH
(i−1)∇Hδ

)
.
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Lemma 4.2. The following relations hold:

g(1) = 0,(4.9)

g(A) = B + 2C −A2,(4.10)

g(B) = 0,(4.11)

g(C) = D −AC,(4.12)

g(D) = −E,(4.13)

g(E) = −2AE + 2CD.(4.14)

Proof. The equality (4.9) follows from the Leibniz rule. For (4.10), we calculate

g(A) = 〈∇H(X11δ +X22δ),∇Hδ〉 = (X1δ) (X111δ +X122δ) + (X2δ) (X211δ +X222δ)

(4.3)
= −(X11δ)2 − (X12δ)2 − (X2δ)(X112δ)

− (X21δ)2 − (X1δ)(X221δ)− (X22δ)2 + (X1δ)(X122δ) + (X2δ)(X211δ)

= −
(
X2

11δ +X2
22δ + 2(X12δ)(X21δ)

)
−
(
X2

21δ +X2
12δ − 2(X12δ)(X21δ)

)
− (X1δ)(−X122δ +X221δ) + (X2δ)(−X112δ +X211δ)

(4.2),(4.6)
= −(X11δ +X22δ)2 − (−4X3δ)2 − 8(X1δ)(X32δ) + 8(X2δ)(X31δ)

= −A2 +B + 2C.

For (4.11),

g(B) = −〈∇H(X3δ)2,∇Hδ〉 = −2(X1δ)(X3δ)(X13δ)− 2(X2δ)(X3δ)(X23δ)
(4.1)
= 0.

For (4.12),

g(C) = −4 (〈∇H((X1δ)(X32δ)),∇Hδ〉 − 〈∇H((X2δ)(X31δ)),∇Hδ〉)

= −4(X32δ) ((X1δ)(X11δ) + (X2δ)(X21δ)) + 4(X31δ) ((X1δ)(X12δ) + (X2δ)(X22δ))

− 4(X1δ) ((X1δ)(X132δ) + (X2δ)(X232δ)) + 4(X2δ) ((X1δ)(X131δ) + (X2δ)(X231δ))

(4.1),(4.4)
= −16(X3δ) ((X1δ)(X31δ) + (X2δ)(X32δ))

− 4(X1δ) ((X1δ)(X123δ −X213δ)− (X21δ)(X31δ)− (X22δ)(X32δ))

+ 4(X2δ) ((X2δ)(X213δ −X123δ)− (X11δ)(X31δ)− (X12δ)(X32δ))

(4.5)
= 16

(
(X1δ)2 + (X2δ)2

)
(X33δ)

+ 4(X1δ) ((X21δ)(X31δ) + (X22δ)(X32δ))− 4(X2δ) ((X11δ)(X31δ) + (X12δ)(X32δ))

+ 4(X1δ)(X11δ)(X32δ)− 4(X1δ)(X11δ)(X32δ) + 4(X2δ)(X22δ)(X31δ)− 4(X2δ)(X22δ)(X31δ)

= D + 4 [(X1δ)(X32δ)− (X2δ)(X31δ)] (X11δ +X22δ)

− 4(X32δ) [(X1δ)(X11δ) + (X2δ)(X12δ)] + 4(X31δ) [(X1δ)(X21δ) + (X2δ)(X22δ)]

(4.1)
= D −AC.

For (4.13),

g(D) = 16〈∇H(X33δ),∇Hδ〉 = 16 [(X1δ)(X133δ) + (X2δ)(X233δ)]
(4.3)
= −E.
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For (4.14),

g(E) = 16〈∇H

(
(X31δ)2 + (X32δ)2

)
,∇Hδ〉

= 32(X1δ) [(X31δ)(X131δ) + (X32δ)(X132δ)] + 32(X2δ) [(X31δ)(X231δ) + (X32δ)(X232δ)]

(4.4)
= 32(X31δ) [−(X11δ)(X31δ)− (X12δ)(X32δ)− (X2δ)(X123δ −X213δ)]

+ 32(X32δ) [−(X21δ)(X31δ)− (X22δ)(X32δ) + (X1δ)(X123δ −X213δ)]

(4.5)
= −128(X33δ) [(X1δ)(X32δ)− (X2δ)(X31δ)]− 32(X11δ)(X31δ)2 − 32(X22δ)(X32δ)2

− 32(X31δ)(X32δ) [X12δ +X21δ] + 32(X11δ)(X32δ)2 − 32(X11δ)(X32δ)2

+ 32(X22δ)(X31δ)2 − 32(X22δ)(X31δ)2

= 2CD − 32 (X11δ +X22δ)
[
(X31δ)2 + (X32δ)2

]
+ 32(X31δ) [(X22δ)(X31δ)− (X21δ)(X32δ)]

+ 32(X32δ) [(X11δ)(X32δ)− (X12δ)(X31δ)]

(4.2)
= 2CD − 2AE.

�

Proof of Theorem 1.2. The first four iterated divergences are easy to calculate using (4.8).
We proceed by induction on j, having already proven the desired result when j = 2. Assume

that (1.2) and(1.3) hold for some j ≥ 2. Now,

divH
(2(j+1)−1)∇Hδ = divH

(2j+1)∇Hδ = A divH
(2j)∇Hδ + g(divH

(2j)∇Hδ)
(1.3)
= ABj−2

(
divH

(4)∇Hδ + 2(j − 2)(AD − E)
)

+Bj−2g
(

divH
(4)∇Hδ + 2(j − 2)(AD − E)

)
= ABj−2

(
B2 + 2BC + 2AD − 2E + 2(j − 2)(AD − E)

)
+Bj−2g

(
B2 + 2BC + 2AD − 2E + 2(j − 2)(AD − E)

)
= ABj + 2ABj−1C + 2(j − 1)A2Bj−2D − 2(j − 1)ABj−2E

+Bj−2g
(
B2 + 2BC + 2(j − 1)(AD − E)

)
= ABj + 2ABj−1C + 2(j − 1)A2Bj−2D − 2(j − 1)ABj−2E

+Bj−2 (2BD − 2ABC + 2(j − 1)Ag(D) + 2(j − 1)Dg(A)− 2(j − 1)g(E))

= ABj + 2ABj−1C + 2(j − 1)A2Bj−2D − 2(j − 1)ABj−2E + 2Bj−1D

− 2ABj−1C − 2(j − 1)ABj−2E − 2(j − 1)A2Bj−2D + 4(j − 1)Bj−2CD

+ 2(j − 1)Bj−1D + 4(j − 1)ABj−2E − 4(j − 1)Bj−2CD

= Bj−1 (AB + 2D + 2(j − 1)D)

= B(j+1)−2
(

divH
(3)∇Hδ + 2((j + 1)− 2)D

)
.

Finally, using the result just obtained for divH
(2j+1)∇Hδ, we get the following
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divH
(2(j+1))∇Hδ = divH

(2j+2)∇Hδ = A divH
(2j+1)∇Hδ + g(divH

(2j+1)∇Hδ)

= ABj−1
(

divH
(3)∇Hδ + 2(j − 1)D

)
+Bj−1g

(
divH

(3)∇Hδ + 2(j − 1)D
)

= ABj−1 (AB + 2D + 2(j − 1)D) +Bj−1g (AB + 2D + 2(j − 1)D)

= ABj−1 (AB + 2jD) +Bj−1g (AB + 2jD)

= A2Bj + 2jABj−1D +Bjg(A) + 2jBj−1g(D)

= A2Bj + 2jABj−1D −A2Bj + 2BjC +Bj+1 − 2Bj−1E

= Bj−1
(
B2 + 2BC + 2jAD − 2jE

)
= Bj−1

(
B2 + 2BC + 2AD − 2E + 2(j − 1)(AD − E)

)
= B(j+1)−2

(
divH

(4)∇Hδ + 2((j + 1)− 2)(AD − E)
)
.

This completes the induction argument. �

4.2. Analyticity of the volume function. As an application of the recursive formula for the
iterated divergences found in the previous section, we show that the volume function is analytic.
This completes the proof of the main theorem of this paper.

Theorem 4.3. For ε ≥ 0, let TH(B0,Ω, ε) be a localized Heisenberg ε-neighborhood of Ω as defined
in Section 3.1. Then the function a(0) : [0, s0]→ R defined by

a(0)(ε) = L3
(
TH(B0,Ω, ε)

)
is real-analytic, and has a power series expansion at ε = 0 given by

a(0)(ε) = L3(Ω ∩Q) +
∞∑
i=1

(∫
∂Ω∩Q

(divH
(i−1)∇Hδ) dH3

dcc

)
εi

i!
.

Proof. We estimate a(i)(ε) for a positive even integer i = 2j and ε ∈ [0, s0]; a similar argument is
valid when i is odd. By Theorem 3.5,∣∣∣a(i)(ε)

∣∣∣ ≤ ∫
δ−1(ε)∩Q

∣∣∣divH
(2j−1)∇Hδ

∣∣∣ dH3
dcc

=
∫
δ−1(ε)∩Q

∣∣ABj−1 + 2(j − 1)Bj−2D
∣∣ dH3

dcc

≤
∫
δ−1(ε)∩Q

(|A|+ |B|)j + 2(j − 1) (1 + |B|+ |D|)j dH3
dcc .

Due to the smoothness of δ, there exists a constant L > 0 such that the last integrand is bounded
by Lj on compact sets. Since δ−1(ε) ∩Q is included in a compact set, we have that there exists a
constant M > 0 satisfying

(4.15) sup
ε∈[0,s0]

∣∣∣a(i)(ε)
∣∣∣ ≤M j .

This and its counter-part for odd i quickly imply the analyticity of a(0). �
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5. An example and final remarks

In this section we present an example in which we can calculate the volume of a localized
Heisenberg ε-tube. The basic idea is to view the localizing set Q as foliated by integral curves
of the flow of the horizontal normal. It is in general non-trivial to calculate the signed distance
function to a given set, the embedded horizontal normal, or its flow. However, general results from
[?] and [?] give a formula for the integral curves of the embedded horizontal normal. The embedded
horizontal normal itself can then be obtained by differentiation, and in certain cases (such as the
coming example), a change of coordinates can be used to determine the signed distance function.

Example 5.1. We now consider the half-space

Hx−3
= {(x1, x2, x3) ∈ H : x3 < 0}

with boundary
∂Hx−3

= {(x1, x2, x3) ∈ H : x3 = 0},

which has a single characteristic point at (0, 0, 0).
For 0 < r < R, we consider the annulus

B0 = {(x1, x2, 0) ∈ R3 : r2 < x2
1 + x2

2 < R2},

and denote by U ⊆ H an open set that contains the annulus B0 and on which the signed-distance
to ∂Hx−3

function δ is C∞-smooth. Denote by N : U → R3 the embedded horizontal normal. By

[?, Proposition 3.1], for g = (g1, g2, 0) ∈ ∂Hx−3
∩ U , the solution ϕg = (ϕ1, ϕ2, ϕ3) of the Cauchy

problem {
ϕ̇(s) = N(ϕ(s)),
ϕ(0) = g,

is given by

(5.1) ϕg(s) =

 ϕ1(s)
ϕ2(s)
ϕ3(s)

 =



g1

2

(
1 + cos

(
2s
|g|

))
+
g2

2
sin
(

2s
|g|

)
g2

2

(
1 + cos

(
2s
|g|

))
− g1

2
sin
(

2s
|g|

)
|g|2

2

(
2s
|g|

+ sin
(

2s
|g|

))
.

 ,

where |g| = (g2
1 + g2

2)1/2. Moreover, there is a number s0 > 0 such that for any g ∈ U0, the solution
above exists on the interval [−s0, s0].

We consider the localizing set Q generated by the set B0 and depth s0, i.e., we localize using
the annulus and the flow defined above. We wish to calculate, for 0 < ε < s0, the volume of the
resulting tube TH(B0,Hx−3

, ε).

We introduce a new coordinate system of Q, as in [?]. For each point (x1, x2, x3) ∈ Q, we may
find a g ∈ B0 and s ∈ [−s0, s0] so that

(x1, x2, x3) = ϕg(s).

We first express g in polar coordinates as

g = (g1, g2, 0) = (ρ cos θ, ρ sin θ, 0),

and then set
β =

s

ρ
and α = θ − β.
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Our new coordinate system on Q is (ρ, α, β). Writing (5.1) in these coordinates and simplifying
shows that

(x1, x2, x3) = ϕg(s) =
(
ρ cos(β) cos(α), ρ cos(β) sin(α), ρ2

(
β +

sin 2β
2

))
.

By Proposition 3.1,
δ(x1, x2, x3) = s = ρβ.

Hence, using the chain rule, we may calculate that

X3δ =
1
2ρ
, (X1δ)(X32δ)− (X2δ)(X31δ) = − cosβ

2ρ2(cosβ + β sinβ)
,

and

X33δ = − sinβ
4ρ3(cosβ + β sinβ)

, (X31δ)2 + (X32δ)2 =
cos2(β)

4ρ4(cosβ + β sinβ)2
.

Setting β = 0 we can compute the functions A, B, C, D and E restricted to the plane ∂Hx−3
:

A = D = 0, B = − 4
ρ2
, C =

2
ρ2
, E =

4
ρ4
.

Note that the Euclidean outward pointing unit normal to Hx−3
is ν = (0, 0, 1). Hence

||∇δ||−1
R3 =

√
〈X1, ν〉2 + 〈X2, ν〉2 = 2

√
x2

1 + x2
2 = 2ρ.

It follows that∫
∂Ω∩Q

(divH
(0)∇Hδ) dH3

dcc =
∫
∂Ω∩Q

||∇δ||−1
R3 dH2

R3 =
4π
3

(R3 − r3).

Moreover, for each integer n ≥ 0, using (1.3) with j = n+ 1 yields∫
∂Ω∩Q

(divH
(2n+2)∇Hδ) dH3

dcc = 2
∫ 2π

0

∫ R

r
ρ2

((
−4
ρ2

)n−1(−8n
ρ4

))
dρdθ

=
4π(−1)nn22n+1

(1− 2n)
(R1−2n − r1−2n).

Plugging these results into the statement of Theorem 4.3 gives a Taylor series expansion for the
tube L3(TH(B0,Hx−3

, ε)) of depth s0, at ε = 0: namely

(5.2)

L3(TH(B0,Hx−3
, ε)) =

=
4π
3

(R3 − r3)(ε+ s0) + 4π
∞∑
n=0

(−1)n22n+1n
(
R1−2n − r1−2n

)
(1− 2n)(2n+ 3)!

(
ε2n+3 + s2n+3

0

)
.

It is clear that L3(TH(B0,Hx−3
, ε)) blows up as r → 0, and formula (5.2) provides explicitly the

rate of divergence in terms of powers of r.

Before finishing the paper a few remarks are in order: Our first remark is about the regularity
assumptions. In order to avoid technical complications we assumed a maximal degree of regularity,
namely C∞ of our surfaces and the associated defining functions. Therefore all iterated divergences
are a priori well defined. However, our proofs show that the regularity C4 of the surface suffices.
Indeed, this implies a C3 regularity of the normalized defining function. Let us observe that all
iterated divergences are expressed as second order derivatives of the normalized distance function,
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an in our proofs we need at most first order derivatives of these expressions. This shows that for
our considerations C4 smoothness is sufficient.

Let us mention,that in the Euclidean versions of Steiner’s formula a much less regularity is
sufficient. Indeed, the notion of positive reach [?] is enough to use in this context. It is in an
interesting problem to study sets of positive reach in the context of sub-Riemannian geometries in
connection with Steiner type formulae.

It is an interesting question to investigate the geometric meaning of the iterated divergences
appearing in this paper. In the forthcoming article: [?] the third coefficient of the expansion
is interpreted as horizontal Gauss curvature. In this paper it is shown that for regular compact
surfaces with no characteristic points, the Steiner formula is reduced to a second degree polynomial.
This could indicate the fact that higher order coefficients have no intrinsic geometric interpretation
and are related to the presence of boundary terms or of the characteristic points.

A natural generalization of Steiner’s formula in Riemannian manifolds is the tube formula of
Weyl [?] which gives the volume of a tube of a sub manifold in the Riemannian context. It would
be very interesting to investigate the validity of tube formulas in higher dimensional Heisenberg
groups.
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