Heterogeneous Treatment Effect Analysis in Stata

Ben Jann

University of Bern, ben.jann@soz.unibe.ch

Heterogeneous Treatment Effects Project Workshop
University of Michigan, Ann Arbor, June 19, 2015
Methods for causal inference from observational data have received much attention in the last two decades or so, especially in econometrics, but also in many other fields.

Starting point of this literature is the Rubin Causal Model (a.k.a. Potential Outcomes Model a.k.a Counterfactual Causality).

Assume a binary treatment variable D and let Y_1 and Y_0 be the potential outcomes with and without treatment, respectively. The treatment effect for individual i is then simply the difference between the potential outcomes, that is

$$
\delta_i = Y_1^i - Y_0^i
$$

The fundamental problem of causal inference, however, is that we can only observe Y_1^i or Y_0^i. One of the potential outcomes must be counterfactual because what we observe is

$$
Y_i = \begin{cases}
Y_1^i & \text{if } D_i = 1 \\
Y_0^i & \text{if } D_i = 0
\end{cases}
$$
The idea of defining causality in terms of potential outcomes is not new:

"Thus, if a person eats of a particular dish, and dies in consequence, that is, would not have died if he had not eaten of it, people would be apt to say that eating of that dish was the cause of his death." (Mill 2002[1843]: 214)
Introduction

- A basic paradigm of the literature based on the potential outcomes model is that there can be individual heterogeneity in treatment effects, which stands in contrast to traditional regression modeling assuming constant structural parameters.
- The view that treatment effects can be heterogeneous led to new methods for causal inference and also to new uses and interpretations of existing methods (e.g. LATE interpretation of IV estimators, revival of matching and regression discontinuity designs).
- Surprisingly, however, not much attention is usually paid to the explicit analysis of the heterogeneity of treatment effects in applied studies.
- The basic quantity of interest is the average treatment effect (ATE)

\[ATE = E[\delta_i] = E[Y^1_i - Y^0_i] = E[Y^1_i] - E[Y^0_i] \]

or sometimes the average treatment effect on the treated

\[ATT = E[\delta_i|D_i = 1] \]

or the average treatment effect on the untreated

\[ATC = E[\delta_i|D_i = 0] \]
Introduction

- Why should we care about analyzing heterogeneous treatment effects?
- The naive estimator of the average treatment effect based on observational data can be decomposed as

\[NATE = E[Y^1_i | D_i = 1] - E[Y^0_i | D_i = 0] = E[\delta_i] + E[Y^0_i | D_i = 1] - E[Y^0_i | D_i = 0] \]

- The focus of most estimation approaches is to eliminate the first type of bias, but also the second type of bias might threaten the validity of causal inference.
Introduction

- For example, in the literature on economic returns to higher education various theories have been proposed that imply heterogeneous effects depending on the probability to go to college.
 - Human-capital theory in economics predicts *positive selection* into treatment, because people choose to go to college based on the expected economic returns. This is a widely accepted view.
 - More sociologically oriented literature suggests that college attendance is strongly influenced by social origin, which leads to *negative selection* into treatment under certain conditions.

- To evaluate these theories it is therefore crucial to analyze how treatment effects vary with treatment probability.

- Ultimately, believes about the mechanisms at play determine educational policy.
Analysis of Heterogeneous Treatment Effects in Stata

To support the analysis of treatment-effect heterogeneity we developed a Stata command called \texttt{hte} (Xie, Brand, and Jann 2012).

The approach of \texttt{hte} is to assume conditional unconfoundedness given a set of covariates and then analyze the treatment effect across the propensity score.

Such an analysis can be revealing even if unconfoundedness does not hold.

Three different algorithms are provided by \texttt{hte}:

- The Stratification-Multilevel Method (SM)
- The Matching-Smoothing Method (MS)
- The Smoothing-Differencing Method (SD)
The Stratification-Multilevel Method (SM)

The SM algorithm consists of four steps.

1. Estimate the propensity score (i.e. the conditional probability to receive treatment) given the covariates (using probit or logit).
2. Construct balanced propensity score strata.
 ★ hte calls the pscore command for this purpose (Becker and Ichino 2002).
3. Estimate strata-specific average treatment effects.
 ★ In each stratum, a regression model on treatment is estimated, optionally including control variables to account for remaining covariate imbalance within strata.
4. Estimate the trend of treatment effects across propensity score strata.
 ★ hte regresses the strata-specific treatment effects on strata rank using variance weighted least squares (vwls; with the variance based on the standard errors of the strata specific treatment effects).
The Matching-Smoothing Method (MS)

The MS algorithm consists of the following steps.

1. Estimate the propensity score (i.e. the conditional probability to receive treatment) given the covariates (using probit or logit).
2. Match treated units and control units with a matching algorithm based on the propensity score and compute a counterfactual outcome for each observation based on the matched observations from the other group.
3. Plot the differences between observed and potential outcomes against the propensity score.
4. Apply a nonparametric model such as local polynomial regression (Fan and Gijbels 1996) or lowess smoothing (Cleveland 1979) to the matched differences to yield a pattern of treatment effect heterogeneity across the propensity score.
The Smoothing-Differencing Method (SD)

The SD algorithm works as follows.

1. Estimate the propensity score (i.e. the conditional probability to receive treatment) given the covariates (using probit or logit).

2. For each group (the control group and the treatment group) fit separate nonparametric regressions of the dependent variable on the propensity score.

3. Obtain the pattern of treatment effect heterogeneity as a function of the propensity score by taking the difference in the nonparametric regression line between the treated and the untreated at different levels of the propensity score.
Example

- Effect of preschool childcare on the probability to go to high school in Germany (Fritschi and Jann 2009).
- Data: German Socio-Economic Panel (GSOEP)
- Variables:
 - Attended preschool childcare (the treatment)
 - Goes to high school (the outcome)
 - Gender
 - Birth cohort
 - Number of siblings
 - Education of parents
 - Household income
 - Mother’s labor force participation
 - Migration background
 - East/west germany
The Stratification-Multilevel Method (SM)

```stata
. hte sm highschool childcare
> siblings1 siblings2 siblings3
> peduclow peduchigh lnhhinc motherlfp immigrant east
> , nograph

Number of obs = 594

|              | Coef.  | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|--------------|--------|-----------|-------|------|---------------------|
| highschool   |        |           |       |      |                     |
| TE by strata |        |           |       |      |                     |
| 1            | .4878277 | .158317   | 3.08  | 0.002 | .1775321 .7981234   |
| 2            | .1740196 | .1840194  | 0.95  | 0.344 | -.1866517 .5346909  |
| 3            | -.0155844 | .1674786  | -0.09 | 0.926 | -.3438365 .3126677  |
| 4            | -.0384615 | .1910365  | -0.20 | 0.840 | -.4128862 .3359632  |
| 5            | .1960784 | .1689491  | 1.16  | 0.246 | -.1350557 .5272126  |
| 6            | .1401515 | .2007209  | 0.70  | 0.485 | -.2532543 .5335573  |
| 7            | .047619  | .3531523  | 0.13  | 0.893 | -.6445468 .7397849  |
| Linear trend |        |           |       |      |                     |
| _slope      | -.0532744 | .0388194  | -1.37 | 0.170 | -.1293591 .0228102  |
| _cons       | .3533125 | .1521936  | 2.32  | 0.020 | .0550185 .6516065   |

TE = treatment effect
. hte sm graph, yline(0)
```
The Stratification-Multilevel Method (SM)

slope of linear trend (s.e.) = -0.053 (0.039)

95% CI
TE within strata
linear trend
The Matching-Smoothing Method (MS)

```
. hte ms highschool childcare ///
> siblings1 siblings2 siblings3 ///
> peduclow peduchigh lnhhinc motherlfp immigrant east ///
> , kernel lpolyci(degree(1) lw(*2) ciplot(rline)) yline(0)
(running psmatch2 ...)
```

Probit regression

```
Number of obs = 594
LR chi2(15) = 184.44
Prob > chi2 = 0.0000
Log likelihood = -165.5364 Pseudo R2 = 0.3578
```

```
|       | Coef.   | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|-------|---------|-----------|-------|------|----------------------|
| female | -.0505153 | .1566255  | -0.32 | 0.747 | -.3574957 to .2564651 |
| cohort1991 | -.1728172 | .217302  | -0.80 | 0.426 | -.5987214 to .253087 |
| cohort1992 | -.6398071 | .2502713 | -2.56 | 0.011 | -1.13033 to -.1492844 |
| cohort1993 | -.5347488 | .249634 | -2.14 | 0.032 | -1.024023 to -.0454751 |
| cohort1994 | -.6569049 | .2735351 | -2.40 | 0.016 | -1.193024 to -.120786 |
| cohort1995 | -.727918  | .35289  | -2.06 | 0.039 | -1.41957 to -.0362663 |
| siblings1 | .0277498  | .1834415 | 0.15  | 0.880 | -.331789 to .3872885 |
| siblings2 | -.4883101 | .296734  | -1.65 | 0.100 | -1.069899 to .0932792 |
| siblings3 | -.4729711 | .4123559 | -1.15 | 0.251 | -1.281174 to .3352316 |
| peduclow | .0221446  | .2546728 | 0.09  | 0.931 | -.4770049 to .5212941 |
| peduchigh | .449848   | .1978372 | 2.27  | 0.023 | .0620942 to .8376018 |
| lnhhinc | -.1936814 | .1942748 | -1.00 | 0.319 | -.5744529 to .1870902 |
| motherlfp | .3912866  | .1703624 | 2.30  | 0.022 | .0573825 to .7251907 |
| immigrant | -.1015982 | .2362028 | -0.43 | 0.667 | -.5645473 to .3613508 |
| east | 1.778842  | .191471  | 9.29  | 0.000 | 1.403566 to 2.154118 |
```

Note: S.E. does not take into account that the propensity score is estimated.

Ben Jann (University of Bern)
HTE Analysis in Stata
Ann Arbor, 19.06.2015
The Matching-Smoothing Method (MS)

![Graph showing the Matching-Smoothing Method](image)

- **Treatment Effect**
 - untreated
 - treated

- **Propensity Score**
 - lpoly CI
 - lpoly smooth

Ben Jann (University of Bern)
HTE Analysis in Stata
Ann Arbor, 19.06.2015
The Smoothing-Differencing Method (SD)

. hte sd highschool childcare ///
> siblings1 siblings2 siblings3 ///
> peduclow peduchigh lnhhinc motherlfp immigrant east ///
> , ciopts(recast(rline)) yline(0)
The Smoothing-Differencing Method (SD)
Wishes and Grumbles

- hte has many limitations and various requests for additions have been made.
 - support for multiple imputation
 - Rosenbaum bounds or similar
 - nonlinear level-2 models in hte sm
 - user-provided propensity score in hte sm (requires reimplementation of pscore)
 - better control over construction PS strata and better returns (requires reimplementation of pscore)
 - support for sampling weights/complex surveys; better support for confidence interval estimation
 - better support for matching algorithms in hte ms (requires reimplementation of psmatch2)
 - using hte to generalize results from experimental data to a population
 - ...
References

