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ABSTRACT 26 

The in-house Carba-NP and Blue-Carba tests were compared using 30 carbapenemase- 27 

and 33 non-producing Enterobacteriaceae. Tests were read by three operators. 100% 28 

sensitivity was reported for both tests, but Carba-NP was slightly more specific than 29 

Blue-Carba (98.9% vs. 91.7%). We describe potential sources of error during tests’ 30 

preparation and reading. 31 

 32 
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The continuous worldwide expansion of carbapenemase-producing Enterobacteriaceae 50 

(CPE) is a serious concern as infections caused by these pathogens have an increased 51 

mortality, morbidity, and associated health-care costs (Tängdén and Giske, 2015). 52 

Treatment options for CPE infections are often limited, since these organisms usually 53 

co-carry resistant determinants to other classes of antibiotics (Tängdén and Giske, 54 

2015). Moreover, the heterogeneity of carbapenemase classes and types leads to a 55 

multiplicity of diverse carbapenem hydrolytic efficiencies and resistance phenotypes 56 

(Hrabák et al., 2014, Tängdén and Giske, 2015). Since carbapenem resistance mediated 57 

by carbapenemase production is continuously rising in Enterobacteriaceae, rapid, 58 

inexpensive, and reliable methods are urgently needed to identify CPE (Dortet et al., 59 

2014). 60 

Carba-NP and Blue-Carba are recent quick biochemical methods that detect 61 

carbapenemase activity when the enzyme breaks imipenem's β-lactam ring, leading to a 62 

pH decrease and consequent color shift of the pH-indicator in solution (Nordmann et al., 63 

2012, Pires et al., 2013). Both methods proved to be fast (detection observed ≤2 hours), 64 

highly sensitive, specific and very cheap. Further studies have evaluated both tests, 65 

emphasizing their reproducibility, high sensitivity and specificity (Pasteran et al., 2015, 66 

Vasoo et al., 2013). However, others have questioned the utility of these methodologies 67 

(Tijet et al., 2013). Moreover, studies comparing the performance of the two tests are 68 

still scarce and those evaluating the impact of operators’ experience in reading and 69 

interpreting results are lacking.   70 

Since commercial tests have been just launched into the market (Novais et al., 71 

2015, Poirel and Nordmann, 2015), we aim to compare the in-house made Carba-NP 72 

and Blue-Carba tests using a characterized collection of carbapenemase producing and 73 

non-producing Enterobacteriaceae in order to further identify potential sources of error.  74 
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Sixty-one previously characterized Enterobacteriaceae from different sources and 75 

countries (CPE, n=30, including 9 NDM, 10 OXA-48, 5 KPC, 3 NDM plus OXA-48, 2 76 

VIM, and 1 IMP producers; non-CPE, n=33) recovered from cation adjusted Mueller-77 

Hinton agar (Becton-Dickinson) were tested using Carba-NP and Blue-Carba, as 78 

previously described (Nordmann, Poirel and Dortet, 2012, Pires, Novais and Peixe, 79 

2013). Both assays were executed in parallel two times each in non-consecutive days. 80 

Tests were performed and read by two different operators with previous experience in 81 

both assays (OP1 and OP2); a third operator (OP3) with no previous experience also 82 

read the results. Results were reported after 2 hours. Operators were blind regarding the 83 

species and bla gene content. Positive results were classified as “+”, weak positive; 84 

“++”, positive; and “+++”, strong positive. MICs for imipenem, meropenem and 85 

ertapenem were assessed using Etest (bioMérieux) or microdilution ESB1F panels 86 

(Trek Diagnostics Systems). 87 

As shown in Table 1, an overall sensitivity of 100% was obtained for both 88 

assays; however, Carba-NP revealed a higher specificity than Blue-Carba (98.9% vs. 89 

91.7%, respectively). These high sensitivity and specificity for both tests are consistent 90 

with previous reports (Pasteran, Veliz, Ceriana, Lucero, Rapoport, Albornoz, Gomez 91 

and Corso, 2015, Pires, Novais and Peixe, 2013, Vasoo, Cunningham, Kohner, Simner, 92 

Mandrekar, Lolans, Hayden and Patel, 2013, Yusuf et al., 2014). 93 

For Carba-NP, interpretation was more homogeneous, with OP1 interpreting correctly 94 

all isolates, while OP2 and OP3 identified one false-positive result only in the first 95 

assay. Blue-Carba’s interpretation was similar for OP1 and OP2, whereas OP3 96 

interpreted more false-positive results yielding a lower specificity (i.e., 96.9% for OP1 97 

and OP2 vs. 89.4% for OP3). Nevertheless, false-positive results read by OP3 decreased 98 

in the second assay (i.e., from 5 to 2). This emphasizes the fact that both tests are easy 99 
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to interpret even for less experienced operators and that misinterpretations rapidly 100 

decrease over time. Nonetheless, the variability of the intensities reported by the 101 

different operators also highlights the increased subjectivity of both methods (Table 1). 102 

For both tests, all false-positive results were classified as weak positives (“+”). A false-103 

positive strain was consistently found by all operators with the Blue-Carba assays for an 104 

ACT-1-producing E. coli. Previous kinetic studies have shown that the plasmid-105 

mediated AmpC (pAmpC) ACT-1 hydrolyzes slowly imipenem (Mammeri et al., 2010). 106 

It is to note that kinetic experiments have a much shorter time span compared to both 107 

tests. Additionally, we hypothesize that false-positive results can arise when different 108 

inoculum amounts are used in the test and the negative control solutions. This could 109 

explain the misclassification of the pAmpC MIR-1-producing K. pneumoniae as a 110 

positive result in the first assay but not in the second (Table 1). 111 

As previously reported, class A and B carbapenemases yielded stronger results 112 

compared to class D enzymes regardless of the MICs attained for carbapenems (Table 113 

1) (Österblad et al., 2014, Pasteran, Veliz, Ceriana, Lucero, Rapoport, Albornoz, Gomez 114 

and Corso, 2015, Pires, Novais and Peixe, 2013). Nevertheless, OXA-48 producers 115 

usually yielded stronger results with Blue-Carba than Carba-NP (e.g., 6 vs. 3 with 116 

“+++” for OP1 during the second assay, respectively). This difficult detection of OXA-117 

48-like enzymes with Carba-NP is potentially linked to the B-PERII buffer. β-118 

lactamases with lower imipenem hydrolytic efficiency produce less metabolites to 119 

overcome the buffer effect yielding weaker results. This has been reported as “buffer 120 

inhibition” which also justifies a different extraction solution used in the CarbaAcineto-121 

NP that is mainly designed to detect OXA-type carbapenemases in Acinetobacter spp. 122 

(Dortet et al., 2014, Österblad, Hakanen and Jalava, 2014).  123 
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Interestingly, when comparing the agreement between the two tests considering only 124 

positive vs. negative results, the tests exhibit an almost perfect agreement [Kappa=0.91 125 

(CI 95% 0.87-0.95)], emphasizing that both can be used to detect CPE given their high 126 

sensitivities and specificities. Additionally, this also highlights that the decreased cost of 127 

Blue-Carba can be extremely important in low income settings (Yusuf, Van Der 128 

Meeren, Schallier and Piérard, 2014). 129 

Several potential sources of error have been identified. In our experience: i) the lack of 130 

standardization of the inoculum; ii) improper homogenization of the inoculum in the 131 

test solutions (Österblad, Hakanen and Jalava, 2014); and iii) improper storage of the 132 

test reagents (especially imipenem) can be linked to underperformance of both tests. 133 

Moreover, to improve detection, it is also suggested to increase the inoculum in either 134 

tests and also to perform them from specific media types and/or brands (Österblad, 135 

Hakanen and Jalava, 2014, Pires, Novais and Peixe, 2013, Tijet, Boyd, Patel, Mulvey 136 

and Melano, 2013). Despite the strong critics by some authors (Tijet, Boyd, Patel, 137 

Mulvey and Melano, 2013), it is undeniable that both methods can prove as an 138 

important clinical and epidemiological tool to be implemented in microbiology 139 

diagnostic labs. Additionally, the development of Carba-NP has encouraged the 140 

scientific community to improve and develop further quick alternative methods (Bakour 141 

et al., 2015, Bogaerts et al., 2015, Pasteran et al., 2015).   142 

In conclusion, we demonstrated that both in-house Carba-NP and Blue-Carba 143 

tests are high sensitive and specific and thus suitable for rapid detection of CPE with an 144 

almost perfect agreement between the two tests. The simplicity of both tests makes 145 

them suitable for unexperienced operators readily identify carbapenemase production. 146 

Increasing the awareness of the possible errors on the test preparation and the 147 
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improvement of the protocol by standardizing the inoculum could be very important for 148 

increased sensitivity and specificity values. 149 

 150 
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 40 
Table 1. Results obtained for the Carba NP and Blue-Carba tests performed using a collection of well-characterized strains (30 CPE and 33 non-CPE) 41 

Acquired β-lactamases 
Species 
(No. of strains with the 
same assay results) 

Carba NP test Blue-Carba test 
MIC (µg/ml) Reference 

or ATCC strain Assay 1 Assay 2 Assay 1 Assay 2 

OP1 OP2 OP3 OP1 OP2 OP3 OP1 OP2 OP3 OP1 OP2 OP3 IMP ERT MEM 

Carbapenemase producers a                  

Class A (n=5)   
            

    

KPC-2 K. pneumoniae (n=3) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ≥8 ≥64 ≥64 This study 

  K. pneumoniae (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ++ +++ 1 16 4 This Study 

  K. pneumoniae (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ++ ++ 1 8 2 ATCC BAA-1705 

Class B (n=11)   
            

    

IMP-1 K. pneumoniae (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 16 64 32 This Study 

NDM-1 K. pneumoniae (n=5) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ≥1 ≥4 ≥2 This Study,  
(Principe et al., 2015) 

  K. pneumoniae (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ ++ +++ ++ ≥64 ≥64 ≥64 This Study 

  E. coli (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 16 ≥64 ≥64 This study 

  E. coli (n=1) ++ ++ ++ ++ ++ ++ +++ +++ +++ +++ +++ +++ 8 ≥64 ≥64 ATCC BAA-2452 

  E. cloacae (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 16 64 64 This Study 

VIM-1 K. pneumoniae (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 8 0.5 1 This Study 

VIM-2 K. pneumoniae (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ++ 64 ≥64 ≥64 This Study 

Class D (n=10)   
            

    

 OXA-48 K. pneumoniae (n=1) + + + + + + +++ +++ +++ +++ +++ +++ 4 32 16 This Study 

  K. pneumoniae (n=1) ++ ++ ++ ++ +++ +++ +++ +++ +++ +++ +++ ++ 4 64 4 This Study 

  K. pneumoniae (n=1) + ++ + ++ + ++ ++ ++ +++ ++ +++ ++ 4 ≥8 ≥16 This study 

 K. pneumoniae (n=1) +++ +++ ++ +++ +++ ++ +++ +++ +++ +++ ++ +++ 4 ≥8 2 This Study 

 K. pneumoniae (n=1) ++ ++ + ++ ++ + +++ +++ +++ ++ ++ ++ 0.5 0.5 ≤0.5 This Study 

 K. pneumoniae (n=1) ++ ++ ++ + ++ + ++ +++ ++ +++ +++ ++ 8 >= 8 2 (Giani et al., 2014) 

 K. pneumoniae (n=1) ++ ++ ++ ++ +++ ++ ++ ++ ++ ++ ++ ++ 4 >= 8 2 (Giani et al., 2014) 

  E.coli (n=1) +++ +++ ++ +++ +++ ++ +++ +++ +++ ++ ++ ++ 0.5 4 4 This Study 

 E.coli (n=1) + + + ++ ++ ++ ++ ++ ++ +++ +++ +++ 1 4 1 This Study 

  Salmonella Kentucky 
(n=1) 

+++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ≤0.25 1 ≤0.5 (Seiffert et al., 2014) 

Class B + class D (n=3)   
            

    

NDM-1 + OXA-48 C. freundii (n=1) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ++ 4 ≥8 2 This Study 

 
K. pneumoniae (n=2) +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ ≥4 ≥4 ≥16 This Study 

Non-carbapenemase 
d  

                  

Class A (n=9)                   

CTX-M-1 E. coli (n=2) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 (Endimiani et al., 2012) 

CTX-M-1-like E. coli (n=1) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 This Study 

CTX-M-15-like K. oxytoca (n=1) - - - - - - - - + - - - ≤0.25 ≤0.25 ≤0.5 This Study 

SHV-12 E. coli (n=2) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 (Endimiani et al., 2012) 

TEM-52 E. coli (n=2) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5  

VEB-6 P. mirabilis (n=1) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 (Seiffert et al., 2013) 

Class C (n=10)                   

ACT-1 E. coli (n=1) - - - - - - + + + + + + ≤0.25 ≤0.25 ≤0.5 b 

                    

CMY-2 E. coli (n=4) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 (Endimiani et al., 2012) 

 P. mirabilis (n=1) - - - - - - - - - - - - 2 ≤0.25 ≤0.5 This Study 

DHA-1 E. coli (n=1) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 This Study 

  K. pneumoniae (n=1) - - - - - - - - - - - - ≤0.25 0.5 ≤0.5 (Pilo et al., 2015) 

FOX-1 E. coli (n=1) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 b 

MIR-1 K. pneumoniae (n=1) - - - - - - + + + - - - ≤0.25 ≤0.25 ≤0.5 b 

Class A + class C (n=1)                   

CTX-M-15-like + CMY-2 E. coli (n=1) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 This Study 

No Acquired β-lactamases                   

 
C. koseri (n=1) - - - - - - - - - - - + ≤0.25 ≤0.25 ≤0.5 This Study 

  C. koseri (n=1) - - - - - - - - - - - - ≤0.25 0.5 ≤0.5 This Study 

  E. coli (n=2) - - - - - - - - - - - - ≤0.25 ≤0.25 ≤0.5 
ATCC 25922,  

(Endimiani et al., 2012) 

  E. coli (n=1) - - - - + - - - - - - - ≤0.25 ≤0.25 ≤0.5 This Study 

  E. aerogenes (n=1) - - - - - - + + + - - - 1 0.75 ≤0.5 This Study 

  E. cloacae (n=1) - - - - - - - - + - - - ≤0.25 2 ≤0.5 This Study 

  K. pneumoniae (n=5) - - - - - - - - - - - - ≤1 ≤8 ≤0.5 ATCC BAA-1706,  
This Study 

  K. pneumoniae (n=1) - - - - - + - - - - - - ≤0.25 ≤0.25 ≤0.5 This Study 

Note. ”+++”, strong positive; “++”, positive; “+”, weak positive; “-“, negative; IMP, imipenem; ERT, ertapenem; MEM, meropenem 42 
a Only carbapenemase genes are shown; b A kind gift from Robert A. Bonomo, Cleveland, OH, USA. 43 
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