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SUMMARY 59 Carbapenemases have become a significant mechanism for broad-spectrum β-lactam 60 resistance in Enterobacteriaceae and other Gram-negative bacteria such as Pseudomonas and 61 
Acinetobacter spp. Intestinal carriage of carbapenemase-producing organisms (CPO) is an 62 important source of transmission. Isolation of carriers is one strategy that can be used to limit 63 spread of these bacteria. In this review, we critically examine the clinical performance, advantages 64 and disadvantages of methods available for the detection of intestinal carriage of CPO. Culture-65 based methods (CDC protocol, chromogenic media, specialized agars, double disk synergy tests) 66 for detecting carriage of CPO are convenient due to their ready availability and low cost, but their 67 limited sensitivity and long turn-around-time may not be always optimal for infection control 68 practices.  Contemporary nucleic acid amplification techniques (NAAT) such as real-time PCR, 69 hybridization assays or loop-mediated isothermal amplification (LAMP),  or a combined culture 70 
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and NAAT approach may provide faster results and/or added sensitivity and specificity compared 71 with  culture-based methods. Infection control practitioners and clinical microbiologists should be 72 aware of the strengths and limitations of available methods to determine the most suitable 73 method for their medical facility to fit their infection control needs.   74 
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OVERVIEW AND HISTORICAL PERSPECTIVE 75 
A Thirty-Year Epidemic of Increasing Resistance 76 At some point, almost all Enterobacteriaceae were susceptible to broad-spectrum β-lactam 77 antibiotics, including β-lactam/β-lactamase inhibitor combinations, oxyimino-cephalosporins 78 (e.g., ceftriaxone, ceftazidime, and cefotaxime), aztreonam, and carbapenems.  Regrettably, two 79 seminal events occurred in the past thirty years that have had a major impact in the therapy of 80 infectious diseases. In a manner analogous to the HIV epidemic and its human toll, the evolution of 81 extended-spectrum β-lactamases (ESBLs) three decades ago significantly crippled the activity of 82 oxyimino-cephalosporins and aztreonam, followed by the more recent appearance of 83 carbapenemases in the clinic has limited the efficacy of all currently available β-lactams causing a 84 staggering economic and human burden (1). We have learned that increased colonization 85 pressure from CPO is linked to development of infection (2); and gastrointestinal carriage of ESBL-86 producing Enterobacteriaceae leads to subsequent infection (3).  Still today, after the initial report 87 in 1983 of SHV-2 (the first ESBL reported), and despite significant advances in infection control 88 and supportive care,  infectious caused by ESBL-producing Enterobacteriaceae exact an 89 unacceptable mortality rate and add significantly to health care costs (4–6).  The emergence of 90 carbapenemases in the past 15 years has only added to the crisis caused by ESBL producers (7).  91 The global impact of Klebsiella pneumoniae carbapenemase (KPC) and the New Delhi Metallo-β-92 lactamase (NDM) created a worldwide fear that we are at the “end of the antibiotic era” (8, 9). The 93 World Health Organization (WHO) has classified carbapenemase-producing Enterobacteriaceae 94 (CPE) as one of the three greatest threats to human health (10). Surveys of the molecular 95 epidemiology of carbapenemases, including KPC, OXA-48, VIM, IMP, and NDM producers, reveal 96 
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that the dissemination of these carbapenemases is rapid and lasting. Authorities have advocated 97 for local and regional screening programs as available evidence shows that travelers are a major 98 source of spread (11, 12). Furthermore, in endemic settings, transmission of ESBL-producing 99 
Enterobacteriaceae between healthcare facilities creates a significant challenge for controlling 100 spread of resistance (13). The rate of CPE cases in community hospitals in the Southwestern 101 United States (US) has increased five-fold in the last few years (14). 102 
Current Status of Carbapenemases 103 Carbapenemases are present among all four classes of β-lactamases (Table 1) (15–17).  A 104 rare class C β-lactamase, CMY-10, also demonstrates weak “carbapenemase activity”, but its 105 clinical significance is unclear (17, 18). Additionally, CPO are commonly resistant to multiple drug 106 classes such as aminoglycosides, quinolones, tetracyclines and folate inhibitors due to additional 107 types of resistance genes carried by the organisms (19, 20). To provide the appropriate 108 background for evaluating the detection methods discussed herein, we review for the reader the 109 major carbapenemases that are threatening our β-lactam arsenal.  110 

Class A carbapenemases One of the most common mechanisms of carbapenem resistance 111 among class A enzymes, is the production of KPC β-lactamases.  KPCs were initially detected in a 112 clinical isolate in 1996 in North Carolina; since then, 19 variants have been discovered (21–24).  113 KPC has been found in a variety of Enterobacteriaceae, including Klebsiella spp., E. coli, 114 
Enterobacter spp., Citrobacter spp., Morganella spp., Serratia marcecens (25–29), Roultella spp. 115 (30), Kluyvera (31), Salmonella (32), and non-Enterobacteriaceae such as Aeromonas (33), 116 
Pseudomonas, and Acinetobacter baumannii (34).  117 



7  

Attributable and crude mortality from infections caused by bacteria harboring KPCs are 118 higher than in those patients with non-KPC-producing isolates (35); the reason for this increased 119 mortality is still enigmatic. Epidemiological studies suggest that KPC-producing K. pneumoniae 120 belonging to Sequence type (ST) 258 are of 2 distinct clones and that the clinical behavior of 121 isolates bearing blaKPC-2 is different than blaKPC-3. Molecular differences between the two clones 122 include aminoglycoside resistance and ability to form biofilms (36, 37). The molecular reason for 123 this difference in clinical behavior is not yet understood. The prevalence of KPC-producing 124 bacteria varies widely. In one surveillance study 37% of patients in an intensive care unit (ICU) 125 carried blaKPC (38). Other studies place its prevalence between 0-5%, depending on the population 126 being surveyed (39, 40).   127 KPC is endemic in some areas of Europe (Greece, Italy, and Poland), South America 128 (Colombia and Argentina), the Middle East (Israel), and North America. Recently, cases and 129 localized outbreaks are linked to importation from endemic areas (22, 41). In addition, long-term 130 care facilities (LTCFs) are rapidly becoming reservoirs for KPC producers (41). Other class A 131 carbapenemases are important in some specific locales, such as GES-5 in Brazil where it 132 constitutes the main carbapenemase in Enterobacteriaceae (22).  SME carbapenemases, also 133 belonging to class A and associated with S. marcescens, are quite rare.  134 
Class D carbapenemases  Another important carbapenemase in Enterobacteriaceae is a 135 class D β-lactamase, OXA-48. This β-lactamase, sometimes referred to as the “phantom menace”, 136 was initially identified in a Turkish patient in 2001 (42–44). For the next 5 years, OXA-48 was not 137 isolated from any other country. In 2008 OXA-48 spread outside of Turkey and became prevalent 138 in clinical isolates from Continental Europe, the Middle East, and Northern Africa (45, 46). Since 139 
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then, outbreaks throughout Europe have been reported (45, 47). Most recently, OXA-48 was 140 detected in the US, Canada and South Africa (20, 48–50). Many of these reports involve patients 141 previously treated in Middle Eastern and North African countries (51). Nonetheless, an early 142 outbreak of OXA-48-producing K. pneumoniae in England was not linked to known endemic 143 regions (52). More concerning, however, was the retrospective analysis that uncovered an 144 outbreak of OXA-48-producing Enterobacteriaceae in a Dutch hospital that had been ongoing for 145 two years (53). OXA-48 has been disseminated to a wide variety of Enterobacteriaceae species, 146 including, Klebsiella spp., E. coli, Citrobacter spp., Serratia marcescens (54–56), Enterobacter spp., 147 
Morganella morganii (55), Providencia stuartii (57), Raoultella planticola (56), and Salmonella 148 
enterica (51). 149 OXA-48 is contained in a 61.8 kb self-conjugating IncL plasmid which likely contributes to 150 its ability to spread in Enterobacteriaceae (22, 58, 59). Other OXA-48-like enzymes with 151 carbapenemase activity in Enterobacteriaceae that either have caused, or have the potential to 152 cause, outbreaks include OXA-181, OXA-204, OXA-232, and OXA-162 (22, 43, 60–62). Other class D 153 carbapenemases of clinical importance are OXA-23 and OXA-24/40; these  carbapenemases are 154 found mainly in Acinetobacter baumannii (63). Recently, some OXA-type carbapenemases have 155 been re-classified based on their hydrolytic activity. To illustrate, once  thought to be a 156 carbapenemase, the kinetic profile of OXA-163 resembles more an ESBL than a carbapenemase 157 (62).  158 

Class B carbapenemases The Class B metallo-β-lactamases (MBLs) hydrolyze a broad 159 range of β-lactams including carbapenems (18). The most widespread MBLs include the NDM, 160 VIM, and IMP family enzymes. Of the MBLs, NDM-1 has emerged as a major cause of concern due 161 
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to its widespread dissemination (64). NDM-1 was initially reported in a patient of Indian origin in 162 Sweden in 2007 (65). NDM-1 was subsequently found to be widespread in the Indian 163 subcontinent, including in environmental samples (66) and has now been reported in more than 164 15 countries (67).  In the United Kingdom (UK), 52% of 101 patients with NDM-producing isolates 165 collected from 2008 to 2013 reported healthcare exposure or travel to the Indian subcontinent 166 (68). NDM has spread between different bacterial species, including Enterobacter cloacae, K. 167 
pneumoniae, and Escherichia coli (69).  168 Horizontal spread of NDM has also been described in the clinical setting; in a recent study 169 four neonates from India acquired an NDM-1-producing E. coli from the environment and 170 developed sepsis (70).  Clonal spread of NDM-1-producing isolates has been documented in some 171 regions in India, while spread elsewhere, including to the UK, likely happened due to transfer of 172 plasmids (71). 173 Equally important, IMP- and VIM-producing bacteria have also been found in the US, 174 Europe (mostly Greece, Italy and Southern France), the Middle East, the Indian subcontinent, 175 Japan, and China (22, 72–74). Outbreaks have occurred throughout the world as these MBLs 176 spread as part of complicated integrons (42).  To illustrate, a recent surveillance study performed 177 in Northeastern Ohio uncovered a clinical isolate of Pseudomonas aeruginosa with blaVIM-2 in a 178 class I integron that was proximal to a Salmonella genomic island (SGI), suggesting a 179 recombination event between these two bacteria.  Detailed analysis of this genetic locus showed 180 multiple resistance and transposing elements that likely resulted in the successful dissemination 181 of this isolate (75).   182 
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MECHANISMS OF CARBAPENEM RESISTANCE 183 
Resistance to carbapenems can be mediated by different mechanisms; these include porin 184 mutations, upregulation of efflux pumps, changes in penicillin binding proteins (PBPs), and 185 production of carbapenemases (76–78).  A significant subset of carbapenemase genes are encoded 186 in readily transmissible plasmids. These plasmids, in some circumstances, can be shared between 187 
Enterobacteriaceae and non-Enterobacteriaceae. While the other mechanisms of resistance are 188 also genetically encoded, their transmission is not as frequently observed as for carbapenemase 189 genes and therefore are of a lesser concern. 190  In this treatise, we generally refer to carbapenem resistant organism (CRO) as bacteria that 191 are resistant to imipenem, meropenem, doripenem and ertapenem. We are particularly focused on 192 Gram-negative CROs. These can be divided in Enterobacteriaceae and non-Enterobacteriaceae. 193 Carbapenem-resistant Enterobacteriaceae are frequently referred to as CRE.  Organisms that are 194 carbapenem-resistant due to production of a carbapenemase are referred as carbapenemase-195 producing organisms (CPO); and when the bacteria are Enterobacteriaceae, we refer to them as 196 carbapenemase-producing Enterobacteriaceae (CPE). In addition, there are some bacteria that 197 produce carbapenemases though their MICs for carbapenems do not reach the resistance 198 breakpoint. Given that carbapenemase genes are usually transmissible via plasmids, we argue that 199 they should be targeted for screening and we include them as CPOs or CPEs.  It must be noted that 200 some non-Enterobacteriaceae CPOs such as Burkholderia spp. and Stenotrophomonas maltophilia 201 carry chromosomally-encoded carbapenemases. As such, the chromosomally-encoded 202 carbapenemases are unlikely to be transmitted to other bacteria. When we refer to CPOs in this 203 review, we focus on all Enterobacteriaceae and the non-Enterobacteriaceae that are known to 204 
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carry carbapenemase-encoding plasmids, even when their MIC increase does not reach the 205 resistance breakpoint.  206 
INTESTINAL CARRIAGE OF CPO 207 

As noted above, CPO have emerged as significant healthcare-associated pathogens 208 worldwide (38, 79). While most studies refer to (CPE), we contend that similar conclusions can be 209 applied to CPO, encompassing both Enterobacteriaceae and non-fermenting Gram-negative 210 bacteria. Furthermore, since carbapenemases are transferred via plasmids, both 211 
Enterobacteriaceae and non-Enterobacteriaceae are capable of serving as reservoirs and vectors. 212 Intestinal carriage serves as a reservoir of CPE and can promote cross-transmission in healthcare 213 settings (80). Thus, infection control programs directed at detecting intestinal carriage are 214 essential tools to limit the spread of these pathogens.  215 Several examples highlight the importance of detecting intestinal carriage for effective 216 control of CPO infections. A study in New York documented a significant decrease in carriage rate 217 1 year after an infection control program in an intensive care unit (ICU) was implemented (81). 218 The program involved screening for intestinal carriage of carbapenem-resistant K. pneumoniae  219 and Acinetobacter baumannii with culture of  rectal swabs (BBL CultureSwab Plus, Becton-220 Dickinson) and isolating patients while results were pending or if they were positive. Isolation 221 was carried out at the end of an ICU where rooms were divided only by curtains. The program also 222 involved extensive cleaning with isopropanol and a quaternary ammonium compound that 223 included closing the unit for 2 days. The lack of a quick screening test was a limiting factor for the 224 success of this program. Nonetheless, the investigators were able to reduce the mean number of 225 
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new KPC-producing K. pneumoniae cases from 9.7 to 3.7 per 1,000 patient–days. In another study, 226 Enfield et al. were successful in decreasing CPE incidence in a surgical ICU from 7.77 per 1000 227 patient days to 1.22 cases per 1000 patient days by using enhanced infection control measures 228 and increased surveillance by implementing a PCR-based assay (82).  Two outbreaks of KPC-229 producing organisms were successfully controlled using a “bundle approach”, of which screening 230 for CPE carriage is an integral part (83, 84). Schwaber et al. reported on a country-wide 231 mandatory program that involved physical isolation and dedicated nursing staff in Israel that was 232 able to significantly decrease the incidence of KPC-producing isolates (85). Although screening for 233 asymptomatic carriage was not part of the program this effort involved a very broad isolation 234 policy that relied on careful tracking of known cases throughout the healthcare system. In addition 235 to these real-life examples, a mathematical model also validates the usefulness of screening 236 followed by patient isolation to control CPOs (86). 237  238 
Failure of carbapenem breakpoints to detect all CPO.  239 Detection of CPO in the clinical microbiology laboratory is challenging because 240 interpretation of routine susceptibility testing may fail to flag an isolate as a potential CPO (14, 241 87–89). Although the presence of a carbapenemase confers some resistance, the increase in the 242 MICs due to the β-lactamase may not be enough to consider the isolate resistant to a carbapenem 243 given the defined cut-off values for interpretation of resistance (90). Despite the changes made by 244 the Clinical and Laboratory Standard Institute (CLSI) to the carbapenem interpretative criteria for 245 
Enterobacteriaceae in June 2010, which lowered the MIC values that are interpreted as “non-246 susceptible” (from ≤ 4µg/mL  to ≤1 µg/mL for meropenem) to capture more CPE than under 247 
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previous guidelines, there are some isolates that still escape detection (90). Recently, both the 248 European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI have proposed 249 not testing for resistance mechanisms on clinical isolates, arguing that the lower breakpoints 250 should suffice for treatment purposes (Table 2) (91, 92).  251 We must emphasize that clinical breakpoints are for implementation in the care of patients 252 and not designed for epidemiological surveillance. In any case, uniform consensus on this issue 253 does not exist; the authors of this review agree with Livermore et al. and advocate testing for 254 carbapenemase resistance genes for infection control monitoring, as well as for routine 255 microbiological diagnosis (93). The rationale for this assertion is that although raised MICs against 256 carbapenems may suggest the presence of a CPO, clinical experience demonstrates that MICs will 257 not always reveal the presence of carbapenemases.  EUCAST has proposed the use of 258 epidemiological breakpoints for this purpose followed by phenotypic confirmation by inhibition 259 disks or the Carba NP test (94). All of these changes reflect the notion that to prevent spread of 260 resistance, it is necessary to prevent transmission not only of isolates that are phenotypically 261 resistant, but also of those that carry transmissible elements that may spread to susceptible 262 bacteria confer resistance under the right conditions.  263 Carbapenemases, when not accompanied by other β-lactamases may confer a low-level of 264 resistance to carbapenems (even MICs ≤ 0.5 µg/mL) that does not become evident until it is 265 combined with another resistance mechanism such as production of an ESBL or acquired AmpC 266 (95, 96), porin mutations (97, 98),  or changes in porin expression (99). Conversely, these changes 267 may raise carbapenem MICs in the absence of carbapenemases. OXA-48 is particularly known for 268 
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consistently failing detection if not accompanied by another broad-spectrum β-lactamase (100). 269 This was demonstrated in the unrecognized Dutch outbreak above described (53).  270 Reports show that automated susceptibility systems are also not reliable for detection of 271 carbapenemase-producing K. pneumoniae isolates (101). Using the interpretative criteria for 272 meropenem on the 2005 CLSI M-100 document S15 (which correspond to M100-S20 on Table 2), 273 non-susceptible rates in a panel of confirmed KPC-producers ranged from 93% with Microscan 274 (Beckman Coulter,  Brea, California, USA) to 20% with Sensititre AutoReader (Thermo Scientific, 275 Waltham, MA, USA) compared with 100% for broth microdilution and disk diffusion (102).  For 276 KPC-producing non-Klebsiella isolates, the rate of false-negatives may be higher; though there has 277 been some improvement using the revised CLSI breakpoints (88).  The use of stricter criteria and 278 expert rules in automated systems have increased the sensitivity of CPE detection, but with 279 significant decline on specificity (103). A study comparing disk diffusion, Etest, and VITEK2 280 (bioMérieux, Marcy l’Etoile, France) using previous CLSI and EUCAST breakpoints for meropenem, 281 imipenem, or ertapenem found multiple discrepancies with KPC, ESBL, and MBL producers. 282 However, the VITEK2 system, when using meropenem as a reporter substrate successfully 283 detected all CPE producers (87).  284 On an operational basis ertapenem and meropenem are proposed as the most suitable 285 antibiotics for screening of carbapenemase producers (89). Anderson et al. found that, depending 286 on the method used, 0-6% of KPC-producing isolates were susceptible to ertapenem using the 287 former CLSI ertapenem resistance breakpoint of ≥8 µg/mL. After decreasing the breakpoint to ≤ 1 288 µg/mL (which is higher than the current breakpoint of 0.5 µg/mL) almost all methods tested were 289 able to detect 100% of the KPC producers. Interestingly, the VITEK2 platform when using 290 
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ertapenem as indicator still failed to detect 6% of those isolates (89). The EUCAST guidelines 291 reflect these issues, suggesting meropenem (with a cut-off of 0.125 µg/mL) as the antibiotic with 292 the best balance between sensitivity and specificity, while noting that ertapenem is the most 293 sensitive though lacking specificity (94). Faropenem, a penem antibiotic, has also been proposed 294 as an alternative to carbapenems for detection of carbapenemases (104, 105). Faropenem showed 295 99% sensitivity and 94% specificity when tested against a known panel of 166 PCR-confirmed 296 isolates of carbapenemase-producing Enterobacteriaceae (though OXA-48-producing isolates 297 were underrepresented) and 82 negative controls. Another study compared and a panel of 62 298 PCR-confirmed KPC-producing Enterobacteriaceae and 73 producers of other β-lactamases, 299 showing a non-overlapping inhibitory zone around a 5µg faropenem disk between KPC producers 300 and non-producers (104).  301 
Tests for carbapenemase activity in isolated cultures  302 Tests that detect carbapenemase activity in isolated cultures within a short time period can 303 be used to rapidly determine if a clinical isolate is a CPO.  These tests are generally not suited for 304 direct testing of non-sterile specimens without prior isolation or enrichment steps, so they would 305 not be used to screen fecal specimens or perirectal swabs directly. However, they can be employed 306 as confirmatory assays when using culture-based screening.  307 

The modified Hodge Test (mHT) was the initial screening test recommended for 308 carbapenemase production (89). However, mHT lacks specificity and may produce false-positives 309 in bacteria with complex ESBL or AmpC (both plasmid and overexpressed chromosomal enzmes) 310 backgrounds combined with porin mutations/loss (106, 107). The mHT must be noted that it 311 should be performed with either meropenem or ertapenem as it is known to perform poorly when 312 
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using imipenem as a substrate (92). When focused on KPC enzymes, specificity of this test can be 313 increased by using an EDTA disk as described by Yan et al. (108); however, the most common 314 reason for false positive results (i.e., AmpC hyper-production) is not addressed with this 315 modification. The mHT is also unable to distinguish between carbapenemases and it lacks 316 sensitivity for some carbapenemases such as NDM (particularly low-level producers), some of the 317 OXA family, and SME (107, 109). 318 
Synergy testing with inhibitors can be used to differentiate MBLs from other enzymes by 319 inhibiting class A, C, and D enzymes. The phenylboronic acid double-disk synergy test (PBA-DDST)  320 with either meropenem or ertapenem was able to successfully screen for KPC β-lactamase in a 321 collection of clinical specimens (110). Pournaras et al., evaluated PBA and EDTA with meropenem 322 in disks in a sample of bacterial colonies isolated from 189 rectal swabs where 97 were positive 323 for a carbapenemase (KPC and VIM) and showed excellent sensitivity and specificity (111). Doi et 324 

al.,  also showed that inhibition by 3-aminophenyl boronic acid could be used to differentiate KPC 325 from other β-lactamases (112).  326 Another proposed improvement to disk based testing that allows differentiating between 327 the different β-lactamase classes is use of avibactam (formerly NXL104) disks (113, 114). Class C 328 enzymes can also be identified with similar inhibition tests (115, 116). Further improvement on 329 these tests allow for identification of concurrent mechanisms, such as KPC with a MBL, such as the 330 one suggested by Miriagou et al. (117). In this study, PBA had improved MBL inhibition, allowing 331 for less misclassifications of VIM + KPC compared to using aminophenyl boronic acid.  These disk 332 tests, however, require pure cultures, making them inappropriate for screening of the lower 333 
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gastrointestinal tract of patients. Nevertheless, these assays remain a low cost, low technology 334 option.    335 
The Carba NP test, the Blue-Carba, and the Rapid Carb Test are based on the detection 336 of carbapenemase activity. The Carba NP test (bioMérieux, France) detects a change in pH that is 337 coupled to the hydrolysis of imipenem.  The testing procedure consists of cell lysis followed by 338 incubation of the enzymatic lysate with imipenem and phenol red for up to 2 hours (118–120).  339 Testing of Enterobacteriaceae showed Carba NP was able to detect all tested isolates from a 340 worldwide collection of bacteria that produced class A (KPC, NMC, SME, GES), class B (IMI, NDM, 341 VIM, IMP), and class D (OXA-48 or OXA-181) enzymes (119). In this report false positive results 342 were not detected.  The Carba NP test has also been used directly against blood culture bottles 343 spiked with an array of class A, B and D carbapenemases, where this assay demonstrated a 344 sensitivity and specificity of 97.9% and 100% respectively (121). However, in another study, the 345 Carba NP test produced non-interpretable results when testing isolates grown on MacConkey or 346 Drigalski agar (120) suggesting that these media may affect the performance of the test. Also, use 347 of the Carba NP test on A. baumannii may require some modifications (122).  In any case, the 348 Carba NP test is one of the recommended tests for confirmation of carbapenemase production in 349 pure isolates by the CLSI and EUCAST (92).  350 The Carba NP can be performed in most microbiology laboratories with no additional 351 equipment.  It can be used on any isolate with suspected carbapenemase activity. The main 352 advantage when compared to agar screening and molecular methods is the broad target range; as 353 the test will be positive as long as there is enough carbapenemase, regardless of its class. However, 354 there is some concern regarding the lack of sensitivity for certain class D carbapenemases (e.g., 355 
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OXA-48, OXA-58, OXA-181) (123, 124). A possible drawback over molecular methods (and disk 356 inhibition testing) is its inability to differentiate between enzymes, although one report suggests 357 that this can be achieved with some modifications to the Carba NP test (125). The Carba NP test 358 has also been compared to an alternative colorimetric test for carbapenemase activity, the Rapid 359 CARB Screen (Rosco Diagnositics, Denmark), showing similar sensitivity (97 and 98%) but 360 superior specificity (100 and 83%) when tested against a panel of 66 Enterobacteriaceae carrying 361 class A, B, or D enzymes and 69 non-carbapenemase producers. (126). Another similar test to the 362 Carba NP, the Blue-Carba test (not commercially available) uses a different indicator and a 363 simplified protocol. The Blue-Carba test has reported better sensitivity, including for OXA-type 364 carbapenemases (127). An added advantage of the Blue-Carba test is a faster turn-around time 365 than the Carba NP test as there is no need to extract the β-lactamase. The clinical performance of 366 the Blue-Carba test still needs to be established.  367 
Spectrometry has also been used to detect CPO. These tests include UV spectrophotometry 368 and mass spectrometry using matrix-assisted laser desorption ionization-time of flight mass 369 spectrometry (MALDI-TOF MS). UV spectrophotometry involves the detection of hydrolyzed 370 imipenem by a cell lysate (128).  This method was found to be 100% sensitive and specific for 371 detecting a wide array of class A, B, and D enzymes in Enterobacteriaceae (129). The clinical 372 application of this method still is challenging due to the technical expertise and equipment 373 required to perform it. 374  MALDI-TOF MS can detect carbapenemases by comparing the proportion of hydrolyzed 375 and intact imipenem on a centrifuged cell sample (130). This approach was able to detect 72% of 376 carbapenemase-producing isolates directly from positive blood culture vials (131). Although still a 377 
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research application, this method may become attractive as MALDI-TOF MS becomes more 378 common in the microbiology laboratory, but this method is suboptimal for detection of small 379 molecules, such as carbapenems and its degradation products. Liquid chromatography tandem 380 mass spectrometry (LC-MS/MS) is more suitable for this task and has also been used successfully 381 to detect carbapenemase activity from cultures (132). These methods have the potential of 382 differentiating between classes of β-lactamases by using inhibitors such as EDTA (133). It must be 383 noted that imipenem undergoes spontaneous hydrolysis in basic buffers (134) and that a negative 384 control should always be included when using any of these methods. At the present time, a mass 385 spectrometry method that is as sensitive and easily implemented as agar-based or PCR-based 386 screens is not yet present.  387 
Screening methods to detect fecal carriage of CPO  388 Screening tests to detect CPO in stool present three major challenges: rapid detection, 389 detection of isolates with low level carbapenem resistance, and detection of proportionally low 390 numbers of CPO.  Infection control programs rely on contact isolation for patients who test 391 positive, which also must be in place while waiting for the result.  A “good screening test” must 392 minimize turn-around time, maximize sensitivity, preserve reasonable specificity, detect multiple 393 types of carbapenemases, and be cost-effective.  Detecting low-level resistance is important 394 because it may already signify the presence of a genetic trait (such as blaKPC) (90) that may spread 395 to other bacteria through horizontal transfer where it could result in carbapenem resistance in  396 new bacterial strains (135).  Finally, since the main reservoir is the intestinal tract, the bacteria of 397 concern may just represent a small proportion of the overall bacterial load. Therefore the 398 inoculum of CPO on a surveillance swab may be below the limit of detection (LOD). It is also worth 399 
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mentioning that non-Enterobacteriaceae Gram-negative bacteria may also harbor 400 carbapenemases, although screening protocols based on culture methods try to exclude them. For 401 instance the US Centers for Disease Control and Prevention (CDC) protocol, and the suggested 402 interpretation for the SUPERCARBA agar suggest that only lactose-fermenting colonies should be 403 reported. Manufacturers of chromogenic media also endorse reporting of colonies with certain 404 appearances that correspond to lactose fermenters.  Bacteria other than lactose-fermenting 405 
Enterobacteriaceae can be detected by appropriate culture methods, and molecular screening 406 tests will yield a positive result if a carbapenemase is present regardless of the host organism. 407 Inclusion of bacteria other than lactose fermenters in a screening program is important as they 408 can also transmit resistance elements to or within the Enterobacteriaceae, as it has been 409 previously suggested (75). 410 A summary of tests is provided in Table 3.  As shown, the cost, labor intensity, and turn-411 around time vary by assay. Mathers et al. reported that the annual cost of a surveillance program 412 for a hospital containing 708 acute care beds and 40 long-term beds with weekly screening and a 413 CPE prevalence of 2.7% was about $225,000 for a qPCR (quantitative real-time polymerase chain 414 reaction) assay and $23,000 for the CDC screening culture method (136). Although Mathers et al. 415 accounted for the cost of decreased specificity, the cost of decreased sensitivity is much more 416 difficult to calculate. For instance, a false positive (product of low specificity) would result in 417 further follow up testing; however, a false negative (product of low sensitivity) may result in 418 spread of the CPO potentially adding very significant costs for the hospital to care for infected 419 patients, while instead it would appear to decrease the cost of the screening program.  The 420 apparent difference between costs of methods can translate into many thousands of dollars per 421 
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year for a hospital performing routine screening in large volume.  Added to the cost of screening is 422 the cost of isolation. A 2014 Canadian study estimated a cost of $925 (CAD) (approx. USD 740) per 423 non-ICU patient when isolating for 3 days while awaiting results (137).  424 
Culture-based methods. Culture-based testing is easier to implement as the necessary 425 equipment and knowledge are already present in the routine microbiology laboratory.  These tests 426 also have the potential to detect reduced susceptibility to carbapenems caused by newly emerging 427 mechanisms as long as the mechanism is able to achieve at least a moderate level of resistance.  428 
The CDC screening method addresses, with significant limitations, the need for detection 429 of “low-level” resistance (MIC< 2 mg/L) and the ability to detect low loads of resistant bacteria. 430 This method consists of an enrichment phase where a rectal swab is inoculated into 5 mL of 431 Trypticase-soy broth (TSB) in which a disk impregnated with 10 μg of ertapenem or meropenem 432 has been immersed, and incubated for 24 hours.  This broth is then sub-cultured onto MacConkey 433 agar, where only lactose-fermenters are selected. The CDC notes that many laboratories add a 434 meropenem or ertapenem disk to this agar.  A limitation of this test is that further testing is 435 needed to determine the species and antimicrobial susceptibility of isolates growing on the agar 436 (138). Furthermore, bacteria other than lactose fermenters that can harbor carbapenemases are 437 routinely missed.  Given the increased length of time needed for detection when using methods 438 such as the CDC method, selective agars (see below) have been developed to optimize detection 439 while obtaining results in a shorter time span.  More important is that the CDC method will fail to 440 detect the presence of bacteria with low-level resistance unless these bacteria are present in a 441 large inoculum and without competition of other CROs; conditions that are unlikely to happen. 442 Furthermore, low inocula of fully resistant CPOs can be missed if there is a large inoculum of 443 
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bacteria that have “low-level” carbapenem resistance through mechanisms other than 444 carbapenemases.  Although the CDC broth enrichment method was meant to increase sensitivity, 445 recent reports demonstrate that some of the selective agar methods have superior or at least 446 comparable performance to the CDC method, so the delay of an overnight enrichment is not 447 necessary (139–141).  448 
Specialized solid media aim to simplify the detection of CPE. Chromogenic media 449 incorporate chromogenic enzyme substrates (mainly glycosides) that release a pigment when 450 hydrolyzed by bacterial enzymes (142). Antibiotics added to the media make them selective for a 451 particular resistance trait. Chromogenic media have been compared regarding their limit of 452 detection of CPE at different inocula when used for stool screening (80, 139, 143–146).  At the 453 present time the currently available media are not cleared by the Food and Drug Administration 454 (FDA) in the US.  455 Available chromogenic media that may be used for detection of carbapenemases include 456 CHROMagar KPC (CHROMagar, France), HardyChrom (Hardy Diagnostics, CA, US), chromID Carba 457 (bioMérieux, France), chromID ESBL (bioMérieux, France), chromID OXA-48(bioMérieux, France), 458 Colorex KPC (Biomed Diagnostics, OR, US), RambaChrom KPC (Gibson Bioscience, US), SpectraCRE 459 (Thermo Diagnostics, US), and Brilliance CRE (Thermo Diagnostics, US).  Colorex KPC media 460 consists of media commercially prepared from dry CHROMagar reagents.   461 Some of these media are designed to target KPC producers and have markedly decreased 462 sensitivity for mechanisms based on other enzymes, particularly OXA-48 (143, 147). This is 463 specifically addressed with a medium designed for detection of OXA-48 producers, the chromID-464 OXA48.  465 
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Table 4 shows the performance characteristics of different chromogenic media when tested 466 with pure cultures.  Specificity varies depending on the type of negative controls used (clinical 467 specimens or known non-carbapenemase-producing, but carbapenem resistant isolates). In 468 addition, although not shown in the table, all testing methods had slightly but consistently lower 469 sensitivity for VIM β-lactamases than for other class B β-lactamases (80, 139, 143–146).  This may 470 be due to the inclusion of isolates that contained plasmids carrying at most another β-lactamase, 471 rather than isolates with more complex backgrounds that have now become prevalent (148). 472 However, this likely does not hold true for bacteria harboring VIM-containing plasmids that also 473 carry an ESBL or another carbapenemase.  474 SUPERCARBA agar is another specialized medium that incorporates the use of ertapenem 475 [0.5 mg/L] in addition to cloxacillin in a zinc-supplemented Drigalski Lactose agar (149).    476 Ertapenem will select for carbapenem resistance, cloxacillin is added to inhibit growth of AmpC 477 producers such as Serratia and Enterobacter species, while the zinc enhances the activity of MBLs 478 (149). Different studies have shown sensitivity around 96% with specificity of 60%. These 479 numbers are similar to those obtained for chromogenic media (143, 149). The authors 480 recommend selecting only lactose-fermenting bacteria, limiting its ability to detect 481 carbapenemases in bacteria other than lactose fermenters.  Another disadvantage is that the shelf 482 life of the medium is limited to 7 days, a significant obstacle in any routine clinical laboratory 483 (143).  484 
Relative performance of culture methods. Studies describing different methods for 485 screening of CPE are difficult to compare and each study has its own limitations and particular 486 variations.  Some studies have addressed the detection limit of different commercial assays by 487 
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using previously characterized CPE isolates.  Those isolates, however, may not be representative 488 of the population at a specific hospital and clinical performance in actual practice may vary due to 489 the prevalence of the different β-lactamases in different institutions. Meanwhile, other studies 490 have compared the performance of a test in a particular setting, such as hospitals where there is a 491 particular distribution of resistance mechanisms within the bacterial population.  It is difficult to 492 extrapolate the performance of these tests into other clinical settings. In addition, some studies 493 use comparators that are known to perform poorly which may exaggerate the performance of 494 certain media.   495  Performance characteristics of the different media when used for screening rectal or 496 perirectal swabs are shown in Table 6.  Of the thirteen studies mentioned, nine showed an almost 497 exclusive presence of KPC producers (80, 139, 141, 150–156), while two revealed the exclusive 498 presence of NDM producers (157, 158). Only two studies were done at institutions where KPC and 499 VIM producers were reported as coexisting (140, 159); and only one with OXA-48-producing 500 isolates (160). Furthermore, the prevalence of ESBL producers at these locations is not taken into 501 account and could impact the specificity of these screening methods. The different screening 502 systems performed variably on stool specimens compared with pure cultures (Table 4), mostly 503 showing a decline of both sensitivity and specificity with stool specimens.  504 We assert here that the sensitivity of a screening media corresponds to the sum of 505 sensitivities for each particular mechanism (e.g., OXA-48, KPN, NDM). If a particular medium is 506 tested where one mechanism is over-represented, it will have a greater contribution to the 507 calculated sensitivity for CPE.  For instance, consider that medium A has a sensitivity of 90% for 508 KPC and 70% for OXA-48. If this medium is tested where 95% of CPE are KPC while 5% are OXA-509 
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48 producers, the study will show an overall sensitivity for CPE of 89%.  However, if 70% of CPE 510 are OXA-48 and 30% are KPC it will show an overall sensitivity of 76%.  511 To place our analysis in a clinical perspective, we performed a statistical analysis 512 comparing the sensitivity, specificity, and diagnostic odds ratio (DOR) for the different methods 513 used for screening pure cultures employing bivariate random-effects model (161) using the mada 514 package of the R programming language (162, 163). DOR is the ratio of the odds of the test 515 producing a true positive result to the odds of it producing a false positive result. The bivariate 516 random-effects model is a meta-analysis technique for pooling diagnostic performance measures 517 across studies and estimating covariate effects. Corresponding forest plots were generated with 518 ggplot2 (164).  Methods that did not present data detecting all three carbapenemase classes were 519 excluded. Figures 2 and 3 illustrate the sensitivity, specificity, and DOR for the different media in 520 each study and in aggregate respectively.  Table 5 shows the model estimated 95% confidence 521 intervals for these parameters. Given the proportion of Class B carbapenemase-producing isolates 522 included on these studies, their effect on the estimated pooled performance characteristics is 523 likely disproportionate. The same approach was used to analyze performance on rectal/perirectal 524 swabs (Table 6). Given the low number of specimens for these analyses we only included in the 525 analysis those studies done where KPC was the predominant enzyme (over 98%). We excluded 526 methodologies that were not available commercially, except for the CDC protocol. Model-527 estimated sensitivity, specificity, and DOR with their corresponding 95% confidence intervals are 528 shown in Table 7.  Forest plots for the individual and aggregate studies are shown in Figures 4 and 529 5.  530 
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Analysis of the results of the screening media on pure cultures shows that chromID ESBL, 531 chromID Carba, and SUPERCARBA have similar sensitivities.  Brilliance CRE media and the CDC 532 method with ertapenem results overlap with the 95% confidence interval of chromID Carba and 533 chromID ESBL media.  Large confidence intervals can be seen with the CDC method, Colorex KPC 534 and CHROMagar KPC reflecting low number of tested isolates and conflicting results. For instance  535 CHROMagar KPC performed well in some studies (151, 158, 159), but not all (149, 155, 156), with 536 sensitivities ranging from 40 to 98%.   537 Analysis of specificity is more homogeneous among the different methods. There is, 538 however, a tendency for superiority favoring chromID Carba, while the opposite holds for 539 chromID ESBL. This is expected as the growth of ESBL-producing Enterobacteriaceae is 540 considered a false positive when screening for CPE.   SUPERCARBA had a wide range of specificity, 541 ranging from 35% to 82% depending on the details of the analysis; which is reflected on its large 542 confidence interval. On this analysis, chromID Carba and SUPERCARBA have a clear advantage in 543 the clinic when compared to the other methods. Given the large confidence intervals, these results 544 must be interpreted with caution. Not included in the above analysis is the study by Hirsch et al. as 545 it only involved 18 isolates of KPC-producing Enterobacteriaceae (105).  546 Analysis of media performance on rectal/perirectal swabs is limited to those studies where 547 KPC was the prevailing enzyme.  Unfortunately, there is not enough data for a meaningful 548 comparison of these media under different conditions. Available data with note of the enzyme 549 distribution can be found in Table 6. Sensitivity for detecting KPC on rectal/perirectal swabs 550 shows overlapping confidence interval for all methods, except for the CDC protocol which is 551 clearly inferior.  Specificities also show significant overlap.  HardyChrom agar showed the worse 552 
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specificity though it had a very large confidence interval product of only being tested in one study 553 (141). MacConkey agar with imipenem also performed acceptably in some studies (80, 111, 139, 554 150) showing sensitivities and specificities as high as 92% and 100%, respectively.  Analysis of 555 DOR shows homogeneity for most methods. The overall trend is for the CDC method to be inferior 556 to others. Improved performance is suggested for SpectraCRE, HardyChrom, and chromID Carba.  557 Confidence intervals for HardyChrom and SpectraCRE, are however, exceedingly large. 558 SpectraCRE was tested in a single study in a Chicago LTCF (156), which likely explains its broad 559 confidence interval. 560 Due to its limited scope the chromID OXA-48 was not included in this statistical analysis.  561 For Zarakolu et al. it shows 75% sensitivity when tested against clinical specimens containing 562 OXA-48, with 99.3% specificity.  When used in conjunction with the chromID Carba, sensitivity 563 and specificity reached 90.9% and 98.5% respectively (165).   564 Overall differences in sensitivity between the media can be explained by the 565 carbapenemase being tested. Most media perform reasonably well with class A enzymes, while 566 performance with class B and D enzymes is more variable.  The chromID Carba media performed 567 well in both pure culture and when tested against rectal/perirectal swabs. The SUPERCARBA 568 media did well on pure cultures. However, it was not tested with patient specimens. SpectraCRE 569 did well on rectal/perirectal swabs though one must be aware of its confidence interval.  The CDC 570 method underperformed when tested against pure cultures and against clinical specimens.  Other 571 methods that were tested, particularly those involving “house-grown” techniques, could not be 572 analyzed with the same rigor, and unless more studies are done, we would caution against their 573 use in clinical practice.  574 
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It must be emphasized that many of the studies of these selective plates are limited to KPC-575 producing isolates. Furthermore, the various media evaluated in Tables 4, 6, and 8 are not 576 available in all countries. Therefore, the practical issues of cost and availability affect the choice 577 made by an individual laboratory that must decide if optimal sensitivity is desired, knowing that 578 additional work-up will be required to detect false positives if the method has low specificity.   579 Studies analyzing the LOD include bacteria with specific genetic backgrounds on pure 580 cultures that may not necessarily represent the backgrounds present in a specific clinical setting ( 581 Table 8). The LOD will directly impact the sensitivity of the screening method. Given the 582 abundance of Enterobacteriaceae in stool, it is desirable to inhibit the growth of the carbapenem-583 susceptible population. However, this inhibition comes at expense of sensitivity. A relatively low 584 inoculum of a CPE with borderline susceptibility will need to overcome this inhibitor and the 585 medium would have a higher LOD. On the other hand, adjusting growth inhibitors to obtain a 586 lower LOD would allow for growth of other bacteria and would decrease specificity.   587 High-resource settings where healthcare is already expensive may have a lesser impact on 588 isolating more patients and may want to err on the side of higher sensitivities. Furthermore, the 589 medical care provided in high-resource settings tends to be more invasive; therefore there is a 590 higher cost of missing a colonized patient.  On the other hand, lower-resource settings may still 591 benefit from selecting a method with lower sensitivity that would decrease their isolation costs 592 while still have an impact on the local spread of CPO. 593 Table 8 summarizes the limit of detection of the different agar screening media. All of the 594 tested media and SUPERCARBA performed reasonably well when detecting class A enzymes 595 (KPC); achieving a LOD in the 1 X 101 to 1 X 102 CFU/mL range (80, 140, 143, 149, 166);  except 596 
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for the chromID OXA-48 which, as expected, performs better with Class D enzymes (OXA-48) 597 (167).  The LOD for class B enzymes on chromogenic media are approximately 1 log higher than 598 for class A (80, 140, 143, 149).  The MacConkey agar with disks had a LOD about 1-2 log higher 599 than the other media for both class A and B enzymes (80, 140).   The chromID OXA-48 showed 600 poor performance for both class A and B enzymes, with a LOD of  1 X 107 CFU/mL (167). Class D 601 enzymes were not tested for all methods. LOD remained in the same 1 X 101 CFU/mL range 602 consistently for SUPERCARBA. Other methods had a significant increase on their LOD for class D 603 enzymes. Remarkably, chromID KPC, CHROMagar KPC, the CDC method, and chromID Carba had a 604 LOD up to 6 log higher than more sensitive methods (140, 143, 149).  As expected, chromID OXA-605 48 performed exceptionally well with class D enzymes, with a LOD of 5 x 101 CFU/mL (167). 606 
Nucleic acid amplification technology (NAAT) detects the presence of a specific gene or 607 genes, in most cases limiting its usefulness to previously characterized determinants. 608 Furthermore, newly emergent variants of previously characterized genes may not be reliably 609 detected. Since various genes can encode different carbapenemases, a broad panel of tests is 610 needed to detect all targets.  Because it is not practical to detect every enzyme, these tests have 611 been designed to cover the most common carbapenemases. A challenge for nucleic acid-based 612 testing is DNA extraction from stool. Feces contain PCR-inhibiting substances and poor results 613 may be obtained due to excessive shearing of DNA (168).  Despite these concerns, very good 614 methods are available for extracting DNA from stool, and multiplex molecular assays are routinely 615 performed on stool specimens for gastrointestinal pathogens. It is critical to note that detection of 616 resistant determinants in pure cultures or in specimens where a single organism is expected (such 617 as blood or urine) is significantly easier than detecting the same genes on a more complex 618 
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specimen such as a stool swab.   In addition, epidemiological data such as species information is 619 lost in most assays.  620  There are several NAAT based methodologies that may be employed to detect 621 carbapenemase genes in bacterial isolates (169). Theoretically, all of them can be used to screen 622 stool specimens.  These methodologies include single and multiplex end-point PCR, loop-mediated 623 isothermal amplification (LAMP), single and multiplex quantitated real-time PCR (qPCR), and 624 microarrays.  Next-generation sequencing (NGS) may be another option though it is not readily 625 available in most clinical laboratories at the present time (169).  NGS remains prohibitively 626 expensive due to high equipment acquisition costs, need for significant computing processing 627 power, and data storage(170).  628  Regardless of the NAAT based methodology selected by a laboratory, there are complex 629 regulatory requirements that vary from region to region. Implementation of a laboratory-630 developed assay involves determining the test’s performance characteristics. The burden of an 631 involved development and validation may be partially relieved by the use of commercial assays. 632 FDA regulations within the United States are evolving at this time and will likely result in 633 increased regulatory burden on the lab in the future.  634 
End-point PCR is useful when there is a large quantity of the target gene.  Specificity 635 cannot be assured unless positive results are followed up with DNA sequencing or hybridization 636 with specific probes. With proper validation, a PCR method can be acceptable. The Hyplex Super 637 Bug ID system (Amplex Biosytems GmbH, Giessen, Germany) for the detection of carbapenemases 638 is based on a multiplex end-point PCR followed by ELISA hybridization (171).  Although it has not 639 been tested on direct stool specimens, this NAAT showed a 98% sensitivity and specificity for 640 



31  

VIM-producing CPE when used on DNA extracted from clinical specimens, including blood, urine, 641 pus, and respiratory samples from Greece (172). Another multiplex end-point PCR was developed 642 by Voets et al. and allows for detection of a wide range of resistance genes (173).   Some of these 643 multiplex assays were developed by independent laboratories and are not widely available to 644 most clinical laboratories.  Yet, there is great value in demonstrating that these comprehensive 645 assays can be developed. 646 
Microarrays consist of oligonucleotides bound to a solid surface.  The target gene of the 647 pathogen is then labeled and hybridized to the immobilized probe.  This reaction is then measured 648 with a scanner (169).  Microarrays are difficult to standardize (169) and published studies 649 describing the use of microarrays to directly screen for β-lactamase genes from stool are not 650 available.  Most assays, however, can be used to confirm and characterize the β-lactamase gene on 651 suspicious colonies of a screening culture.  These tests have excellent sensitivity and specificity as 652 shown by a study with 149 previously characterized Enterobacteriaceae that were subjected to a 653 commercial Check-points microarray assay (Check-Points Health, Wageningen, Netherlands), 654 which was found to have 100% sensitivity and specificity (174). Direct testing from blood cultures 655 also showed 98% concordance between a microarray method and routine microbiological testing 656 (175). The Verigene BC-GN Test is a microarray-like detection system. It detects nine 657 genus/species targets and six resistance determinants including (KPC, NDM, OXA, VIM, and IMP) 658 without the need for prior PCR amplification (176). Future studies are needed to determine if 659 microarrays will be used to screen direct perirectal or stool specimens, though this may be 660 hampered by their high cost and the advent of next generation sequencing. 661 
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Loop-mediated isothermal amplification (LAMP) is a modification of conventional PCR 662 where several oligonucleotides that bind to the target gene are incubated at the same temperature 663 with the DNA polymerase. As DNA polymerizes there is release of pyrophosphate that can be 664 detected with a fluorescent dye or a compound that will increase the turbidity of the solution 665 (177).  This method’s advantages include increased sensitivity to lower DNA concentrations 666 compared to end-point PCR, no need for a thermo-cycler, and a simple way of visualizing the 667 result. LAMP assays can be particularly useful for low-resource settings (169).  A LAMP assay for 668 detection of NDM-1 was successfully used in 336 clinical specimens, including rectal swabs (178).  669 The investigators found a limit of detection of 10.70 pg/µL of genomic DNA, which would roughly 670 correspond to 1 X 103 CFU, compared to 1070 pg/μL (or 1 X 105 CFU) for the end-point PCR assay 671 used as a comparator in the study. Solanki et al developed two LAMP assays for detection of KPC 672 and NDM-1 (179). These assays were able to detect all 48 tested isolates with either NDM or KPC 673 while end-point PCR detected only 44.  Other studies have found improved performance of LAMP 674 vs end-point PCR for microbiological targets other than CPE, but not against real-time assays (180, 675 181). Therefore, LAMP assays may have a useful role in detecting CPO, but they are not the most 676 sensitive assay for clinical microbiology laboratories that have access to other types of NAAT. 677 
Real time or quantitative PCR (qPCR) is based on coupling the PCR with detection of the 678 amplified target.   Real Time PCR has been used for screening of CPO both using commercial and 679 an “in-house” kits with the advantage of more rapid results, increased sensitivity, and increased 680 specificity (152, 153, 182, 183). A recent seven-center study in the Netherlands found 100% 681 sensitivity and specificity with a multiplex assay detecting KPC, NDM, VIM, IMP, and OXA-48 on 682 twenty selected laboratory isolates (184).  683 
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Many laboratories have experience in using qPCR for direct screening of stool/rectal swab 684 specimens. Examples of stool/rectal swab testing with qPCR in routine clinical practice include 685 screening for vancomycin-resistant enterococci, Group B streptococcus, and Clostridium difficile 686 (185–187).  The validity of using qPCR, including for quantification of KPC-carriage load was 687 evaluated by Lerner et al. (188).  They determined a detection limit of 10 plasmid copies, which 688 the authors presume is close to 1 X 101 CFU/mL.  689 Another in-house qPCR for NDM-1 found a limit of detection of 1 X 101 to 3 X 101 CFU/mL 690 of stool, compared to 2 X 101 to 1 X 102 CFU/mL for chromID ESBL and 2 X 101 to 4 X 103 CFU/mL 691 for CHROMagar KPC(189).  An additional study found a limit of detection with end-point PCR of 1 692 X 104- 1 X 105 CFU/mL for KPC and 1 x 103 CFU/mL for NDM(141).  Naas et al. found a limit of 693 detection for OXA-48 using an in-house qPCR assay of 1 X 101- 1 X 102 CFU/mL in stool for qPCR, 694 compared to 1 X 101- 1 X 102 CFU/mL for SUPERCARBA and 2 X 101 - 3 X 102 CFU/mL for chromID 695 ESBL (182).  A comparison between agar screening and qPCR for KPC showed a 100% sensitivity 696 for the qPCR assay compared to 77% with the culture method(155). Overall, limits of detection for 697 single genes assays (152, 155, 182, 190) tend to be lower than those for multiplex assays (141, 698 191). 699 
Commercial Assays for molecular multiplex CPO detection include Check-Direct-CPE, 700 Check-MDR Real Time (Check-Points Health), Hyplex SuperBug ID (Amplex Biosystems), eazyplex 701 SuperBug CRE (Amplex Biosystems), and Xpert MDRO (Cepheid).  Check-MDR Real Time consists 702 of an oligonucleotide probe that binds to the target sequence (VIM, NDM, KPC, and OXA-48), to a 703 pair of universal primers, and to a molecular beacon.  Real-time PCR amplifies only the bound 704 target sequences at the same time that the molecular beacon emits fluorescence to measure the 705 
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amplification.  The manufacturer has established a limit of detection of less than 5 copies per 706 reaction. Testing on pure cultures found a 100% sensitivity and specificity (192).  The 707 manufacturer however, recommends using pure cultures, which is clearly not the method used to 708 screen perirectal swabs directly.  The Check-Direct CPE is a real time assay using probe detection 709 chemistry. It has a limit of detection of 5 copies per reaction.  Using “spiked” stool specimens, 710 Check-Direct CPE was able to detect a bacterial inoculum of 103-105 CFU/mL, with less sensitivity  711 for KPC (191). The NucliSENS EasyQ KPC (bioMérieux) is another real-time assay that uses 712 molecular probes. This was compared to chromID ESBL with ertapenem disks, using surveillance 713 specimens. Although a limit of detection was not determined, the assay performed with 93% 714 sensitivity (193). SuperBug CRE system is a multiplex LAMP system able to detect KPC, VIM, NDM, 715 OXA-48 (and some variants), in addition to ESBLs CTX-M-1 and CTX-M-9. On pure cultures 716 eazyplex SuperBug CRE was able to correctly identify all 139 Enterobacteriaceae isolates (194). 717 However, when used against a panel of 82 Acinetobacter spp isolates it produced 5 false positive 718 results (195). The Xpert MDRO assay has been used to detect CPO directly from rectal and 719 perirectal swabs.  The assay was able to detect KPC, NDM, and VIM with 100% sensitivity and 99% 720 specificity on 328 discarded peri-rectal, rectal, or stool samples from two US and one Spanish 721 hospital (183).   722 Table 9 summarizes the molecular methods that have been used on clinical specimens. 723 Some of the reports show excellent sensitivity and specificity for molecular assays; however, other 724 studies show a broad range for the LOD of specific carbapenemases, with numbers comparable to 725 agar-based methods.  Limitations include the cost and the inability to detect new or unanticipated 726 carbapenemases.  Pooling of specimens for initial screen, followed by confirmatory testing of 727 
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positives, may be an option to contain costs especially in low prevalence settings, but 728 investigations are needed to see if the loss of sensitivity is too great.  The cost-effectiveness of the 729 approach will also depend on the prevalence of CPO at an individual institution, which will 730 determine the number of specimens that would require follow-up when a positive pooled result is 731 obtained, because all individual specimens in the pool would need to be retested. The concern 732 about detecting new, not yet described, carbapenemases will need to be addressed by constant 733 vigilance in updating targets in a chosen assay; if a laboratory reports a new carbapenemase in the 734 local geographic region, or when a medical center treats a high volume of international patients, 735 adjustments will need to be made.  736 
SCREENING OPTIONS 737 
 Based on the above discussion there are several screening options that may be easy to 738 implement in a clinical microbiology laboratory. Any of these options should be closely 739 coordinated with the infection control program of the institution.  One must know the baseline 740 prevalence and type of the resistance enzymes in a specific setting, as the choice of method will be 741 dependent on these variables. At the present time we could not find data to suggest any advantage 742 of using stool specimens vs rectal or perianal swabs.  Most studies have been done on rectal swabs 743 and it is likely that most institutions would tend to prefer this modality.  744  Whatever modality is chosen for screening, laboratories must be aware that local 745 validation will be required. When implementing a screening program it is important to determine 746 the factors listed in Table 10. Deciding who to screen will always be controversial as the balance of 747 cost to risk will be subject to different interpretations. Ideally screening should be universal, but 748 
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most institutions do not have the necessary resources for both the screening testing and the 749 isolation requirements while waiting for test results.  Table 11 proposes a set of criteria that can 750 be used to screen certain patient populations.  751 
Cultured-based screening with molecular confirmation 752  Culture-based screening includes the use of a chromogenic agar, SUPERCARBA, or the CDC 753 method to perform perirectal or rectal swab screening of patients. While universal screening has a 754 higher potential for detecting and preventing outbreaks, it comes at a significant financial cost.  755 Based on our analysis, we would favor the use of chromID Carba. However, if the hospital is 756 located in a geographic area with high incidence of OXA-48, the clinical microbiology laboratory 757 should strongly consider using SUPERCARBA or adding an OXA-48 specific media such as the 758 chromID OXA-48 media. A bi-plate containing chromID Carba and chromID OXA-48 is available 759 (chromID CARBA SMART, bioMérieux, France). Bacteria growing on the SUPERCARBA media 760 should be identified by conventional microbiological tests or MALDI-TOF MS.  Similarly, isolates 761 on chromogenic media that cannot be readily classified as Enterobacteriaceae should also be 762 identified. While non-Enterobacteriaceae can carry plasmids encoding carbapenemases, 763 commonly carbapenem resistance in these organisms is mediated by other mechanisms. The 764 decision to isolate patients with carbapenem-resistant organisms other than Enterobacteriaceae 765 should be based on local epidemiology. Confirmation of positive specimens should ideally be 766 sought with molecular testing with either a broad panel of PCR reactions or with a microarray 767 method. Alternatively, a phenotypic test (such as CarbaNP, Blue-Carba, inhibitory disk synergy 768 testing, or mHT) can be used to confirm the presence of carbapenemases, reserving molecular 769 testing for a random sample of positive isolates.  Random sampling will come at the cost of 770 
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decreased hospital epidemiology data. To track the prevalence and type of carbapenemases in an 771 institution, isolates from clinical specimens, not only surveillance specimens, demonstrating 772 decreased carbapenem susceptibility should also be subjected to an assay for detection of 773 carbapenemase activity or a PCR panel/microarray.   774 Figure 6 proposes an algorithm when using a culture-based approach. Note that depending on the 775 laboratory capabilities some tests may be referred to a research laboratory.  776 
Molecular-based approach 777 The use of universal perirectal screening via molecular methods may not be desirable or 778 affordable due to low prevalence or due to increased costs.  Screening of high-risk patients, such 779 as those coming from endemic areas, transferred from LTCFs, or who have had extensive exposure 780 to carbapenems (41), may be advisable. A multiplex real-time PCR assay that includes KPC, OXA-781 48, NDM, and VIM should be used in most locales. However, specific areas where IMP or GES-5 is 782 common should either develop their own assays or have simultaneous routine culture testing. 783 Indeterminate results and a sample of negative specimens obtained through molecular testing 784 should be tested with a culture based-method with high sensitivity, such as SUPERCARBA or 785 chromID Carba. Suspect colonies should be subjected to antimicrobial susceptibility testing or to a 786 test for carbapenemase activity (e.g., CarbaNP or Blue-Carba).  A test such as the double disk 787 synergy test with avibactam-ertapenem with follow up ertapenem-boronate or moxalactam-EDTA 788 depending on the result may enable a lab to distinguish between class A, B, and D enzymes (113); 789 making it particularly attractive for this scenario. Figure 7 suggests an algorithm for CPO 790 screening based on molecular methods. 791 
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Combined approaches 792  Some combined approaches can be useful in specific situations, such as during an outbreak 793 caused by a CPO with a known enzyme. We speculate that a LAMP or qPCR assay could be 794 implemented for universal screening of carbapenemase involved in an outbreak. Patients testing 795 positive could be quickly cohorted, while patients testing negative could be subjected to routine 796 culture-based screening. This strategy would maximize available hospital beds while attempting 797 to minimize patients on enhanced infection control precautions.   798 
CONCLUSIONS 799 

In this review we stress that screening for intestinal carriage of CPO is of significant 800 importance for the development of infection control strategies.  However, the optimal screening 801 modality remains to be established for each location and for each specific purpose. Culture-based 802 screening methods have the advantage that they involve technologies that are readily available in 803 clinical microbiology laboratories.  Some enhancements, such as the use of chromogenic media, 804 make culture-based screening more convenient; however, the turn-around time is long and 805 sensitivity of some culture methods is not as high as desired. In addition, culture-based methods 806 may not be optimal for detection of low-level carbapenemase production, which is important for 807 epidemiological purposes (93).  808 Agar-based procedures always require confirmatory testing to detect the type of bla gene 809 present after a potentially resistant isolate is detected.  Clinical microbiology laboratories may 810 choose an agar-based screen with follow up molecular testing, or a molecular method with reflex 811 to culture if further investigation of the isolate is desired. On the other hand, NAAT offers a 812 
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promising approach for screening for carriage of CPO.  These methods offer faster availability of 813 results and increased sensitivity, but with significantly increased expense and unclear specificity 814 on direct specimens at this time. 815 Our review indicates that the chromID Carba and the SUPERCARBA media have excellent 816 sensitivity for class A β-lactamases that rival that of real-time PCR. As KPC is becoming endemic in 817 more communities, the use of screening for this class of enzymes may become less useful because 818 the high prevalence could make empiric therapy and initial isolation procedures prior to 819 surveillance results default to the assumption of a KPC-positive isolate. It is still hoped however, 820 that communities in which KPC-positive organisms are not endemic may contain the spread of 821 resistant isolates for some time.  We argue that screening should shift to those carbapenemases 822 that are threatening to become endemic and that have a high potential of causing outbreaks, such 823 as NDM and OXA-48.  Real-time PCR appears to be ideally suited for this goal; however, qPCR 824 implementation is hampered by cost. In addition, there could be false positives for OXA-48 due to 825 amplification of similar chromosomally-encoded enzymes in species such as A. baumannii.  826 Furthermore, data on their performance on the clinical setting compared to that of culture-based 827 screening is not yet available. Nonetheless, improved turn-around time and improved accuracy of 828 NAAT and direct carbapenemase detection assays may result in limiting the unnecessary 829 prolonged isolation of new admissions, thus saving costs to the infection control program. 830 Nevertheless, the molecular tests with high sensitivity have a cost that is difficult to offset and can 831 be prohibitive for many clinical microbiology laboratories (136). We must choose wisely. 832  An urgent need exists to define the appropriate criteria and clinical circumstances to 833 conduct screening for gastrointestinal carriage of CPO and to determine the optimal methods to 834 
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use.  The best method will differ from institution to institution depending upon the prevalence in 835 the community, the travel patterns and demographics of the population, level of care rendered by 836 the hospital, the age of patients, the technical capabilities of the microbiology laboratory, and the 837 resources allocated by the hospital administration for infection control monitoring.  838 The agar-based and colorimetric screens are usually more affordable and are able to detect 839 presence of “new and emerging” carbapenemases before they are characterized.  In addition, most 840 agar based tests can be performed without the need for significant investments by the clinical 841 microbiology laboratory.  However, they may lack sensitivity for carbapenemase producers that 842 confer low level of resistance. Furthermore, variability in performance according to the β-843 lactamase class makes the selection of a particular method more difficult.  For instance, it is easier 844 to justify the resources needed to perform a screening test that will reliably detect class A 845 carbapenemases in a KPC-endemic area.  At the same time the detection of class D carbapenemase 846 producers may allow for the institution of a program that will prevent them from becoming 847 endemic.  Laboratories may consider a combined approach of two independent assays to screen 848 for a broader spectrum of carbapenemases.  This strategy however, comes with the disadvantage 849 of increased cost and labor. 850 At this time, clinical microbiology laboratories that choose to implement a CPO screening 851 methodology must have a reliable procedure for detection of the carbapenemases endemic to 852 their area. In most of the US, this would be KPC while laboratories in Europe and the Middle East 853 should likely screen for OXA-48. Once a bla gene is found they should choose which of the other 854 carbapenemases they want to include in their screening approach, knowing that they will miss 855 colonized patients carrying a CPO not included in their infection control algorithm. 856 



41  

Although this review has focused on carbapenemase producing Enterobacteriaceae, 857 plasmids encoding carbapenemase genes have been identified in non-Enterobacteriaceae, so 858 vigilant monitoring of both may be warranted in the future.  We assert that until a carbapenem 859 resistant isolate is recovered in a clinical culture and detected by routine susceptibility testing, the 860 number of carbapenemase targets to include will be determined by cost, time available for labor, 861 and technical abilities of the laboratory.  It is likely easier to adapt an in-house molecular assay 862 compared to a commercial assay to detect emerging carbapenemases by adding additional 863 primers and probes to an existing assay which provides information about both the presence of 864 enzymes and the type of enzyme. In contrast, commercially available assays have the advantage of 865 manufacturer validation, but they cannot be modified quickly and only when the manufacturer 866 chooses to update an assay. Continued surveillance is warranted to detect carbapenemases not 867 detected with the chosen assay.  These considerations are most important to prevent and control 868 infections caused by carbapenemase producers and protect the public health. A proactive 869 approach trying to halt the spread of carbapenemase producers is desperately needed.  870 
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Table 1: Carbapenemases and selected characteristics (16, 17, 22)  1527 
 1528 
Molecular 

Class 

 

Representative 

β-lactamase 

 

Characteristics 

 

Inhibitors Enzymes currently 

Endemic 

 

Areas where Endemic 

A KPC 

GES 

SMC 

 

Serine β-Lactamase 

Plasmid encoded 

 

Boronic acid 

derivatives 

 

  

KPC North America, Greece, 

Italy, Poland, Colombia, 

Argentina, Israel, China 

GES-5 Brazil

B NDM 

VIM 

IMP 

 GIM-1 

 SPM 

Metallo β-Lactamase

Zinc requiring 

Plasmid encoded/ 

chromosomal 

 

EDTA, dipicolinic acid NDM Indian Subcontinent,  

Kenya, China 

VIM Indian Subcontinent, 
Greece, Italy, Southern 
France, Japan, Lebanon, 
Brazil, Portugal, Ireland, 

UK, Germany, Poland 
IMP Indian Subcontinent, 

Greece, Japan, China 

C CMY-10 Serine β-lactamase 

Cephalosporinases 

Mobile or 

chromosomal 

Uncommon 

Cloxacillin, boronic 
acid derivatives 

AmpC Worldwide

D OXA-48 

OXA-181 

OXA-204 

 OXA-162 

 OXA-23 

OXA-24 

Serine β-lactamases 

Weak activity of those 

that are 

carbapenemases 

Plasmid encoded 

No specific inhibitors 
available 

OXA-48 France, Belgium, Canada, 
South Africa, Middle East, 
Turkey, Northern Africa, 
Switzerland, Germany, 
Lebanon, Israel, Morocco 

 1529 
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Table 2: Clinical breakpoints for carbapenems according to the Clinical Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility 1530 
Testing (EUCAST) 1531 
 1532 

Carbapenem Susceptible (µg/mL) 

 CLSI M100-S20 

2010 

CLSI M100-S21

2010 

CLSI M100-S22

2012 

EUCAST

2009-2014 

Doripenem Not Defined ≤1 ≤1 ≤1

Ertapenem ≤2 ≤0.25 <0.5 ≤0.5

Meropenem ≤4 ≤1 ≤1 ≤2

Imipenem ≤4 ≤1 ≤1 ≤2

Intermediate is interpreted as one dilution higher and resistant is interpreted as ≥2 dilutions higher, except for EUCAST Ertapenem 

interpretation where >1 µg/mL is considered resistant. 1533 CLSI M100-S23,24 (2013,2014) do not change the interpretative criteria for carbapenemsCLSI M100-S22(2012) only changed interpretative criteria for Ertapenem.  Other carbapenems were not changed Doripenem was not included in the 2009 and 2010 editions of the CLSI-M100 
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Table 3: Characteristics and approximate costs of screening methods to identify fecal carriage of CPE. Adapted from Mathers et al.(136)  1534 
 1535 
 1536 

 1537 
 1538 
 1539 

Method Description Turn-around time for 

Positive or Preliminary 

Positive 

Price (USD) 

Centers for Disease Control(138) Broth enrichment of rectal swab in ertapenem media followed by subculture on MacConkey with carbapenem disk, followed by identification of suspect isolates  

48-72 hrs# Negative Test:  $1-2 Positive Test: $2-6 

SUPERCARBA(149) Direct plating of rectal swab in selective media  24-48 hrs# $1* 
Chromogenic Media Direct plating of rectal swab in selective media with chromogenic molecule  

24-48 hrs# $4-7 

Real-Time PCR** (in house methods) DNA extraction followed by PCR and probe-based detection.  
2-5 hrs $10-30 

Commercial PCR assay** DNA extraction followed by PCR and probe-based detection. 2-3 hrs possible $30-60 

USD: US Dollars as of 2015 *SUPERCARBA media has been patented. Cost is that of raw materials; Not available to many laboratories.  ** Cost of PCR assay may increase with increased number of targets # Confirmation testing might include single-plex PCR, multiplex PCR, CarbaNP, or identification and susceptibility testing.  Cost may range from an additional $2 to $50 and turn-around time may range from an additional 2 -24 hr for confirmatory testing, depending on methods chosen by laboratory.  Hospital epidemiology can act on negative results and preliminary positive results, pending confirmation.  NAAT negative results likely do not require any further testing, but positive results may require confirmation, depending on false positive rate of assay.   



77  

Table 4: Use of known resistant isolates to test performance of CPE screening methods  1540 
Method Overall 

sensitivity 
Sensitivity by β-lactamase class/No. Isolates Tested Specificity/ No. 

Negative Isolates 
Tested 

Type of 
Isolates 

Reference 

Class A Class B Class D SUPERCARBA 95.6% 100%/18 90%/52 100%/44 82.2%/62 CLI (149)  chromID ESBL 87.7% 100%/18 98%/52 70%/44 24.2 %/62 CHROMagar KPC 40.3% 66.7%/18 55.8%/52 13.6%/44 85.5%/62 SUPERCARBA 96.5% 100%/20 92%/51 100%/43 60.7%/28 CLI (143)  CHROMagar KPC 43% 70%/20 58.8%/51 11.6%/43 67.8%/28 
Brilliance CRE 76.3% 85%/20 78.4%/51 69.8%/43 57.1%/28 
Brilliance CRE 86% 100%/17 72%/25 88%/58 40%/77 CLI  (147)  Colorex KPC 48% 100%/17 52%/25 31%/58 39%/77 SUPERCARBA 97% 100%/17 88%/25 100%/58 35%/77 
Brilliance CRE 78% 83%/12 79%/103 67%/15 66%/70 CLI  (144)  chromID Carba 91% 100%/12 93%/103 67%/15 89%/70 chromID ESBL 96% 100%/12 98%/103 80%/15 19%/70 Colorex KPC 56% 83%/12 52%/103 60%/15 77%/70 CDC ertapenem 78% 83%/12 80%/103 73%/15 69%/70 CDC meropenem 47% 67%/12 46%/103 40%/15 79%/70 
Brilliance CRE 94% 100%/36 94%/34 84%/25 71%/160 CLI  CCI (146) mHT 100% 100%/18 ND/0 ND/0 96.7%/32 CCI (110)  RambaChrom KPC 95% 95%/18 ND/0 ND/0 77.1%/32 Mero-PBA DDST 100% 100%/18 ND/0 ND/0 100%/32 Erta-PBA-DDST 100% 100%/18 ND/0 ND/0 91.4%/32 

 1541  1542 

Types of Isolates:    CCI: Characterized clinical isolate: isolate originating from a clinical specimen and later characterized in the laboratory    CLI: Characterized Laboratory isolate: isolate retrieved from a laboratory source. It may have originated from a clinical specimen but may had been modified to express certain characteristics in the laboratory.  ND: Not determined.  mHT: Modified Hodge test PBA DDST: phenylboronic acid double disk synergy test Mero, meropenem; Erta, ertapenem 
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Table 5: Comparison of model estimates of diagnostic performance for different screening methods on pure cultures 1543 
Method (number of studies) Sensitivity % (95% CI) Specificity % (95% CI) DOR (95%CI) Aggregate number of isolates 

(positive isolates) 

BrillianceCRE (4) 81.3 (77.1-84.88) 58.89 (39.31-76.02) 6.23 (2.6-14.91) 774 (439) 

CDC Ertapenem (1) 79.23 (71.21-85.47) 68.57 (30.95-91.4) 8.32 (1.49-46.57) 200 (130) 

CDC Meropenem (1) 46.92 (38.24-55.8) 78.57 (42.41-94.81) 3.24 (0.58-18.19) 200 (130) 

CHROMagar KPC (2) 42.11 (35.69-48.81) 78.13 (52.18-92.12) 2.6 (0.73-9.27) 318 (228) 

chromID Carba (1) 90.77 (84.36-94.72) 88.57 (59.31-97.63) 76.21 (11.97-485.11) 200 (130) 

chromID ESBL (2) 91.01 (86.26-94.23) 21.27 (7.95-45.8) 2.74 (0.75-9.95) 376 (244) 

Colorex KPC (2) 52.45 (45.78-59.04) 59.13 (32.06-81.6) 1.6 (0.48-5.35) 377 (230) 

SUPERCARBA (3) 96.27 (93.53-97.87) 60.38 (37.33-79.59) 39.29 (12.52-123.33) 176 (114) 

 1544 
 1545 

 1546  1547  1548 

CI: Confidence Interval DOR: Diagnostic Odds Ratio 
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 1549 
Table 6: Performance of culture methods on rectal/perirectal swabs  1550  1551  1552  1553 

Method No of positives / 
No. of Swabs 

Sensitivity Specificity Enzyme 
distribution 

Reference Standards Reference MacConkey with IPM 33/ 139 84.9% 94.3% KPC 100% PCR for KPC (80)  MacConkey with IPM/MEM/ETP disks 75.8% 89.6% CHROMagar KPC 84.9% 88.7% chromID Carba 86/ 177 96.5% 91.2% KPC 98% VIM 1%  qPCR for KPC or VIM, mHT,  aminophenyl-boronic acid/meropenem, and EDTA/meropenem testing (139)  MacConkey with IPM 89.5% 31.9% CDC 98.8% 80.2% MacConkey with ETP disk. 97/189 96.9% 98.9% KPC: 61.9% VIM: 9.3% KPC+ VIM: 26.8% OXA-48: 3% Colony PCR for KPC, VIM, OXA-48, IMP, and NDM. Negative isolates were confirmed with a mHT. (111) MacConkey + MEM alone, MEM+Phenyboronic Acid (PBA), MEM+EDTA, and MEM + PBA 94.8% 100% MacConkey with MEM 
92/ 200 

89.1% 85.2% KPC: 68% VIM: 31% PCR for KPC, IMP, NDM, VIM, and OXA-48  VITEK susceptibility testing and mHT. (140)   
CDC 89.1% 86.4% Enriched BH culture with ertapenem re-plated on chromID ESBL 92.4% 93.3% chromID CARBA 92.4% 96.9% chromID ESBL 92.4% 84.7% chromID Carba 32/ 175* 100% 98% NDM 100% NDM PCR , disks with meropenem, boronic acid, cloxacillin, and dipicolinic acid. (Rosco KPC/MBL confirm Kit) Agar dilution MICs for carbapenems, negative Rosco KPC/MBL (157) 

Brilliance CRE 59% 34% CDC 33/ 149 65.6% 49.6% KPC 100% KPC PCR.  Broth microdilution susceptibilities for ertapenem, imipenem, and meropenem. mHT (150)  MacConkey with ETP disk with a 27 mm breakpoint 97% 90.5% MacConkey with IPM, MEM, and ETP disks 41/ 122 92.7% 95.9% KPC 100% Direct KPC PCR from swab   (151)  CHROMagar KPC 100% 98.4% 
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MacConkey with MEM and ETP disks 54/ 187^ 87% 100% KPC 100% qPCR on swab and isolates followed by gel electrophoresis and sequencing  (152)   MacConkey with IPM 64/ 755 87.5% 99.4% KPC 100% KPC PCR, KPC PCR, mHT, repeat culture, repeat PCR  (153) chromID Carba (prototype) 64/37 200* 100% 93% NDM 100% PCR for IMP, VIM, GIM, SPM, SIM, and NDM.  mHT. (158) Colorex KPC 97% 96% CHROMagar KPC 46/ 126 97.8% 98.7% KPC 72.5 % VIM 27.5%  
Phoenix susceptibility. EDTA/IMI confirmatory disks. PCR for KPC and VIM. Negative not confirmed if negative by both methods.  (159) MacConkey with IPM 78.3% 97.5% HardyChrom 46/126 76.1% 100% ʃ KPC 100% qPCRα for KPC and NDM, PCR for SME, VIM, IMP, GES, OXA-48, and AmpC (141) CDC 78.3% 100% ʃ SUPERCARBA with enrichment step 10/ 77 

80% 100% 98.5% ʃ  OXA-48 100% Positives and negatives: PCRα for KPC, NDM, VIM, IMP, NDM, OXA-48, and for ESBL panel. (160) chromID ESBL with enrichment step 90% 100% 68.6% 
Brilliance CRE w/enrichment step 80% 100% 86.6% CHROMagar KPC 66/ 95 77.3% 100% KPC 100% Positives: confirmed with PCRα. Negatives had negative qPCRα and PCR (155) VAN/AMB/CAZ/CLI Plate 77.3% 100% CHROMagar KPC 47/150** 76% 75.7% KPC (presumed) Confirmed with KPC qPCR and Microscan susceptibilities. (156) Spectra CRE 97.8% 86.4% MacConkey with ETP Disk 83% 73.8% CDC 33/302 57.6% 95.2% OXA-48 100% Initial screen with inhibition disk synergy testing followed by PCR and sequencing on positive results (165) chromID OXA-48 75.8% 99.3% chromID Carba 57.6% 98.9% chromID Carba+ chromID OXA-48 75.8% 94.4%  1554  1555  1556  1557  1558 

ʃ Non-fermenting bacteria excluded; * Stool specimens  ** Peri-rectal swabs mHT:  Modified Hodge Test α PCR done on directly from specimen. If not noted, PCR was performed on pure cultures derived from the sample. Antibiotic abbreviations: MEM: Meropenem; IPM: Imipenem; ETP: Ertapenem; VAN: Vancomycin; CLI: Clindamycin; CAZ: ceftazidime; AMB; Amphotericin B ^ Includes both perianal and perirectal swabs 
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Table 7: Comparison of model estimates of diagnostic performance for screening methods on rectal/perirectal swabs for detection of KPC-producing Enterobacteriaceae 1559 
Method (number of 

studies) 
Sensitivity % (95% CI) Specificity % (95% CI) DOR (95%CI) Aggregate tested swabs 

(positive swabs) 

CDC (3) 85.37 (58.05-96.09) 82.94 (41.85-97.05) 28.37 (0.67-1209.67) 452 (165) 

CHROMagar KPC (4) 85.16 (61.39-95.4) 92.74 (70.56-98.55) 73.35 (1.96-2743.26) 506 (187) 

chromID Carba (1) 95.98 (65.92-99.66) 90.76 (30.51-99.55) 234.36 (4.99-10996.66) 177 (86) 

HardyChrom (1) 75.53 (22.42-97.06) 99.38 (72.54-99.99) 497 (4.9-50431.85) 126 (46) 

SpectraCRE (1) 96.88 (65.46-99.8) 86.06 (22.15-99.26) 191.34 (3.45-10605.72) 150 (47) 

 1560 
 1561  1562  1563  1564  1565  1566  1567  1568  1569 

CI: Confidence Interval DOR: Diagnostic Odds Ratio 
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 1570 
Table 8: Geometric mean limit of detection according to the culture method and β-lactamase class in pure cultures 1571 

Method Class A 
CFU/mL 

Class B 
CFU/mL 

Class D 
CFU/mL 

Sp* per class 
A/B/D Reference SUPERCARBA 1.47 X 101 3.36 X 101 1.37 X 101 18/52/44 (149) chromID ESBL 1  X 101 1.26 X 101 1.21 X 103 18/52/44 chromID KPC 8.1 X 101 1.64 X 103 3.43 X 106 18/52/44 SUPERCARBA 1.41 X 101 2.81 X 101 1.59 X 101 20/51/43 (143) Brilliance CRE 1.12 X 102 2.86 X 102 1.45 X 103 20/51/43 CHROMagar KPC 5.89 X 101 8.93 X 102 4.62 X 106 20/51/43 MacConkey Agar with Imipenem 4.68 X 102 1.24 X 103 NT 8/2/0 (80) MacConkey Agar with Meropenem/Ertapenem disks 2.62 X 106 3.32 X 105 NT 8/2/0 CHROMagar KPC 2.02 X 103 1.24 X 104 NT 8/2/0 CDC 6.87 X 101 8.66 X 102 5.2 X 107 5/2/1 

(140) chromID ESBL with prior enrichment on BHI + 10ug ertapenem 2.6 X 101 5.55 X 101 ND 5/2/1 chromID ESBL 7.49 X 101 4.42 X 102 ND 5/2/1 chromID Carba 2.11 X 101 4.42 X 102 5.5 X 107 5/2/1 
Brilliance CRE 2.67 X 101 3.41 X 101 3.77X 101 12/14/5 (166) chromID OXA-48 1 X 107 UD 3.36 X 101 10/10/57 (167) chromID Carba 1 X 101 2.0 X 101 1.62 X 104 10/10/57 SUPERCARBA 3.16 X 101 2.51 X 102 2.98 X 101 10/10/57 CHROMagar KPC ND ND 1.26 X 104 0/0/9 (100) CHROMagar ESBL ND ND 5.26 X 103 0/0/9  1572  1573 1574 NT: Not tested ND: Not detected * Number of isolates 
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Table 9: PCR-based testing for CPO in clinical specimens 1575 1576 
Target Methodology Specimen Sensitivity Specificity 

Limit of detection 

(CFU/mL) 
N Reference 

KPC PCR ES 92.2% 99.6% Not Calculated 755 (153) KPC qPCR ES 97% 96.6% 4 X 100-4 X 102FU/mL 95 (155) KPC qPCR S, MC 100% 98% 5 X 100 CFU/mL 216 (190) VIM, IMP, KPC, OXA-48, NDM-1 PCR (Hyplex SuperBug ID) MC 98.0% 98.6% Not calculated 236 (172) 
OXA-48 qPCR PC, SS 100% 100% 101-102 CFU/mL 35 (182) 

KPC, NDM-1 qPCR S, SS 100% 100% KPC: 104-105 CFU/mL NDM:  103 CFU/mL 46/80* (141) 
KPC qPCR(EasyQ KPC) S 93.3% 99% Not Calculated 806 (193) VIM, OXA-48, NDM, KPC qPCR(Check-MDR Carba) SS 100% 100% 103-105 CFU/mL 25 (191) 

KPC, NDM, VIM qPCR(Xpert MDRO) S, SS 100% 99% < 3 X 102 CFU/mL 328 (183) KPC qPCR S 97.9-100% 95-96.4% 5 X 100 CFU/mL 187 (152) NDM-1 qPCR SS 100% Not calculated 101-3 X 101 CFU/mL 32 (189) 

* Specificity panel of 80 known negative specimens.  ES: Stool or peri-rectal swab with prior enrichment culture; S: Stool, stool swabs, or peri-rectal swabs; MC: mixed clinical specimens; SS: spiked stool or stool swabs; PC: pure cultures 



84  

Table 10: Factors to consider when implementing a screening program   1577  1578  1579  1580  1581  1582  1583  1584  1585  1586  1587  1588  1589  1590  1591  1592  1593 

- Epidemiology of CPO in the community 
o Prevalence rates of each carbapenemase 
o Ability to identify high-risk groups 

- Availability and cost of isolation beds 
- Existing logistics for collecting specimens. (e.g., an existing screening program for carriers of vancomycin-resistant Enterococcus spp.) 
- Current clinical microbiology laboratory capabilities 

o Availability of molecular diagnostic tools 
o Available technologists and ability to accommodate testing 
o Experience developing and validating in-house assays 
o Experience/availability of other technology to detect carbapenemases 

 CarbaNP or Blue-Carba 
 Inhibition disk assays (double disk synergy test) 
 UV spectrometry or MALDI-TOF 
 Modified Hodge Test 
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 1594  1595 
Table 11: Proposed criteria to screen patients for CPO 1596 

Non-endemic areas Endemic areas 

• Patients with multiple hospital admissions 
• ICU patients 
• Patients who have received medical care in endemic areas over the last 12 months 
• Patients who reside in healthcare settings 
• Patients with prior history of CPO infections or colonization 
• Patients with prior prolonged hospital stays 
• Patients coming from endemic areas
• Patients who are , or who are expected to become incontinent or unable to take care of their personal hygiene 

• Everyone (as resources for testing, isolation, and cohorting allow) 
• Particular emphasis on 

o Critically ill patients 
o Patients unable to take care of their excreta 
o Patients with an expected prolonged hospital stay 

 1597  1598  1599  1600 
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 1601 

 1602 
Figure 1: Appearances of different Enterobacteriaceae on chromID Carba and SUPERCARBA media. Left plate: chromID CARBA plate. Red colonies represent 1603 
K. pneumoniae; blue colonies E. coli; and yellow colonies Pseudomonas aeruginosa. The right plate SUPERCARBA medium composite picture: the upper half K. 1604 
pneumoniae (yellow colonies due to lactose fermentation).  Bottom half shows Pseudomonas aeruginosa. (black/dark green colonies with no lactose 1605 
fermentation) 1606 
 1607 
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 1608 
Figure 2: Per observation estimates of sensitivity, specificity, and DOR for screening methods used on pure cultures included in statistical analysis.  1609 
 1610 
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 1611 
Figure 3: Aggregate estimates of sensitivity, specificity, and DOR for screening methods used on pure cultures. 1612 
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 1613 
Figure 4: Per observation estimates of sensitivity, specificity, and DOR for screening on rectal/perirectal swabs. 1614 
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 1615 

 1616 
Figure 5: Aggregate estimates of sensitivity, specificity, and DOR for screening methods on rectal/perirectal swabs. 1617 
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 1618 
 1619 
Figure 6: Screening with conventional microbiology 1620 
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 1621  1622 
Figure 7: Molecular screening algorithm 1623 
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