Title: BlaB-15, a new BlaB metallo-β-lactamase variant found in an Elizabethkingia miricola clinical isolate

Article Type: Note

Keywords: Elizabethkingia miricola
BlaB
GOB
MBL

Corresponding Author: Dr. Mariagrazia Perilli, PhD

Corresponding Author's Institution: University of L'Aquila

First Author: Martina Colapietro

Order of Authors: Martina Colapietro; Andrea Endimiani; Alessia Sabatini; Francesca Marcoccia; Giuseppe Celenza; Bernardetta Segatore; Gianfranco Amicosante; Mariagrazia Perilli, PhD

Abstract: A multi-drug resistant strain of E. miricola was isolated from the urine of a 2-year old boy hospitalized for severe clinical conditions. The strain produces two metallo-β-lactamases belonging to subclasses B1 and B3: a new BlaB variant (BlaB-15) and a GOB-7-like enzyme.
Dear Editor,

I send you a copy of revised manuscript entitled “BlaB-15, a new BlaB metallo-β-lactamase variant found in an *Elizabethkingia miricola* clinical isolate” by Colapietro M et al. DMID-15-596-R1 that I would like to submit on Diagnostic Microbiology and Infectious Disease.

I state that this manuscript has not been and will not be submitted simultaneous elsewhere for publication.

All the authors agree with the instructions and conditions of the Journal.

All the authors agree to the submitted draft of the paper.

Thank you in advance for your cooperation.

Sincerely yours,

Mariagrazia Perilli

(Corresponding Author)
Response to reviewer comments:

Page 3, line 17. Has been corrected
Page 3, line 35. Has been corrected
Page 3, Line 45. Has been corrected
Page 4, Line 27. Has been corrected
Page 4, Lines 42-45. The sentence has been deleted
Page 5, Line 14. Has been deleted
Page 5, Line 19. The GOB-7 enzyme reported in GenBank lacks in C-terminal portion.
Page 5, Line 29. A sentence explaining why the blaGOB-like gene was not sequenced has been inserted.
Page 5, Line 54. Has been corrected
Page 6, Line 1. Has been corrected
Page 6, Line 5. Has been corrected
Page 6, Lines 16-18. The sentence has been deleted.
Page 6, Lines 20-22. The sentence has been corrected.
Table 1. Has been corrected as suggested.
BlaB-15, a new BlaB metallo-β-lactamase variant found in an *Elizabethkingia miricola* clinical isolate

Martina Colapietro\(^a\), Andrea Endimiani\(^b\), Alessia Sabatini\(^a\), Francesca Marcoccia\(^a\), Giuseppe Celenza\(^a\), Bernardetta Segatore\(^a\), Gianfranco Amicosante\(^a\) and Mariagrazia Perilli\(^*\)

\(^a\) Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, L’Aquila, Italy

\(^b\) Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland

Keywords: *Elizabethkingia miricola*, BlaB, Metallo-β-lactamase, MBL, GOB

Part of this study was presented to the “12\(^{th}\) β-lactamase Meeting”, 28 June-1 July, 2014, Gran Canaria, Canary Islands, Spain.

Corresponding author:

Present address: Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell’Aquila, Biochimica Clinica e Biologia Molecolare Clinica, Loc. Coppito, I-67100 L’Aquila, Italy. Tel.: +39 086 243 3489; fax: +39 086 243 3433. E-mail address: perilli@univaq.it.
Abstract

A multi-drug resistant strain of *E. miricola* was isolated from the urine of a 2-year old boy hospitalized for severe clinical conditions. The strain produces two metallo-β-lactamases belonging to subclasses B1 and B3: a new BlaB variant (BlaB-15) and a GOB-7-like enzyme.
Genus *Elizabethkingia* (formerly *Chryseobacterium*) belongs to *Flavobacteriaceae* family and includes two main species, *Elizabethkingia meningoseptica* and *Elizabethkingia miricola*, which are genetically different from other *Elizabethkingia* species, as revealed by 16S rRNA gene sequence studies (Kim et al., 2005). These bacteria are ubiquitous in natural (freshwater, saltwater and soil) and hospital environments. *E. meningoseptica* is an important emerging pathogen responsible for severe healthcare infections (Jean et al., 2014). In clinical settings, *Elizabethkingia* species have been described as etiological agents of meningitis, especially in premature infants, sepsis, bacteremia, pneumonia and endocarditis (Jean et al., 2014; de Silva et al., 2013). Carbapenem resistance in *E. meningoseptica* is mainly due to the production of metallo-β-lactamases (MBLs) as GOB and BlaB variants (Bellais et al., 2000; Gonzales and Vila, 2012).

E. miricola was isolated for the first time in 2003 from the condensation water on the space station *Mir* (Li et al., 2003). The first case of infection due to *E. miricola* (pneumonia and sepsis) was described in 2008 in a man with lymphoma and under mechanical ventilator support (Green et al., 2008). In the present study we identified a new BlaB variant (BlaB-15) from *E. miricola* isolated from a children with a complicated clinical condition. In September 2012, a 2-year old boy was admitted to the pediatric Emergency Department of the Children Bern University Hospital with fever and severe clinical conditions due to his underlying diseases (i.e., spina bifida, bladder extrophy, atelectasis, tracheostomy, chronic kidney insufficiency, and Mitrofanoff stoma fistula). Urine was collected from an intermittent urinary catheter and showed leucocyte count of 500 cells/μl and presence of nitrites. In addition, the urine sample gave the following results: 10,000 CFU/ml of *Klebsiella pneumoniae* (ESBL-positive), 10,000 CFU/ml of *E. miricola*, 100,000 CFU/ml of *Pseudomonas aeruginosa*, 100 CFU/ml of Candida and 100 CFU/ml of viridans streptococci. The young patient was under long-term treatment with nitrofurantoin.
The aim of this study was to characterize the BlaB-15 enzyme and to evaluate its contribution to resistance phenotype. *E. miricola* strain SW-2 was identified by using MALDI TOF MS system (Bruker Daltonik, Germany). Antimicrobial susceptibility test was performed by microdilution in cation-adjusted Mueller–Hinton broth (BBL, Becton Dickinson) using Sensititre ESB1F plates and GNX2F (TREK Diagnostic Systems, West Sussex, UK). Susceptibility results were interpreted according to current European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria set for *Pseudomonas* spp. (Eucast, 2015). As shown in Table 1, *E. miricola* SW-2 exhibits high MIC values for a large panel of antimicrobials including all cephalosporins, aztreonam, carbapenems, aminoglycosides, fluoroquinolones and polymyxins.

Genomic DNA of *E. miricola* SW-2 was extracted according to standard procedure (Sambrook et al., 1989). The presence of large plasmid was also ascertained using Kado method (Kado and Liu, 1981), but no plasmid bands were observed in *E. miricola* SW2. PCR screening was performed using specific primers to identify *bla*KPC, *bla*VIM, *bla*IMP, *bla*NDM-1, *bla*TEM, *bla*SHV, *bla*CTX-M determinants as previously reported (Perilli et al., 2013); the presence of *bla*B and *bla*GOB genes was explored by using the following primers: BlaB-for 5’GGGGCATATGTTGAAAAAGATTTTTTATTATT, BlaB-rev 5’GGGGGATCCCTTAAAGCTTTGGTTTGT, BlaGOB-for 5’ATGAGAAATTGGGCTACACTG and BlaGOB-rev 5’TGAAGACTGCGATCTG. Two amplicons of 747 bp and 825 bp were amplified by BlaB-for/BlaB-rev and BlaGOB-for/BlaGOB-rev primers, respectively. The purified fragments were sequenced on both strands using a BigDye Sequencing Reaction Kit and an ABI PRISM1 310 Capillary Automated Sequencer (Life Technologies, Monza, Italy).

Nucleotide sequences revealed that amplicons of 747 bp and 825 bp encoded for *bla*B-like and *bla*GOB-like metallo-β-lactamases (MBLs), respectively. The amplicon of 747 bp, encoding for an
open reading frame of 249 amino acids, had more than 90% amino acid identity with BlaB variant. However, some changes in the amino acid sequence make the present BlaB enzyme as new variant, named BlaB-15 (GenBank accession number KR054962). The figure 1 illustrates the comparison of BlaB-15 with other BlaB-variants with which our enzyme shows an higher similarity score (BlaB, BlaB-5, BlaB-7 and BlaB-8). BlaB-15 shows 18 different amino acids in the mature enzyme and 8 different residues in signal peptide. The gene blaGOB-like of 825 bp encodes for a protein of 280 amino acids that lacks the C-terminal portion. In figure 2 our GOB enzyme was compared with GOB-1 and GOB-7 variants. Compared to GOB-1, GOB-like shows 19 different residues in the mature enzyme. Despite of GOB-7, the enzyme produced by E. miricola SW2 showed an unusual residue of valine at position 258 (BBL B3 classification). Among GOB MBLs (http://www.ncbi.nlm.nih.gov), the position 258 is usually occupied by a leucine (GOB-1, -3, -4, -5, -6, -12, -13) or isoleucine (GOB-8, -9, -10, -18) residues (Bellais et al., 2000). However, the blaGOB-like gene found in E. miricola was not cloned and GOB-like enzyme was not characterized because it lacks in C-terminal region.

The blaB-15 gene was cloned into pET-24(a) vector using NdeI and BamHI restriction sites to obtain the recombinant plasmid pET-BlaB-15 that was inserted by transformation in E. coli BL21(DE3) competent cells. The authenticity of recombinant plasmid was verified by DNA sequencing. The contribution of BlaB-15 to resistance phenotype was investigated versus a large panel of β-lactams by Minimal Inhibitory Concentration (MIC) experiments using E. coli BL21(DE3)/pET-BlaB-15. The antimicrobial susceptibility test was performed by conventional microdilution broth procedure, using a bacterial inoculum of 5 x 10^5 CFU/ml as recommended by CLSI (CLSI, 2006). As shown in table 1, BlaB-15 confers resistance to penicillins-β-lactamase inhibitors combinations, cefotaxime, cefoxitin and carbapenems. Comparing MIC values with that
reported by BlaB prototype (Bellais et al., 2000), BlaB-15 seems to confer a broader resistance phenotype against cephalosporins.

In this study, we described the simultaneous presence in *E. miricola* of BlaB-15, a new BlaB variant belonging to subclass B1 MBL, and GOB-7-like enzyme belonging to subclass B3 MBL. To date, BlaB and GOB MBLs were mainly found in *E. menungosepticum* (Bellais et al., 2000). To our knowledge, this is the first finding of metallo-β-lactamases in *E. miricola* clinical strains. Additionally, the 2-year old baby was also colonized by an ESBL-producing *K. pneumoniae*. The co-colonization/infection of a patient with different strains producing several β-lactamases complicates treatment.

Acknowledgements

The authors wish to thank Anna Toso (Toronto Catholic District School Board, Toronto, Canada) for the language revision of the manuscript. We thank Salome N. Seiffert for helping with the phenotypic tests and Dr Sara Droz for providing the clinical isolate. This work was partially supported by the SWISS National Science Foundation (SNSF, grants project number 153377 to A.E.).
References

Jean SS, Lee WS, Chen FL, Ou TY, Hsueh PR. Elizabethkingia meningoseptica: an important emerging pathogen causing healthcare-associated infections. J Hospital Infect 2014;86: 244-249

Kim KK, Kim MK, Lim JH, Park HY, Lee ST. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica

Legend to the figures

Figure 1

The MBL BlaB-15 amino acid sequence (GenBank accession number KR054962) was compared with BlaB prototype (GenBank accession number O08498), BlaB-5 (GenBank accession number Q9KJA9), BlaB-7 (GenBank accession number Q9KJA8) and BlaB-8 (GenBank accession number Q9KJA7). Dashed lines indicate identical amino acid. The residues of BlaB-5, BlaB-7, BlaB-8 and BlaB-14 that differs from BlaB are also indicated. Arrow indicate the first residue of N-terminal region. In bold is indicated the sequence of BlaB-15 enzyme found in *E. miricola* (this study). The catalytic residues including Zn1 ligand (H116, H118, H196) and Zn2 ligand (D120, C221, H263) are in bold underlined.

Figure 2

The GOB-like was compared with GOB-1 (AF090141) and GOB-7 (AF189297). Dashed lines indicate identical amino acids. In bold is indicated the sequence of GOB-like enzyme found in *E. miricola* (this study). The residues of GOB-7 and GOB-like that differs from GOB-1 are also indicated. The box shows the unique different residue between GOB-7 and GOB-like.
Figure 1: Amino acid comparison of the BlaB-15 MBL with other BlaB, BlaB-5, BlaB-7 and BlaB-8 variants

<table>
<thead>
<tr>
<th></th>
<th>BlaB</th>
<th>BlaB-5</th>
<th>BlaB-7</th>
<th>BlaB-8</th>
<th>BlaB-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BlaB</td>
<td>BlaB-5</td>
<td>BlaB-7</td>
<td>BlaB-8</td>
<td>BlaB-15</td>
</tr>
<tr>
<td></td>
<td>DKGVVVIDCPWGEDKFKSTDEIYKHKGKVMNIAHSDHDDRAGLEYFGKIGAKTYST</td>
<td>---I-----S--------------------L-----</td>
<td>---I-----S--------------------L-----</td>
<td>---I-----S--------------------L-----</td>
<td>---I-----S--------------------L-----</td>
</tr>
<tr>
<td></td>
<td>BlaB</td>
<td>BlaB-5</td>
<td>BlaB-7</td>
<td>BlaB-8</td>
<td>BlaB-15</td>
</tr>
<tr>
<td></td>
<td>KMTDSILAKENKPRAQYTFDNNTQSYIHHGDWKDQRSIQHTLDLINE</td>
<td>---K-----NT-------------------D-----</td>
<td>---K-----T---------------D-----</td>
<td>---K-----T---------------D-----</td>
<td>---K-----T---------------D-----</td>
</tr>
<tr>
<td></td>
<td>BlaB</td>
<td>BlaB-5</td>
<td>BlaB-7</td>
<td>BlaB-8</td>
<td>BlaB-15</td>
</tr>
<tr>
<td></td>
<td>IIKSADSKLGYGEAVNWTQSVNIOQKFGAQYFYVAVGHDDWDDQDRSCHHTLDLINE</td>
<td>-V--G-----I-----PDV------T-----SD</td>
<td>-V--G-----F-----I-----PDV------T-----S-</td>
<td>-V--G-----F-----I-----PDV------T-----S-</td>
<td>-V--G-----F-----I-----PDV------T-----SD</td>
</tr>
<tr>
<td></td>
<td>BlaB</td>
<td>BlaB-5</td>
<td>BlaB-7</td>
<td>BlaB-8</td>
<td>BlaB-15</td>
</tr>
<tr>
<td></td>
<td>YQQKQKASN</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Figure 2: Amino acid comparison of the GOB-like with GOB-1 and GOB-7 variants

<table>
<thead>
<tr>
<th></th>
<th>GOB-1</th>
<th>GOB-7</th>
<th>GOB-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOB-1</td>
<td>MRNFATLFMFICLGLNAQVKKPEPENMPKEWNQTYEFRIAGNLYYVGYDASILASYLIVTD</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>GOB-7</td>
<td>KGNILINTGTAESLPIIKANIQKLGNYKDIKILLTTQAHDHTGALQDLKTETGAKFYA</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>GOB-like</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>GOB-1</td>
<td>DKADADVLRTGGKSDYMCKGFVTFVPDKTLKDQDKITLGNTTITLEHHPGTKSGC</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>GOB-7</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>GOB-like</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>GOB-1</td>
<td>SFIFETKDKEKRYVLIANMPSIVDKKFSEVTAYPNIQUITFKAMKNLDFDVMVAS</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>GOB-7</td>
<td>---</td>
<td>KI--</td>
<td>---</td>
</tr>
<tr>
<td>GOB-like</td>
<td>---</td>
<td>KI--</td>
<td>---</td>
</tr>
<tr>
<td>GOB-1</td>
<td>HASQFDLHEKRGDPYNPQLFMDKQSYFQNLNDLEKSYLDKIKDSQDK</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>GOB-7</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>GOB-like</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
Table 1: Antimicrobial susceptibility pattern of *E. miricola* SW2 and *E. coli* BL21(DE3)/pET-BLAB-15

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>E. miricola SW²</th>
<th>E. coli BL21(DE3)</th>
<th>E. coli BL21(DE3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin-tazobactam</td>
<td>8</td>
<td>>64</td>
<td>0.25</td>
</tr>
<tr>
<td>Ticarcillin-clavulanate</td>
<td>≥256</td>
<td>>64</td>
<td>0.25</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>64</td>
<td>16</td>
<td>0.12</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>64</td>
<td>4</td>
<td>0.12</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>32</td>
<td>16</td>
<td>0.50</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>128</td>
<td>2</td>
<td>0.12</td>
</tr>
<tr>
<td>Cefepime</td>
<td>16</td>
<td>0.50</td>
<td>0.06</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>≥32</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≥32</td>
<td>16</td>
<td>0.12</td>
</tr>
<tr>
<td>Meropenem</td>
<td>≥16</td>
<td>16</td>
<td>0.12</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>≥8</td>
<td>8</td>
<td>0.12</td>
</tr>
<tr>
<td>Gentamicin</td>
<td><0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>≥16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amikacin</td>
<td>≤2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td><0.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Colistin</td>
<td>≥8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polymixin B</td>
<td>≥8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>≤1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Minocycline</td>
<td>≤1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>0.50</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Antimicrobial susceptibility tests were performed by microdilution in cation-adjusted Mueller–Hinton broth (BBL, Becton Dickinson) using Sensititre ESB1F plates and GNX2F.

The antimicrobial susceptibility test was performed by the conventional microdilution broth procedure, using a bacterial inoculum of 5 x 10⁵ CFU/ml as recommended by CLSI (CLSI, 2006). MIC values are expressed in μg/ml.
BlaB-15, a new BlaB metallo-β-lactamase variant found in an *Elizabethkingia miricola* clinical isolate

Martina Colapietro⁵, Andrea Endimiani⁶, Alessia Sabatini⁵, Francesca Marcoccia⁵, Giuseppe Celenza⁵, Bernardetta Segatore⁵, Gianfranco Amicosante⁵ and Mariagrazia Perilli⁶

⁵ Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, L’Aquila, Italy

⁶ Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland

Keywords: *Elizabethkingia miricola*, BlaB, Metallo-β-lactamase, MBL, GOB

Part of this study was presented to the “12th β-lactamase Meeting”, 28 June-1 July, 2014, Gran Canaria, Canary Islands, Spain.

*Corresponding author:

Present address: Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell’Aquila, Biochimica Clinica e Biologia Molecolare Clinica, Loc. Coppito, I-67100 L’Aquila, Italy. Tel.: +39 086 243 3489; fax: +39 086 243 3433. E-mail address: perilli@univaq.it.
Abstract

A multi-drug resistant strain of *E. miricola* was isolated from the urine of a 2-year old boy hospitalized for severe clinical conditions. The strain produces two metallo-β-lactamases belonging to subclasses B1 and B3: a new BlaB variant (BlaB-15) and a GOB-7-like enzyme.
Genus *Elizabethkingia* (formerly *Chryseobacterium*) belongs to *Flavobacteriaceae* family and includes two main species, *Elizabethkingia meningoseptica* and *Elizabethkingia miricola*, which are genetically different from other *Elizabethkingia* species, as revealed by 16S rRNA gene sequence studies (Kim et al., 2005). These bacteria are ubiquitous in natural (freshwater, saltwater and soil) and hospital environments. *E. meningoseptica* is an important emerging pathogen responsible for severe healthcare infections (Jean et al., 2014). In clinical settings, *Elizabethkingia* species have been described as etiological agents of meningitis, especially in premature infants, sepsis, bacteremia, pneumonia and endocarditis (Jean et al., 2014; de Silva et al., 2013). Carbapenem resistance in *E. meningoseptica* is mainly due to the production of metallo-β-lactamases (MBLs) as GOB and BlaB variants (Bellais et al., 2000; Gonzales and Vila, 2012).

E. miricola was isolated for the first time in 2003 from the condensation water on the space station *Mir* (Li et al., 2003). The first case of infection due to *E. miricola* (pneumonia and sepsis) was described in 2008 in a man with lymphoma and under mechanical ventilator support (Green et al., 2008). In the present study we identified a new BlaB variant (BlaB-15) from *E. miricola* isolated from a children with a complicated clinical condition. In September 2012, a 2-year old boy was admitted to the pediatric Emergency Department of the Children Bern University Hospital with fever and severe clinical conditions due to his underlying diseases (i.e., spina bifida, bladder extrophy, atelectasis, tracheostomy, chronic kidney insufficiency, and Mitrofanoff stoma fistula). Urine was collected from an intermittent urinary catheter and showed leucocyte count of 500 leucocytes/μl and presence of nitrites. In addition, the urine sample gave the following results: 10.000 CFU/ml of *Klebsiella pneumoniae* (ESBL-positive), 10.000 CFU/ml of *E. miricola*, 100.000 CFU/ml of *Pseudomonas aeruginosa*, 100 CFU/ml of Candida and 100 CFU/ml of viridans streptococci. The young patient was under long-term treatment with nitrofurantoin.
The aim of this study was to characterize the BlaB-15 enzyme and to evaluate its contribution to resistance phenotype. *E. miricola* strain SW-2 was identified by using MALDI TOF MS system (Bruker Daltonik, Germany). Antimicrobial susceptibility test was performed by microdilution in cation-adjusted Mueller–Hinton broth (BBL, Becton Dickinson) using Sensititre ESB1F plates and GNX2F (TREK Diagnostic Systems, West Sussex, UK). Susceptibility results were interpreted according to current European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria set for *Pseudomonas* spp. (Eucast, 2015). As shown in Table 1, *E. miricola* SW-2 exhibits high MIC values for a large panel of antimicrobials including all cephalosporins, aztreonam, carbapenems, aminoglycosides, fluoroquinolones and polymyxins.

Genomic DNA of *E. miricola* SW-2 was extracted according to standard procedure (Sambrook et al., 1989). The presence of large plasmid was also ascertained using Kado method (Kado and Liu, 1981), but no plasmids bands were detected observed in *E. miricola* SW2. PCR screening was performed using specific primers to identify *blaKPC, blavIM, blabIM, blanDM, blatem, blashV, blactX*

m determinants as previously reported (Perilli et al., 2013); the presence of *blaB* and *blagoB* genes was explored by using the following primers: BlaB-for 5’GGGGCATATGTTGAAAAGATTAAAAGATTATT, BlaB-rev 5’GGGGGATCCTTAATTTGAAGCCTTTTGTTTTGTTTGG, BlaGOB-for 5’ATGAGAAATTTTGGCTACACTG and BlaGOB-rev 5’TGAAACTGACTTGCATG. To investigate the presence of mobile genetic elements, PCR experiments were performed with specific primers for *int1, int2 and int3* genes and variable region. Integrons of class 1, 2, 3 and serin β-lactamases were not found in chromosomal DNA of *E. miricola*. Moreover, two amplicons of 747 bp and 825 bp were amplified by BlaB-for/BlaB-rev and BlagoB-for/BlaGOB-rev primers, respectively. The purified fragments were sequenced on both strands using a BigDye Sequencing
Reaction Kit and an ABI PRISM 310 Capillary Automated Sequencer (Life Technologies, Monza, Italy).

Nucleotide sequences revealed that amplicons of 747 bp and 825 bp encoded for \(\text{blaB} \)-like and \(\text{blaGOB} \)-like metallo-\(\beta \)-lactamases (MBLs), respectively. The amplicon of 747 bp, encoding for an open reading frame of 249 amino acids, had more than 90% amino acid identity with \(\text{BlaB} \) variant. However, some changes in the amino acid sequence make the present \(\text{BlaB} \) enzyme as new variant, named \(\text{BlaB-15} \) (GenBank accession number KR054962). The figure 1 illustrates the comparison of \(\text{BlaB-15} \) with other \(\text{BlaB} \)-variants with which our enzyme shows an higher similarity score (\(\text{BlaB}, \text{BlaB-5}, \text{BlaB-7 and BlaB-8} \)). For instance, with respect to \(\text{BlaB} \) prototype, \(\text{BlaB-15} \) shows 18 different amino acids in the mature enzyme and 8 different residues in signal peptide. The gene \(\text{blaGOB} \)-like of 825 bp encodes for a protein of 280 amino acids that lacks the C-terminal portion.

In figure 2 our \(\text{GOB} \) enzyme was compared with \(\text{GOB-1} \) and \(\text{GOB-7} \) variants. Compared to \(\text{GOB-1} \), \(\text{GOB-like} \) shows 19 different residues in the mature enzyme. Despite of \(\text{GOB-7} \), the enzyme produced by \(\text{E. miricola SW2} \) showed an unusual residue of valine at position 258 (BBL B3 classification). Among \(\text{GOB} \) MBLs (http://www.ncbi.nlm.nih.gov), the position 258 is usually occupied by a leucine (\(\text{GOB-1, -3, -4, -5, -6, -12, -13} \)) or isoleucine (\(\text{GOB-8, -9, -10, -18} \)) residues (Bellais et al., 2000). However, the \(\text{blaGOB} \)-like gene found in \(\text{E. miricola} \) was not cloned and \(\text{GOB-like} \) enzyme was not characterized because it lacks in C-terminal region.

The \(\text{blaB-15} \) gene was cloned into pET-24(a) vector using \(\text{NdeI} \) and \(\text{BamHI} \) restriction sites to obtain the recombinant plasmid pET-BlaB-15 that was inserted by transformation in \(\text{E. coli BL21(DE3)} \) competent cells. The authenticity of recombinant plasmid was verified by DNA sequencing. The contribution of \(\text{BlaB-15} \) to resistance phenotype was investigated versus a large panel of \(\beta \)-lactams by Minimal Inhibitory Concentration (MIC) experiments using \(\text{E. coli BL21(DE3)/pET-BlaB-15} \). The antimicrobial susceptibility test was performed by conventional
micr dilution broth procedure, using a bacterial inoculum of 5×10^5 CFU/ml as recommended by CLSI (CLSI, 2006). As shown in table 1, BlaB-15 confers resistance to penicillins-β-lactamase inhibitors combinations, cefotaxime, cefoxitin and carbapenems. Comparing MIC values with that reported by BlaB prototype (Bellais et al., 2000), BlaB-15 seems to confer a broader resistance phenotype against have a more large phenotype spectrum versus cephalosporins.

In this study, we described the simultaneously presence in *E. miricola* of BlaB-15, a new BlaB variant belonging to subclass B1 MBL, and GOB-7-like enzyme belonging to subclass B3 MBL. To date, BlaB and GOB MBLs were mainly found in *E. menungosepticum* (Bellais et al., 2000). To our knowledge, this is the first finding of metallo-β-lactamases in *E. miricola* clinical strains. Additionally, the 2-year old baby was also colonized by an ESBL-producing *K. pneumoniae*. In fact, this strain was also investigated (data not shown) and a CTX-M-15 enzyme was found in the chromosomal DNA of *K. pneumoniae*. The co-colonization/infection of a patient with different strains producing several β-lactamases makes difficult the infection complicates treatment.

Acknowledgements

The authors wish to thank Anna Toso (Toronto Catholic District School Board, Toronto, Canada) for the language revision of the manuscript. We thank Salome N. Seiffert for helping with the phenotypic tests and Dr Sara Droz for providing the clinical isolate. This work was partially supported by the SWISS National Science Foundation (SNSF, grants project number 153377 to A.E.).
References

Jean SS, Lee WS, Chen FL, Ou TY, Hsueh PR. *Elizabethkingia meningoseptica*: an important emerging pathogen causing healthcare-associated infections. J Hospital Infect 2014;86: 244-249

Kim KK, Kim MK, Lim JH, Park HY, Lee ST. Transfer of *Chryseobacterium meningosepticum* and *Chryseobacterium miricola* to *Elizabethkingia* gen. nov. as *Elizabethkingia meningoseptica*

Legend to the figures

Figure 1

The MBL BlaB-15 amino acid sequence (GenBank accession number KR054962) was compared with BlaB prototype (GenBank accession number O08498), BlaB-5 (GenBank accession number Q9KJA9), BlaB-7 (GenBank accession number Q9KJA8) and BlaB-8 (GenBank accession number Q9KJA7). Dashed lines indicate identical amino acid. The residues of BlaB-5, BlaB-7, BlaB-8 and BlaB-14 that differs from BlaB are also indicated. Arrow indicate the first residue of N-terminal region. In bold is indicated the sequence of BlaB-15 enzyme found in *E. miricola* (this study). The catalytic residues including Zn1 ligand (H116, H118, H196) and Zn2 ligand (D120, C221, H263) are in bold underlined.

Figure 2

The GOB-like was compared with GOB-1 (AF090141) and GOB-7 (AF189297). Dashed lines indicate identical amino acids. In bold is indicated the sequence of GOB-like enzyme found in *E. miricola* (this study). The residues of GOB-7 and GOB-like that differs from GOB-1 are also indicated. The box shows the unique different residue between GOB-7 and GOB-like.