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VIS-NIR reflectance of water ice/regolith analogue
mixtures and implications for the detectability
of ice mixed within planetary regoliths
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Abstract Permanently shadowed regions at the poles of the Moon and Mercury have been pointed
out as candidates for hosting water ice at their surface. We have measured in the laboratory the visible and
near infrared spectral range (VIS-NIR) bidirectional reflectance of intimate mixtures of water ice and the JSC-1AF
lunar simulant for different ice concentrations, particle sizes, and measurement geometries. The nonlinearity
between themeasured reflectance and the amount of ice in themixture can be reproduced to some extent by the
mixing formulas of standard reflectance models, in particular, those of Hapke and Hiroi, which are tested here.
Estimating ice concentrations from reflectance data without knowledge of the mixing coefficients—strongly
dependent on the size/shape of the grains—can result in large errors. According to our results, it is possible that
considerable amounts of water ice might be intimately mixed in the regolith of the Moon and Mercury without
producing noticeable photometric signatures.

1. Introduction

Through the last decade a lot of effort has been made to identify water ice in polar-shadowed areas of
Mercury and the Moon, by taking advantage of the synergy between different techniques such as radar
imaging, neutron spectrometry, and laser altimetry. Laser altimeters are primarily designed to measure
the topography of the studied body but can also retrieve the zero-phase reflectivity of a surface at the
wavelength of the instrument (usually 1064 nm) as a by-product [Sun et al., 2006]. Since the addition of
ice into a soil or regolith is likely to change its reflectivity, laser altimetry could detect it. This is particularly
useful for permanently shadowed regions at the poles of the Moon and Mercury, which are good
candidates for hosting ices but where passive remote-sensing methods, such as imaging and reflectance
spectroscopy, cannot be used. The Lunar Orbiter Laser Altimeter (LOLA) [Smith et al., 2010] and the
Mercury Laser Altimeter (MLA) [Cavanaugh et al., 2007] have characterized the surfaces of the Moon and
Mercury, respectively. In the future, the BepiColombo Laser Altimeter [Thomas et al., 2007] will provide
further information about the surface of Mercury. Both LOLA and MLA have shown variations in the
reflectance of some polar areas of the Moon [Lucey et al., 2014] and Mercury [Neumann et al., 2013] where
water ice is thought to exist.

In the case of the Moon, Lucey et al. [2014] identified water ice as the most likely candidate for the variable
surface reflectance. They also explore the possibility of finding ice mixed within the regolith (i.e., as an
intimate mixture), as previously suggested by Feldman et al. [2001] and Haruyama et al. [2008b].

Direct imaging provides another way of detecting ice. Sensitive cameras can obtain images using indirect
illumination from light scattered from opposite crater walls and/or surrounding topography. At Mercury,
the MESSENGER’s Mercury Dual Imaging System [Hawkins et al., 2007] has imaged the floors of candidate
ice-hosting craters, as the Terrain Camera onboard the Selenological and Engineering Explorer [Haruyama
et al., 2008a] has done for the Moon. For Mercury, Chabot et al. [2014] showed evidences for superficial ice
in some craters, whereas Haruyama et al. [2008b] conclude that a maximum of 1 ~ 2wt % of water ice
might be mixed in the soil of Shackleton Crater in the Moon.

Several authors have studied the reflectance of ice-free binary mixtures. Some of the existing models have
been shown to work successfully, so that they can be used for estimating the abundances of the mixture
components. In planetary sciences, the Hapke model [Hapke, 1981, 1986, 1993, 2002, 2008] is widely used,
both for dry and icy materials and surfaces. Mustard and Pieters [1987, 1989] and Hiroi and Pieters [1994]
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proved in the laboratory its accuracy for mixtures of minerals. Another model used here is the model
proposed by Hiroi and Takeda [1990] and Hiroi and Pieters [1992, 1994].

We have produced ice-bearing intimate mixtures in the laboratory and studied their bidirectional reflectance
for different geometries. Measurements at zero phase angle are relevant for applications to laser altimetry,
whereas measurements at higher phase angle are relevant for the case of indirect illumination of the
surface by scattered light. We have tested the two reflectance models mentioned on our samples. As
water ice has very different physical properties from the nonvolatile materials previously tested, our aim
here is to check if the methods used for dry mixtures can be used for icy mixtures. This is important
because recent studies have used these methods to estimate the quantity of ice present at the surfaces of
some lunar craters [Haruyama et al., 2008b; Lucey et al., 2014].

In section 2, we describe the preparation of the samples as well as the measurement procedure. Our
reflectance results and comparison with models are presented in sections 3 and 4, respectively. Finally, we
summarize the main results and detail future perspectives in section 5.

2. Data and Methods
2.1. Components and Mixing Process

All samples studied in this paper consist of mixtures of JSC-1AF lunar regolith simulant and water ice. JSC-1AF
is the fine fraction of the lunar mare regolith simulant distributed by the NASA Johnson Space Center, with an
average particle size of 24μm [Schrader et al., 2009]. We have produced two types of water ice with different
particle sizes by using two different techniques with the SPIPA (Setup for Preparation of Icy Planetary
Analogues) facility. First, we used the setup presented in the supporting information (S1), which produces
spherical ice particles with a diameter of 4.5 ± 2.5μm by freezing a suspension of very fine droplets of
liquid water produced by an ultrasonic inhalator in cold air. Second, we have produced a spray of larger
liquid droplets (diameter: 70 ± 30μm) directed toward a large volume of liquid nitrogen, a technique
presented in detail in the supporting information (S1). These two types of water ice particles will be
referred to as fine-grained and coarse-grained ice, respectively, in the rest of this manuscript. Ice samples,
as well as JSC-1AF and the mixtures, have been characterized by using a cryogenic scanning electron
microscope (SEM) (Figure 1).

The procedure for sample preparation was accurately defined and precisely followed for all samples in order
to guarantee a good reproducibility and mitigate the influence of preparation on the reflectance of the
sample [Pommerol et al., 2013]. Independent of the quantity of sample ultimately needed, we always
started by producing the same amount of fresh ice in a given time just before mixing it with the regolith
simulant. This was done to limit the possible sintering of the ice particles [Jost et al., 2013]. The ice and
JSC-1AF were mixed within an aluminum bottle over a vortex shaker, always for the same time and
repeatedly cooled down in liquid nitrogen. In this way, we obtained very homogenous mixtures for both
types of ice. Figure 1c shows a cryo-SEM image of the result of the mixing where we can see the JSC-1AF
simulant and fine-grained ice intimately mixed at the particle scale. The sample holder was always filled in
the same way; first, we filled it with a cooled spoon and then took away the excess with a trowel, without
flattening the sample. A last layer of mixture was sieved upon the surface. The openings of the sieve used
for this purpose were large enough so that they did not introduce inhomogeneities in the sample. Finally,

Figure 1. Cryo-SEM images of (a) JSC-1AF, (b) fine-grained ice, and (c) JSC-1AF and fine ice mixture.
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the sample holder was transported from the preparation freezer to the measurement freezer, a step that
lasted not longer than few seconds. This protocol guarantees the reproducibility of the samples and,
therefore, of the results.

2.2. Measurement Procedures

All the measurements have been performed with the PHIRE-2 instrument, a gonio-radiometer that permits
the characterization of the Bidirectional Reflectance Distribution Function of ice-bearing samples in the
visible light spectrometer-near-infrared (VIS-NIR) (400–1100 nm) spectral range. A complete description of
the instrument and its performances is given by Pommerol et al. [2011]. Recently, the receptor of the
instrument has been replaced by a beam splitter head, permitting measurements of the reflectance at very
low phase angle.

The PHIRE-2 instrument achieves its peak signal-to-noise ratio (SNR) at 750 nm. Working at this wavelength
allows us to perform measurements faster, which is a necessity when working with fine-grained ice
samples that evolve quickly by sublimation and sintering. We have seen that for both JSC1-AF and water
ice, the reflectance factor (REFF, defined in Hapke [1993]) is comparable at 750 and 1064 nm (see
supporting information, Text S2.1). Because of the lower SNR at 1064 nm, acquiring measurements at this
wavelength takes 5 times longer than at 750 nm. The less time we spend measuring, the less influence
sintering has on the reflectance. For this reason, all measurements in this study have been performed at
750 nm. The average temperature at which measurements have been done was 240 K.

Figure 2. Reflectance phase curves for binary mixtures of JSC-1AF and (a) fine- and (b) coarse-grained ice. Measurements
are made at 750 nm and i = 20° and i = 70°. Blue symbols show the results for pure JSC1-AF, purple for samples containing a
10wt % of ice, orange a 20wt % (only for fine-grained ice), green 35wt %, dark blue 50 wt %, and yellow 75 wt % of ice. The
reflectance peaks correspond to the opposition effect (g = 0°), and they have been isolated to show their shape. Please note
that this has been done to help the reader to resolve the peak shape and that the absolute scale is not respected.
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The datawere calibrated in several steps that
allow us to compute the stray light, energy
losses, etc. A Spectralon reflectance target
was used to have an absolute reference for
the voltage-reflectance conversion. Further
explanation about the calibration process
is given in the supporting information
(Text S2). The accuracy of themeasurements
was derived from the data by applying the
reciprocity principle, permuting the position
of the source and detector [Pommerol et al.,
2013]. The relative error observed is ~2%.

We havemeasured the REFF at low (20°) and
high (70°) incidence angles and for emission
angles varying between�80° and 80° in the
principal plane. Laser altimeters operate
by design at low incidence angle, mostly
in nadir-viewing geometry. Although the
PHIRE-2 instrument permits measurements
at normal incidence, measuring at low but
nonzero incidence results in more accurate

measurements because of the higher mechanical accuracy of the goniometer. We therefore decided to
measure low incidence phase curves at an incidence angle of 20°. Only very minor differences are expected
between measurements performed at 0° and 20° incidence angles (Figure S2). Phase curves measured at high
incidence angle are interesting to understand the scattering behavior of the regolith analogues at large phase
angle, which is relevant for imaging of the floor of polar craters illuminated by light scattered from the local
topography. Studying the zero-phase angle geometry allows us to compare our measurements with the ones
performed by the laser altimeters and to study the opposition peak shown by the samples at this geometry
[Hapke, 1993]. We have used an angular sampling of 5° in emission angle for phase angles larger than 5° but a
higher sampling of 0.5° at lower phase angle to better analyze the opposition peak.

3. Results

Phase curves presenting the reflectance as a function of the emission angle are shown in Figure 2, for low
(20°) and high (70°) incidence angles. Figure 2a shows the results for fine-grained ice and Figure 2b for

Figure 3. REFF comparison between low and high phase angles, and
between fine- and coarse-grained ice for different ice concentrations.
Triangles represent the fine ice and squares represent the coarse-
grained ice. Greyish tones are used for the zero phase angle whereas
orange tones are used for the 150° phase angles. Uncertainties are ~2%.

Table 1. Parameters Used for the Reflectance Models

JSC-1AF Fine-Grained Ice Coarse-Grained Ice

HAPKE ωJSC-1AF = 0.77a ωICE = 1.0a ωICE = 1.0a

ρJSC-1AF = 2.92 g/cm3b ρICE = 0.9168 g/cm3 ρICE = 0.9168 g/cm3c

D1_BLUE = 24 μm D2_BLUE = 4.5 μm D2_BLUE = 70 μm
D1_GOLD = 1.5 μm D2_GOLD = 4.5 μm D2_GOLD = 70 μm
D2/D1_ORANGE = 1 D2/D1_ORANGE = 1 D2/D1_ORANGE = 1

HIROI ω1 = 0.67d ω2 = 0.035d

nJSC-1AF = 1.7e nICE = 1.3f nICE = 1.3f

α1 = 0.02g α2 = 10�6g α2 = 10�6g

δ1 = 5.93 μm D2 = 4.5 μm D2 = 70 μm
δ1_EFF = 11.86 μm D2_EFF = 3.015 μm D2_EFF = 46.9 μm

aFitted by the Hapke Model.
bAlshibli and Hasan [2009].
cPounder [1965].
dOptimized to give the best fit.
eBrouet [2013].
fWarren and Brandt [2008].
gFitted by the Hiroi Model.
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coarse-grained ice. In both cases we see that the phase curves measured at low incidence angle are
dominated by the opposition effect (occurring at �20° and �70° emission angles, respectively), which
produces a relatively strong increase of reflectance (25%) as the phase decreases below 10°. For i= 70°, the
reflectance increases as well at high phase angle and, for ice-rich samples, reaches a maximum in the
forward scattering direction.

In order to study in more detail the relationship between the reflectance and the composition of the sample
we extract the reflectance at 0° phase angle for i= 20° and 150° phase angle for i= 70° and plot it as a function
of the amount of ice in the binary mixture (Figure 3). Again, for both fine-grained and coarse-grained ice we
observe that, when mixed intimately, relatively high amounts of ice within the sample do not significantly
affect its reflectance. When looking at the fine-grained ice we see that samples containing up to 35wt %
of ice show almost the same reflectance as ice-free samples. It is only with 50wt % of ice or more that the
reflectance starts to rise and can be differentiated from the ice-free samples. Even higher amounts of ice
are required to produce a photometric signature when coarse-grained ice is used. In this case, even a
sample containing 75wt % of ice (88% volume fraction) is not distinguishable from an ice-free sample. The
reflectance measured at high phase angle, however, shows a much stronger dependence on the amount
of ice in the sample.

4. Discussion

Our results demonstrate, in a few particular cases, how difficult it is to detect water ice intimately mixed
within a lunar-type regolith from its VIS-NIR photometric signature. For example, looking at a surface at
0° phase and low incidence angle, one would not be able to distinguish between a dry soil and a soil
containing up to 75wt % of 100μm sized water ice particles. It is important to highlight this, since in the
scientific literature we often find the idea that, with only a small wt % of water ice mixed within the soil, the
reflectance rises, and thus, a low albedo implies a relatively small quantity of ice [Haruyama et al., 2008b;

Figure 4. Comparison of the measured data with the (a) Hapke and (b) Hiroi models. The graphs on the left represent the
fine ice whereas the right one represents the coarse-grained ice. The parameters used for each case are summarized in
Table 1.
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Zuber et al., 2012]. The results presented here set the detection threshold for particulate water ice mixed
intimately into the regolith much higher. The reflectance results for i=70° show that high phase angles
provide the best chance of detecting water ice because of the strong forward scattering peak in ice-rich
samples. We suggest that, when the sunlight that is scattered from the illuminated crater walls reaches the
ice in the shadow with large incidence angles, an orbital camera could detect, with a large exposure time,
the increase of reflectance produced by the forward scattering. This intensity increases greatly with the ice
content and would therefore be a strong indicator of the presence of exposed ice.

In order to expand our experimental findings from a few particular cases to more general trends, we use our
data to test and calibrate existing reflectance models. This is crucial to establish whether we can determine
precisely the quantity of water ice found in the lunar and/or Hermean craters. We have tested the widely used
reflectance model from Hapke [1981] and that from Hiroi and Takeda [1990]. These models use different
approaches to compute the reflectance of a binary intimate mixture from the properties of the components.
As previously stated by Clark [1981], we have seen that the size of the ice particles strongly affects the
reflectance, so we focus on how each model deals with parameters such as the size and shape of the end-
members. The parameters that we have used for each model are shown in Table 1. All the reflectance
values in Figure 4 are the reflectance results for i= 20° and 0° phase angles.

4.1. The Hapke [1981] Model

In Hapke’s model of the single scattering albedo (ω) of a multicomponent medium is given by Hapke [1981,
equation (17)], which, in the case of a binary mixture of spherical particles—or particles with approximately
the same shape—can be arranged as follows [Hapke, 1993]:

ω ¼ ζω1 þ ω2

1þ ζ
with ζ ¼ M1

M2

ρ2
ρ1

D2

D1
; (1)

where ωi is the single scattering albedo, Mi is the bulk density, ρi is the solid density, and Di the mean
diameter of the particles of each component. In order to study the influence of the size of the particles,
the other parameters have been fixed with the values shown in Table 1. Different size ratios have been
tested; Figure 4a shows the results of the Hapke model predictions for those ratios and compares them
with our results for i= 20° and 0° phase angles. For both fine- and coarse-grained ice, the blue line
represents the actual values of our end-members, while the gold one exaggerates the size difference
between the JSC-1AF and the ice by making the basalt smaller. Finally, the orange line shows the result of
linearizing the single scattering albedo, i.e., setting D2/D1 = 1.

Real mean diameters do not give the best modeled estimates of the reflectance; the data are better fitted
when we run the model with smaller JSC-1AF particles. This is certainly an effect of the difference of shape
between irregular basalt particles and spherical ice particles (Figure 1a), so that the effective scatterer size
is much smaller than the average grain size in the case of the regolith simulant. Hapke [1993] already
stated that when dealing with irregular particles, the equivalent radius should be determined by the cross
section of the particle, which is consistent with the results shown here. Consequently, the model’s best
estimate is found for a particle size of 1.5μm instead of 24μm. On the surface of the Moon or Mercury, we
can expect such a contrast of shape between the ice and basalt particles, since it is a direct effect of the
contrast of physical properties between a refractory and a volatile element, the first one having condensed
billions of years ago and subjected to surface alteration for a long time, while the second one is subject to
cycles of sublimation and condensation.

4.2. The Hiroi Model

Hiroi and Takeda [1990] proposed a model where they treat the reflectance of a particulate surface as a series
of grain interactions. One of the strengths of this model is that it introduces a shape factor. Depending on the
shape of the particle (spherical, cubical, or disk shape), a different effective grain size can be computed [Hiroi
and Pieters, 1992, Figure 13]. As we see in Figure 1, the ice that we use has a spherical shape, while the
particles of JSC-1AF can be approximated as disks. This model has two free parameters (ω1 and ω2) that
are adjusted to find the best fit. By using the effective grain size that corresponds to each type of particle
and the parameters summarized in Table 1, we obtain the curves shown in Figure 4b. The presence of two
free parameters implies that a good fit can be obtained even for nonrepresentative sizes of grains. Still, we
have seen that once ω1 and ω2 have been fixed for a set of data (i.e., fine ice), the same values can be
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used for the same material but different sizes (i.e., coarse ice), which is useful for extrapolating the
laboratory measurements.

5. Conclusions

Experimental results show that ice mixed intimately within a regolith is more difficult to detect when it is
present as bigger particles and when it is observed at low incidence and phase angles. At low incidence
angles and zero-phase angle it would not be possible to distinguish a soil containing up to 75wt % of ice
from an ice-free soil. Observing the surface at higher phase angles results in a higher probability of
detection; when possible, orbital cameras with very high signal-to-noise ratios would be a better choice to
detect particulate water ice than laser altimeters.

Quantitative estimates of the amount of ice in the regolith of lunar and/or Hermean polar craters derived
from reflectance models should be taken with caution. Models work well in a relative way, as they are
able to reproduce the shape of the relationship between the reflectance and the composition. These
relationships are strongly influenced by mixing parameters, which are dependent on the sizes and shapes
of the particles. The omission of the size factor in Hapke’s model in order to linearize the single scattering
albedos leads to large errors. Regarding the shape, we have seen that treating both irregular (basalt) and
smooth (ice) shapes in the same way leads to wrong estimations, since the effective scatterer size depends
on the geometry of the particles. That is why, when taking into account the irregularities of the particles in
Hapke’s model and assuming a smaller mean optical path length, the model can fit the data. Also, the
model of Hiroi which takes into account the effective scattering size of the particles gives, once the model
is calibrated, a good fit.

Regarding the Moon, an accurate estimation of the water ice found in the polar craters will be possible when
we know more about the properties of the lunar soil and ice in the regolith. In any case, this study is a step
forward to the objective of water ice estimation, since we now know that there might be much more water
ice in the lunar polar regions than current estimations suggest [Lucey et al., 2014; Haruyama et al., 2008b;
Zuber et al., 2012].
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