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Measurement of the electron neutrino charged-current interaction rate
on water with the T2K ND280 π0 detector
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This paper presents a measurement of the charged current interaction rate of the electron neutrino beam
component of the beam above 1.5 GeV using the large fiducial mass of the T2K π0 detector.
The predominant portion of the νe flux (∼85%) at these energies comes from kaon decays. The measured
ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is
0.89� 0.08ðstatÞ � 0.11ðsysÞ, and with the water targets emptied is 0.90� 0.09ðstatÞ � 0.13 ðsysÞ.
The ratio obtained for the interactions on water only from an event subtraction method is
0.87� 0.33ðstatÞ � 0.21ðsysÞ. This is the first measurement of the interaction rate of electron neutrinos
on water, which is particularly of interest to experiments with water Cherenkov detectors.

DOI: 10.1103/PhysRevD.91.112010 PACS numbers: 13.15.+g

I. INTRODUCTION

This paper reports a measurement of the ratio of the
charged current νe event rate relative to the simulation with
NEUT [1] event generator, version 4.1.4.2, for neutrino
energies above 1.5 GeV in the T2K beam. The interaction
rate of electron neutrinos on water has never been measured
at the neutrinos energies above 1.5 GeV, or at any other
energies. The mean reconstructed energy of the selected
neutrinos in the analysis presented in this paper is 2.7 GeV.
The νe cross section has been measured on a liquid freon
target for energies between 1.5 and 8 GeV by Gargamelle
[2] and on 12C for energies around 32 MeVat LANSCE [3].
Also at lower energies, the antielectron neutrino inter-
actions have been measured by experiments near nuclear
reactors. A review of neutrino cross section measurements
can be found in [4].
The T2K experiment [5] was built with the primary goals

of precisely determining the oscillation parameter θ13 via
electron neutrino appearance, and of the parameters θ23 and
Δm2

32 via muon neutrino disappearance. The predomi-
nantly νμ beam for these measurements is produced at
the Japan Proton Accelerator Research Complex (J-PARC)
in Tokai. The neutrinos from this beam are observed at a
near detector, ND280, which is located 280 m downstream

from the production target, where the neutrinos are not
expected to have been affected by oscillations. The T2K far
detector, Super-Kamiokande (SK), then measures the muon
and electron neutrinos (and antineutrinos) after they have
undergone a near maximal oscillation.
The oscillation probability for νμ → νe depends on the

mixing parameter, θ13, and on subleading effects that
depend on the charge parity (CP)-violating phase, δCP,
and on the mass hierarchy [6]. T2K has already observed
the appearance of 28 νe candidate events at the far detector
with a 7.3σ significance over a background expectation of
4.92� 0.55 events for θ13 ¼ 0 [7]. The largest irreducible
background for the appearance measurement comes from
the predicted 3.2 intrinsic νe beam events.
In T2K the νe are expected to represent about 1.2% of the

total neutrino flux [8]. The T2K νμ beam is produced by
magnetic focusing of pions and kaons produced by the
interaction of a proton beam with a graphite target. The
unavoidable νe component comes from the decay of muons
from pion decay, and from kaon decay. In any long-baseline
neutrino experiment proposed to measure CP violation and
precisely measure neutrino oscillation parameters, the νe
component of the beam will be the main source of
background [9–11].
The measurement of the beam νe charged current (CCνe)

interactions on a plastic scintillator and water target using
ND280 tracker, was reported in [12]. This paper reports a
direct measurement of this component of the charged
current (CC) neutrino interactions in the ND280 π0 detector
(PØD) [13], which is located just upstream of the tracker. In
this selection, the majority of the electron neutrinos were
produced in kaon decay, and have energies above 1.5 GeV.
The PØD detector has water targets that can be filled or
emptied. Data were taken both with the targets filled to
create a water target (water configuration), and empty to
leave just air in place of the water target (air configuration).
With data in the two configurations a subtraction analysis
obtained the interaction rate just on water.
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Similar to the subtraction analysis presented here, a ratio
analysis has been conducted by the Minerva collaboration
for 2–20 GeV νμ on C, Fe, and Pb compared to CH [14]. A
subtraction analysis of the Minerva data is presented in the
thesis of Tice [15]. Apart from the Minerva measurements,
this appears to be the only other use of the subtraction
analysis to date in neutrino scattering experiments.
The νe and νμ come from the same pion to muon to

electron decay chain, and lepton universality allows the
expected rate of νe to be constrained by measuring the
much larger flux of νμ. Details concerning the T2K beam
flux measurement, and further information on recent
measurements of νμ interactions in the near detectors,
can be found in Ref. [16].
One of the systematic uncertainties in long-baseline

neutrino oscillation measurements using water
Cherenkov detectors comes from model uncertainties in
the meson exchange current for C versus for O. Having
measurements of neutrino interaction rates on water is
therefore important. For a recent review of νμ cross section
measurements on various nuclear targets refer to the PDG
[17]. The only measurements of νμ neutrino interactions
on water were reported by the K2K experiment for
quasielastic interactions [18], and for reactions resulting
in pions in the final state [19–22].
The paper is organized as follows. In Sec. II the PØD

detector, used to do the measurement, is described. The
electron selection, and expected backgrounds are then
described in Sec. III. The particle identification (PID) to
select electrons from muons in the PØD is a key component
of this measurement, and will be described further in the
section on event selection. The water subtraction method is
then described in IV. The detector, reconstruction, flux and
cross section systematic uncertainties in the measurement
are reviewed in Sec. V. Finally the results of the rate
measurement are presented in Sec. VI and a summary is in
Sec. VII.

II. ND280 π0 DETECTOR

The T2K ND280 π0 Detector (PØD) is a scintillator
based tracking calorimeter optimized to measure neutral
current π0 in the momentum range that contributes to
backgrounds for νe appearance [13]. Refer to Fig. 4 of [13]
for a picture of the PØD detector. The PØD is composed of
layers of plastic scintillator alternating with water targets
and brass sheets or lead sheets. The PØD sits in front of a
tracking detector made up of two fine grain scintillator
modules which serve as active targets placed between three
time projection chambers. Both the PØD and tracking
detector are surrounded by electromagnetic calorimeters
and are in a 0.2 T magnetic field.
The PØD is constructed using 40 scintillator modules,

each module is constructed with two perpendicular arrays
of triangular scintillating bars and is approximately 38 mm

thick. The scintillator modules are arranged in three
regions. The most upstream and downstream regions of
the detector are composed of seven modules interleaved
with 4.5 mm thick sheets of stainless steel-clad lead that
function as 4.9 radiation length electromagnetic calorim-
eters to improve the containment of photons and electrons.
The central region serves as a target containing water. It has
25 water target layers that are 28 mm thick sandwiched
between 26 scintillator modules and 1.3 mm brass sheets,
positioned in between water targets and scintillator layers.
The target region has a fiducial mass of approximately
1900 kg of water and 3570 kg of other materials.
The energy resolution of the PØD can be estimated from

Monte Carlo studies by calculating the difference between
true and reconstructed energy for many events. The energy
resolution for electrons, after the selections described in III,
is 16%.

III. EVENT SELECTION

A. Overview

In this analysis, all the data collected between January
2010 and May 2013 except for a very small fraction of run
III data, due to the magnetic horn current decrease which
caused a failure in good spill preselection, are used. The
data are subdivided into different run periods and PØD
configurations as shown in Table I. The simulated data
used in this analysis corresponds to 10 times the protons
on target (POT) of the data, and reproduces the various
experimental conditions of the different data-taking
periods.
Neutrino interactions in ND280 are simulated with the

NEUT [1] event generator, version 5.1.4.2. The generator
covers a range of neutrino energy from several tens of MeV
to hundreds of TeV and simulates all the nuclear targets
present in ND280. In the simulated data, neutrino inter-
actions are generated outside and within the full ND280
volume including all active and inactive material, providing
information to understand the signal and backgrounds from
interactions outside the ND280 fiducial volume. The details
of the simulation process are described in [23].

TABLE I. Summary of T2K runs and the number of protons on
target (POT) used in the analysis.

T2K run PØD configuration Beam power (kW) POT (×1019)

Run I Water 50 2.96
Run II Water 120 6.96
Run II Air 120 3.59
Run III Air 178 13.5
Run IV Water 178 16.5
Run IV Air 178 17.8
Total Water 26.4

Air 34.9
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Simulation of products of the neutrino interactions in the
PØD is done using a GEANT 4.9.4 simulation [24–27].
The standard GEANT physics list for electromagnetic
interactions is used in the simulation.
The analysis uses two reconstructed objects, a track and

a shower. Within the PØD reconstruction algorithm, hits in
the PØD scintillator layer associated with a reconstructed
track classified as an electromagnetic track (typically
electrons or photons) are forwarded to the shower
reconstruction stage. Hits associated with a track that are
classified as a light track (typically muon) or a heavy track
(typically proton) are not forwarded to the shower
reconstruction stage and cannot be reconstructed as a
shower.
The signal events for the analysis are the charged current

νe interactions in the PØD. A cut-based event selection
using known reconstruction characteristics was tuned to
maximize the product of efficiency and purity. To avoid
bias, the selection strategy was developed based on
Monte Carlo (MC) samples. Event displays of a typical
CCνe candidate and a π0 background event selected in the
analysis are shown in Fig. 1.

B. Selection cuts

The event selection strategy focuses on identifying single
high-energy electron shower events with a vertex in the
PØD. As a preselection, the reconstructed shower in the
PØD must be in time with the beam bunch time. The PØD
reconstruction searches for both tracks and showers with
two independent algorithms, and the highest energy track
and the highest energy shower are used in the analysis. The
reconstruction algorithm builds tracks and showers from
hits, but as the shower reconstruction occurs after the track
reconstruction the algorithm needs to make sure that the
hits shower reconstruction uses are the same hits the track
reconstruction uses, for each single event. Therefore 80%
of the hits associated with the track and shower are required
to be the same.
In addition, events are selected where the angle of the

reconstructed shower with respect to the z-axis, which is
approximately the beam axis, is less than 45°. The
scintillator bars of the PØD have a triangular profile with
angles of approximately 45°. Particles with an angle of
more than 45° with respect to the beam axis would therefore
hit more than two adjacent bars in a layer. The PØD
reconstruction algorithm currently only handles up to two
adjacent bar hits in a layer, causing reconstruction failures
for higher angle tracks.
For this analysis, only events with a reconstructed

neutrino energy of 1.5 GeV or more are selected.
Reconstructed neutrino energy is calculated from the
reconstructed electron energy and the electron angle using
the quasielastic approximation. In this energy region, the
majority of the νe flux arises from kaon decays and the
PØD shows good performance to distinguish electrons

from other particles. In addition, using a high neutrino
energy cut improves the purity of the electron sample.
To reject muons, the median width of the selected track is

used. In each scintillator layer, the energy-weighted stan-
dard deviation of the position of the hits reconstructed in
the track is calculated as follows:
(1) If the two hits with the highest deposited energy are

in adjacent strips, replace them with a single hit. The
new hit’s position is at the energy-weighted average
position of the two original hits, and its energy is the
sum of the energies of the original hits. Any other
hits in the layers are left unchanged. This procedure
gives layers with minimum ionizing tracks very
small (almost always zero) width.

(2) The energy-weighted standard deviation of the hit
positions is calculated for each layer.
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FIG. 1 (color online). Side view of a CCνe event (top) and a π0

background event (bottom) reconstructed in the PØD. Triangles
are hits colored by the charge deposited, the green cross symbol
shows the reconstructed shower vertex, and the green dashed
lines show the cones of reconstructed showers.
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(3) Median width is the width of the middle layer after
ordering by layer width.

The design of the PØD with layers of high density
materials (brass and lead) causes electrons to shower. The
reconstructed track of an electron is therefore typically
wider than the reconstructed track of a muon. This feature
can be used to distinguish muons and electrons with the
median width of the reconstructed candidate track.
The track median width for events which pass all the

selection criteria with the exception of the track median
width cut is shown in Fig. 2 and indicates that most of the
background muon events are rejected by this cut.
Similarly, to reject background events that contain

neutral pions, a cut is applied to the median width of
the selected shower. The shower reconstruction looks for
hits in a cone from the reconstructed vertex position and
combines them in one or more showers. It can happen that
hits from several particles are combined in one recon-
structed shower, especially when they are almost over-
lapping. The PØD νe analysis looks for events with a single
electron. Events with a very wide candidate shower are

rejected, because such events are more likely background
events with several particles. The shower median width is
calculated the same way as the track median width.
Distributions of events which pass all the selection criteria
with the exception of the shower median width cut is shown
in Fig. 3. It shows many π0 background events are rejected
with this cut.
Finally, a cut is applied to the fraction of the event’s

charge that is contained in the selected shower. To select
CCνe events with a high purity, the fraction of the event’s
charge contained in the candidate shower of exactly 1.0 is
required, which selects only events with a single shower
and without muonlike tracks in the final state.

C. Selected event samples

The selected number of events passing all cuts predicted
by the simulation, both when the PØD is configured to
contain water and air, together with the number of selected
data events are presented in Table II. The water configu-
ration simulation events are separated into on-water and
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FIG. 2 (color online). Distribution of events which pass all the
selection criteria with the exception of the track median width cut,
for water (top) and air configuration (bottom). The vertical line
shows the cut value used (1 mm). A sudden drop of events above
11 mm is an effect of shower median width cut.
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FIG. 3 (color online). Distribution of events which pass all
the selection criteria with the exception of the shower median
width cut, for water (top) and air configuration (bottom). The
vertical line shows the applied cuts which are optimized for each
configuration.
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not-water events. On-water events are defined as events
with true interaction vertex in the water, and not-water
events have the true interaction vertex on scintillator, lead,
brass, or other materials besides water. All events in the air
configuration MC are not-water events as the water targets
are drained.

D. Efficiency and purity

The efficiency ϵ and purity p of the simulated electron
neutrino signal events, for water and air configurations, are

summarized in Table III. In the PØD water configuration,
events are split into events happening on water (on-water)
and events on scintillator, brass, and lead (not-water).
The selection efficiency of signal events as function of

the true neutrino energy Etrue for PØD water and air
configurations are shown in Fig. 4. The selection of low
energy signal events is suppressed by the high neutrino
energy cut at 1.5 GeV while the selection of high energy
signal events is suppressed by the shower median width cut
and the shower charge fraction cut.

IV. WATER SUBTRACTION METHOD

The measured νe interactions that were collected during
PØD water and air configuration running are compared
with the number of νe interactions predicted by the PØD
water and air configuration MC, respectively. The mea-
sured number of νe interactions are extracted by subtracting
the predicted MC background B from the selected data
events D, resulting in

NData
CCνe;water

¼ Dwater − Bwater; and ð1Þ

NData
CCνe;air

¼ Dair − Bair: ð2Þ

The background subtracted data are then divided by the
predicted Monte Carlo signal S to obtain the data/MC ratios
for the water and air configurations:

Rwater ¼
NData

CCνe;water

Swater
; and ð3Þ

Rair ¼
NData

CCνe;air

Sair
: ð4Þ

To extract the measured number of on-water charged
current νe interactions, the measured CCνe interactions
with PØD water and air configurations are compared by
taking into account the different collected POT and the
different reconstruction efficiencies for the water and the air
data sample using

NData
CCνe;on-water

¼ ðDwater − BwaterÞ

−
ϵnot-water · POTwater

ϵair · POTair
· ðDair − BairÞ: ð5Þ

In this formula, POTwater ¼ 2.64 × 1020 (POTair ¼
3.49 × 1020) is the collected data POT for the PØD water
(air) configuration. The resulting data/MC ratio for on-
water CCνe interactions is given by

Ron-water ¼
NData

CCνe;on-water

Son-water
: ð6Þ

TABLE II. The selected number of MC signal events, MC
background events, and the total number of selected MC events
normalized to data POT for water and air configuration are listed
together with the selected data events. In addition, the water
configuration MC events are split up in on-water and not-water
events. The errors correspond to the statistical uncertainty due to
the limited MC statistics.

MC signal MC background MC total Data

Water 196.1� 4.8 56.7� 2.7 252.8� 5.5 230
On-water 60.2� 2.6 14.5� 1.3 74.7� 2.9
Not-water 135.9� 4.0 42.2� 2.3 178.2� 4.6
Air 173.6� 4.6 97.4� 3.6 271.0� 5.8 257

TABLE III. The signal efficiencies ϵ and purities p are listed for
water and air configuration. Events of the PØD water configu-
ration are split into events happening on-water and not-water. The
errors correspond to the statistical uncertainty due to the limited
MC statistics.

Efficiency ϵ Purity p

Water ð10.9� 0.3Þ% ð77.6� 2.5Þ%
On-water ð9.8� 0.4Þ% ð80.6� 4.7Þ%
Not-water ð11.5� 0.4Þ% ð76.3� 3.0Þ%
Air ð11.0� 0.3Þ% ð64.1� 2.2Þ%
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FIG. 4 (color online). Selection efficiency of signal events as a
function of the true neutrino energy Etrue for water and air
configuration. The error bars correspond to the uncertainties due
to limited MC statistics.
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V. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in the measurements are
divided into three categories: detector, reconstruction, and
neutrino flux/cross section uncertainties. Control sample
events to study systematic effects in the measurement have
been studied, but often the events in these control samples
are not used for the final systematic uncertainty evaluation.
The control sample events were found to be too similar to
the signal events, or did not have the same background
as the signal events. For this reason a simple Kolmogorov
Smirnov (KS) test is used for several of the systematic
uncertainty tests, particularly where no deviation is indi-
cated in the test.

A. Detector systematic uncertainties

The detector’s as-built mass and its mass in the
Monte Carlo are different. The masses for water and air
configurations as well as different run periods also vary.
These differences are incorporated in the analysis pro-
cedure by reweighting MC events with mass uncertainties
estimated to be 0.01 for all configurations. Similarly, the
fiducial volume and the alignment of the PØD is consid-
ered. Varying the fiducial volume by the MC vertex
resolution and shifting in PØD alignment provides an
estimate of the systematic uncertainties in data/MC ratios.
The uncertainties obtained are smaller than 0.01 for all
ratios making them negligible in this measurement.
Possible systematic effects on the reconstructed electron

energy are also studied. The effects are investigated by
changing the reconstructed energy scale to observe the
differences in CCνe data/MC ratios. The possible effects
are as follows: 1. PØD material density and thickness,
2. drifts in the PØD response over time, and 3. the simulation
(GEANT4)uncertainty in the electron energydeposition. It is
assumed thewater and air configuration are correlated for the
PØD material density and thickness only. The resulting
systematic uncertainties for water (Rwater), air (Rair), and
on-water (Ron-water) are 0.05, 0.05, and 0.10 respectively.

B. Reconstruction systematic uncertainties

1. Track PID

As described earlier at the beginning of Sec. III, the
classification of the reconstructed tracks is based on the
PØD PID. Differences in the PID between data and MC can
therefore cause systematic uncertainties in the CCνe data/
MC ratios.
A PID study with stopping muons in the PØD was

performed to estimate this uncertainty, and a map of mis-
PID between a data sample and a simulation of stopping
muons was constructed. To estimate the impact of the track
PID uncertainty on the CCνe data/MC ratios, the MC signal
and background was weighted according to the uncertainty
of the map. The systematic parameter values were

randomly varied assuming that the water and air samples
are uncorrelated and also that the signal and background
uncertainties are uncorrelated. The uncertainties for water
(Rwater), air (Rair), and on-water (Ron-water) were determined
to be 0.05, 0.05, and 0.09 respectively.

2. Track and shower median width

To estimate the systematic uncertainty caused by the
track median width, the plots with all selection criteria
applied but failing the track median width cut (the N-1
plots) are integrated, and a Kolmogorov-Smirnov test is
performed to test if the data and the Monte Carlo event
distributions are consistent [28,29]. The Kolmogorov-
Smirnov test returns a p-value of 91.2% for water and
92.2% for air configuration indicating that there are no
significant evidence for a shift between the data and MC
event distributions. The systematic uncertainty due to the
track median width cut is therefore negligible for this
analysis.
The threshold of the shower median width cut is placed

in a region with a large number of events. The systematic
uncertainty on the measured shower median width there-
fore has a larger impact on the CCνe data/MC ratios than
the track median width uncertainty does. To estimate the
systematic uncertainty caused by the shower median width,
the N-1 plots are integrated, and a Kolmogorov-Smirnov
test is performed. The Kolmogorov-Smirnov test returns a
p-value of 50.0% for water and 65.9% for air configuration.
To determine a reasonable scaling factor range for
Monte Carlo, different scaling factors from 0.9 to 1.1 were
applied to Monte Carlo and the resulting p-values were
studied. For a p-value of 68%, the peak scaling factor
ranged from 0.98 to 1.02. The systematic effect on the
CCνe data/MC ratios for Rwater, Rair, and Ron-water coming
from the shower median width are estimated by varying the
scaling factor that is applied to the MC shower median
width. The uncertainties obtained for Rwater, Rair, and
Ron-water are 0.04, 0.04, and 0.08 respectively.

3. Shower charge fraction

To estimate the possible impact of systematic effects of
the shower charge fraction on the analysis, additional
reconstructed objects with low energy are studied. Such
additional tracks or showers would cause an event to fail
the shower charge fraction selection criteria. Looking at the
event distribution of these events, the only hint for a
systematic difference between data and MC appears in
the highest bin of the air configuration. Events with a
shower charge fraction between 0.98 and 1.00 which pass
all other selection criteria are analyzed to estimate the
systematic uncertainty. The data/MC difference in this
region is considered to be the uncertainty on the MC
events in the signal region, resulting in the systematic
uncertainties for Rwater, Rair, and Ron-water of 0.01, 0.04, and
0.04 respectively.
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C. Flux and cross section systematic uncertainties

For the inclusion of the flux and cross section systematic
uncertainties in the analysis, each analyzed MC event is
reweighted according to the uncertainties of the flux and
cross section parameters which are correlated. The param-
eter values and uncertainties are provided by different
external measurements such as NA61 and other hadronic
production experiments, and these parameters are then
fitted to ND280 data from TPC and FGD, the other
subdetectors of ND280 than PØD. The systematic param-
eters and their uncertainties obtained from the fit to the
ND280 data, which includes 25 flux parameters, 6 FSI
parameters, 2 NEUT parameters, and 13 neutrino inter-
action parameters, has been studied in Ref. [23].
To obtain the flux and cross section systematic uncer-

tainties, the systematic parameters are thrown according to
the covariance matrix and the analysis described in Sec. IV
is then applied to each throw. The distributions are fit with
single Gaussians and the resulting width is considered to be
the flux and cross section systematic uncertainty for the
analysis. The uncertainties obtained for water (Rwater), air
(Rair), and on-water (Ron-water) are 0.07, 0.09, and 0.06
respectively.

D. Summary of the systematic uncertainties

All systematic uncertainties on the CCνe data/MC ratios
for water (Rwater), air (Rair), and on-water (Ron-water) that
were estimated in the previous sections are summarized in
Table IV. This table also shows the total systematic
uncertainty.

VI. RESULTS

The results obtained for the background subtracted data/
MC ratio (R) for water configuration, air configuration, and
on-water are

Rwater ¼ 0.89� 0.08ðstatÞ � 0.11ðsysÞ; ð7Þ

Rair ¼ 0.90� 0.09ðstatÞ � 0.13ðsysÞ; and ð8Þ

Ron-water ¼ 0.87� 0.33ðstatÞ � 0.21ðsysÞ: ð9Þ

The ratios are consistent with 1, within statistical and
systematic uncertainties. For the on-water ratio, uncertain-
ties are relatively large due to limited statistics and the
impact of the subtraction method.
For the selected events, the distribution of the recon-

structed particle directions is shown in Fig. 5 and the
distribution of particle energies is shown in Fig. 6. This
result indicates that the beam νe component in high energy
region measured in the data is consistent with expectations
after including constraints from the ND280 data for all
configurations.

TABLE IV. Summary of systematic uncertainties on the CCνe
data/MC ratios for water (Rwater), air (Rair), and on-water
(Ron-water).

Systematic uncertainty Rwater Rair Ron-water

MC statistics 0.03 0.04 0.12
PØD mass 0.01 0.01 0.01
PØD fiducial volume <0.01 <0.01 <0.01
PØD alignment <0.01 <0.01 <0.01
Energy scale 0.05 0.05 0.10
Hit matching <0.01 <0.01 <0.01
Track PID 0.05 0.05 0.09
Energy resolution <0.01 <0.01 0.01
Angular resolution <0.01 <0.01 0.01
Track median width <0.01 <0.01 <0.01
Shower median width 0.04 0.04 0.08
Shower charge fraction 0.01 0.04 0.04
Flux and cross sections 0.07 0.09 0.06
Total 0.11 0.13 0.21
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FIG. 5 (color online). Events passing the event selection as a
function of the particle direction for water (top) and air con-
figuration (bottom). The MC events are normalized to data POT,
and the fit results from ND280 are applied.
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VII. CONCLUSION

In conclusion, measurements of CCνe interactions using
the ND280 PØD have been made. The PØD includes
fillable water targets which allows separate measurements

for the water and air configurations of the ND280 PØD as
well as the measurement of νe on-water interactions above
1.5 GeV in a predominantly νμ beam. About ∼85% of the
selected sample comes from the decay of kaons.
The 230 (257) water configuration (air configuration)

electron neutrino candidate events selected in the data
are in good agreement with the prediction for the water
configuration, the air configuration, and for the on-water
subtraction samples respectively. The measurement is
statistically limited, especially for on-water, but it will
be improved in the future, since collection of 10 times more
data is planned in the coming years. Furthermore, studies
and improvements to the reconstruction algorithms are
being investigated to lower the energy threshold, which will
lead to the measurement of the νe cross section on water.
This is the first νe interaction rate measurement on water

in the few GeV energy region. Interactions of νe on water
are of particular interest for long-baseline neutrino oscil-
lation experiments, and atmospheric neutrino experiments
using water Cherenkov detectors with the aim to measure
CP violation in the lepton sector.
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