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ABSTRACT 25 

Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public 26 

health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-27 

based methods. Development of rapid molecular tests for detecting AMR determinants could 28 

provide valuable tools for surveillance, epidemiological studies and to inform individual case 29 

management. We developed a fast (<1.5 hrs) SYBR-green based real-time PCR method with 30 

high resolution melting (HRM) analysis. One triplex and three duplex reactions included two 31 

sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-32 

spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The 33 

method was validated by testing 39 previously fully-characterized N. gonorrhoeae strains, 19 34 

commensal Neisseria spp., and an additional panel of 193 gonococcal isolates. Results were 35 

compared with culture-based AMR determination. The assay correctly identified N. 36 

gonorrhoeae and the presence or absence of the seven AMR determinants. There was some 37 

cross-reactivity with non-gonococcal Neisseria species and the detection limit was 103-104 38 

gDNA copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin 39 

(sensitivity and specificity, 100%), ceftriaxone (sensitivity 100%, specificity 90%), cefixime 40 

(sensitivity 92%, specificity 94%), azithromycin and spectinomycin (both sensitivity and 41 

specificity, 100%). In conclusion, our methodology accurately detects mutations generating 42 

resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct 43 

diagnostic testing of clinical specimens but this method can be used to screen collections of 44 

gonococcal isolates for AMR more quickly than with current culture-based AMR testing. 45 

46 
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INTRODUCTION 47 

Gonorrhea is the second most common bacterial sexually transmitted infection worldwide, 48 

with an estimated 78 million new cases in 2012 (1). Moreover, Neisseria gonorrhoeae has 49 

developed resistance to most current and past treatment options. Antimicrobial resistant 50 

(AMR) gonorrhea is a major public health concern about which the World Health 51 

Organization (WHO) emphasizes the importance of global surveillance to identify emerging 52 

resistance, monitor trends, and inform revisions of treatment guidelines (2, 3).  53 

At a molecular level, the mechanisms which confer resistance to the most common 54 

treatment options have been well characterized. For instance, the acquisition of mosaic penA 55 

alleles, with or without substitutions at amino acid position 501 of the encoded penicillin-56 

binding protein 2 (PBP2), has been linked to decreased susceptibility or resistance to the 57 

extended-spectrum cephalosporins (ESCs) cefixime (CFX) and ceftriaxone (CRO) (4, 5). In 58 

particular, strains harboring a mosaic XXXIV penA gene, including the internationally-59 

spreading N. gonorrhoeae multiantigen sequence typing (NG-MAST) genogroup 1407, have 60 

been responsible for ESC treatment failures in several countries worldwide (5-8). The 61 

mutations A2059G or C2611T in the 23S rRNA alleles are associated with resistance to 62 

azithromycin (AZM) (9, 10), whereas a Ser91Phe substitution in GyrA results in 63 

ciprofloxacin (CIP) non-susceptibility (11). Single nucleotide polymorphisms (SNPs) in the 64 

16S rRNA or in the ribosomal protein S5 (RPS5) encoding gene rpsE (12, 13) confer 65 

spectinomycin (SPC) resistance. However, we should note that while the CIP-resistant N. 66 

gonorrhoeae isolates are frequently observed, those fully resistant to ESCs, AZM and SPC 67 

are still sporadically found (14, 15).   68 

Nucleic acid amplification testing (NAAT) has already replaced culture-based 69 

detection of N. gonorrhoeae in many settings, but these methods do not provide any 70 

information about AMR (16). On the other hand, antimicrobial susceptibility testing (AST) is 71 

usually performed with time-consuming culture methods (16). For this reason, there has been 72 
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growing interest in the development of NAATs that can supplement culture-based AMR 73 

testing, enhance AMR surveillance and, ideally, be used to tailor individualized treatment for 74 

gonorrhea patients (17).  75 

Several nucleic acid amplification-based methods have been developed to identify the 76 

presence of SNPs (18). One of these techniques is high resolution melting (HRM) analysis, 77 

which relies on the detection of changes in the melting temperature (Tm) resulting from the 78 

presence of mutations in a previously amplified target. This method is so sensitive that even 79 

Tm shifts derived from one SNP can be detected (19). Moreover, strategic target design (i.e., 80 

distinct Tm of the amplicons) also allows multiplexing of more than one reaction per single 81 

tube (20). However, only multiple-step (e.g., requirement of additional steps after nucleic acid 82 

amplification for read-out) (21, 22), or single-antibiotic  (e.g., only resistance to CIP or only 83 

to AZM) NAAT-based methodologies to characterize AMR gonorrhea have been proposed in 84 

the past (23-28). 85 

In this study, we developed and evaluated a new SYBR-green based real-time PCR 86 

method with HRM analysis to simultaneously detect N. gonorrhoeae and key mutations 87 

associated with ESCs, AZM, CIP and SPC resistance in four closed-tube multiplex reactions. 88 
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MATERIALS AND METHODS 89 

Design of the real-time PCR assay. Nine primer sets were designed with the Oligo Primer 90 

Analysis software v4.0 (Molecular Biology Insights) to amplify specific sequences of the 91 

targets described in Table 1. Primers were designed to flank the mutation site of interest in 92 

gyrA, 23S rRNA, 16S rRNA and rpsE genes, and to amplify penA mosaic sequences (e.g., 93 

pattern XXXIV) around codons 501 and 545. Additionally, GC clamps were added at the 5’- 94 

end of some oligonucleotides to shift the Tm of the resulting amplicons in order to separate 95 

the peaks for easier interpretation of multiplex reactions. The nine primer sets generated ~40-96 

140 bp products and all operated at the same conditions both in single- and multiplex 97 

reactions (Table 1).  98 

N. gonorrhoeae isolates were grown on GC agar (bioMérieux) for 24 hrs at 35°C in a 99 

humid 5% CO2-enriched atmosphere. Genomic DNA extraction was performed using the 100 

QIAamp DNA mini kit (QIAGEN). Each 20 µl reaction contained 0.3 µM of each primer, 1X 101 

Meltdoctor Master Mix (Applied Biosystems), and 20 ng of genomic DNA (gDNA). 102 

Experiments were run on a QuantStudio 7 Flex instrument (Applied Biosystems). The PCR 103 

stage included a first denaturation step (95°C, 10 min), followed by 30 cycles of denaturation 104 

(95°C, 15 sec), annealing (62°C, 10 sec), and extension (72°C, 10 sec). After amplification, 105 

HRM analysis was performed using the following parameters: after 10 sec at 95°C and a 60°C 106 

hold for 1 min, the fluorescence signal was collected, while the samples were heated up from 107 

60°C to 95°C with a ramping time of 0.025°C/sec. Results were analyzed with the 108 

QuantStudio 6 and 7 Flex Real-Time PCR Software v1.0 (Applied Biosystems). Overall, 109 

starting from extracted DNA templates the results were available in <1.5 hrs (i.e., real-time 110 

PCR amplification of <60 min followed by HRM analysis of <30 min). To assess the limit of 111 

detection (LOD) of our molecular method, known quantities of gDNA copies/reaction were 112 

tested in ten-fold serial dilutions. 113 
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Neisseria spp. control strains. A panel of 35 N. gonorrhoeae isolates was used to validate the 114 

real-time PCR method. The panel included: 26 previously fully-characterized isolates with 115 

known profiles of MICs and genetic resistance determinants (14); the fully sensitive reference 116 

strain ATCC 49226;  WHO reference strains WHO K (carrying a mosaic X penA gene), 117 

WHO L, WHO P, the SPC-resistant WHO O (with the 16S rRNA C1192T substitution; MIC 118 

>1024 µg/ml) and WHO A (with the  RPS5 Thr24Pro substitution; MIC, 128 µg/ml)  (29); 119 

two AZM-resistant strains, AZM-HLR (harboring four 23S rRNA alleles with the A2059G 120 

mutation; MIC ≥256 µg/ml) and G07 (harboring four 23S rRNA alleles with the C2611T 121 

mutation; MIC, 8 µg/ml); and the ESC-resistant strain F89 carrying a mosaic XXXIV penA 122 

gene with an additional mutation in codon 501 leading to an Ala501Pro substitution (MICs 123 

for CFX and CRO of 2 and 1.5 µg/ml, respectively) (5).  124 

Nineteen non-gonococcal Neisseria spp. strains previously identified with the matrix-assisted 125 

laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS, Bruker 126 

Daltonik) were also used to assess cross-reactivity. The panel included: N. meningitidis (n=5), 127 

N. mucosa (n=3), N. sicca (n=2), N. cinerea (n=2), N. lactamica (n=2), N. subflava (n=1), N. 128 

flava (n=1), N. flavescens (n=1), N. elongata (n=1), and N. bacilliformis (n=1).  129 

Analysis of representative spiked negative and positive samples. Pharyngeal, rectal and 130 

urethral clinical specimens were collected with ESwabs (Copan) and tested for N. 131 

gonorrhoeae by APTIMA Combo 2 (Hologic). The QIAamp DNA Mini kit (Qiagen) was 132 

used to extract total DNA from 200 µl of ESwabs with positive or negative APTIMA results. 133 

For the assessment of negative spiked specimens, 2 µl of sample DNA obtained from ESwab 134 

were spiked with additional 105, 104 or 103 gDNA copies of the appropriate control N. 135 

gonorrhoeae strain per reaction for each multiplex. For the positive specimens, 2 µl of sample 136 

DNA were used for each multiplex reaction. Culture isolates from the specimens were 137 

obtained with standard microbiological methods and species identification (ID) was achieved 138 

using the MALDI-TOF MS. 139 
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Analysis of gonococcal isolates and statistical analysis. We analyzed 193 N. gonorrhoeae 140 

isolates collected during a 25-year period (1989-2014) in two microbiology laboratories 141 

located in Switzerland (Institute for Infectious Diseases, University of Bern, Bern; Institute of 142 

Medical Microbiology, University Hospital Zürich, Zürich) with both culture-based AST and 143 

the new real-time PCR method.  144 

ID was achieved using the MALDI-TOF MS. MICs for CFX, CRO, CIP, AZM and SPC were 145 

obtained on GC agar plates (bioMérieux) (30) using the Etest method. MIC values for CFX, 146 

CRO, CIP and SPC were categorized using the 2015 European Committee on Antimicrobial 147 

Susceptibility Testing (EUCAST) criteria (31). For AZM, we defined moderate- and high-148 

level resistance as MICs >2 to 128 and ≥256 µg/ml, respectively, as previously published (9).  149 

Positive results from the real-time PCR assay (based on both amplification and 150 

melting temperature analysis) were interpreted as follow: i) opa and/or porA, strain identified 151 

as N. gonorrhoeae; ii) penA encoding for Gly545Ser substitution and/or penA Ala501, strain 152 

resistant to CFX and/or CRO; iii) 23S rRNA C2611T or A2059G mutations, strain 153 

moderately or highly resistant to AZM, respectively; iv) gyrA encoding for Ser91Phe 154 

substitution, strain non-susceptible to CIP; and v) rpsE encoding for Thr24Pro substitution or 155 

16S rRNA C1192T mutation, strain resistant to SPC. Each sample was run in duplicate. Due 156 

to small inter-assay variabilities of the Tm (Table 2), positive controls for each reaction (e.g., 157 

harboring the mutated AMR target sequence) were included to facilitate the interpretation of 158 

the results. Inconsistent results were confirmed by repetition of the real-time PCR and 159 

PCR/DNA sequencing. 160 

For the 193 isolates, we calculated the sensitivity (with 95% CI) of the real-time PCR 161 

with HRM analysis for the detection of N. gonorrhoeae compared with MALDI-TOF MS 162 

used as the reference standard. We calculated sensitivity (with 95% CI)  for the detection of 163 

AMR to each antibiotic class as the percentage of isolates with a non-susceptible or resistant 164 

MIC value that were correctly identified by a positive HRM result for the presence of the 165 
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correlated resistance determinant. We calculated specificity (with 95% CI) as the percentage 166 

of isolates with a susceptible MIC value that were correctly identified by a negative HRM 167 

result for the correlated resistance determinant.  168 

Since the 193 isolates detected in Switzerland did not include the rare strains possessing the 169 

mutations conferring fully resistance to CRO, AZM and SPC, sensitivity and specificity were 170 

also calculated including the results for the 35 N. gonorrhoeae control strains and four 171 

additional isolates provided by the WHO Collaborating Centre for Gonorrhoea and other STIs 172 

(Ӧrebro, Sweden). Those four included: the ESC-resistant strain A8806 harboring a  mosaic 173 

penA allele (MICs for CFX and CRO of 2 and 0.5 μg/ml, respectively) (32); the AZM-174 

resistant strains GC2 (33) and GC4 harboring the C2611T (AZM MIC of 8 μg/ml) and 175 

A2059G (AZM MIC of  ≥256 μg/ml) mutation in all four 23S rRNA alleles, respectively; and 176 

the SPC-resistant strain GC3 harboring the 16S rRNA C1192T mutation (MIC for SPC of 177 

>1024  μg/ml).      178 
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RESULTS AND DISCUSSION 179 

One triplex and three duplex reactions were designed to characterize target sequences specific 180 

for N. gonorrhoeae identification (opa and porA) (34, 35), as well as for resistance to ESCs 181 

(mosaic penA alleles), CIP (GyrA substitution), AZM (23S rRNA mutations), and SPC (16S 182 

rRNA mutation or RPS5 substitution) (Table 1).  183 

Validation of the method and limit of detection (LOD). As shown in Table 2, all 35 N. 184 

gonorrhoeae control strains were correctly identified by the positive amplification of both opa 185 

and porA reactions; amplicons had an average Tm of 76.98°C and 74.36°C, respectively, by 186 

HRM analysis.  187 

The penA reaction targeting Gly545Ser was relatively specific for mosaic penA patterns. Only 188 

non-mosaic pattern XIX was cross-amplified, but all N. gonorrhoeae strains harboring a 189 

mosaic penA allele (i.e., pattern XXXIV and X) were correctly identified by the presence of 190 

the Gly545Ser, which caused a mean Tm shift of 0.46°C compared with the wild-type 191 

sequence. Additionally, the Ala501 reaction only amplified mosaic penA patterns, but we 192 

were not able to detect the mutation encoding the Ala501Pro substitution found in the ESC-193 

resistant F89 strain (Table 2) (5). This was probably because third class mutations (i.e., G to C 194 

SNPs) are known to be difficult to detect by HRM, since the Tm shift resulting from such 195 

nucleotide substitutions is very small (15). Nevertheless, we kept this reaction for 196 

confirmation of the presence of mosaic penA alleles. 197 

HRM analysis correctly identified the presence or absence of mutations associated with 198 

resistance to ciprofloxacin, azithromycin and specitnomycin (Table 2). Strains harboring the 199 

Ser91Phe substitution in GyrA generated discernible melting curves compared with the wild-200 

type isolates with a mean Tm difference (ΔTm) of 0.61°C. One strain (2121127) (14), 201 

harbored an additional mutation in codon 92, which caused a further shift in the Tm when 202 

compared with the wild-type sequence (ΔTm= 1.25°C). Strains with mutations A2059G or 203 

C2611T in all four alleles of the 23S rRNA generated unique profiles compared with isolates 204 
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harboring wild-type alleles, with mean ΔTm of 0.22°C and 0.75°C, respectively. Strains 205 

harboring the target SNPs in rpsE or 16S rRNA exhibited a mean Tm shift of 0.68-0.69°C 206 

compared with the wild-type sequences (Table 2). 207 

Finally, when testing 10-fold dilutions of 107 to 10 gonococcal gDNA copies/reaction, a 208 

starting quantity of at least 103-104 gDNA copies was needed to allow proper HRM analysis 209 

in all four multiplex reactions (see examples in Figure S1). This is higher than available 210 

commercial platforms (e.g., according to the manufacturer, the APTIMA Combo2 test claims 211 

an analytical sensitivity of 50 cells/assay). 212 

Cross-reaction with non-gonococcal Neisseria spp. The production of false-positive results 213 

due to the presence of non-gonococcal Neisseria spp. commonly found in some specimen 214 

types (e.g., pharyngeal and rectal samples) is a major challenge for the design of NAAT-215 

based diagnostic methods. In fact, several Neisseria spp. share with the gonococcus a high 216 

sequence similarity for some of the targets (e.g., 23S rRNA and 16S rRNA genes). Moreover, 217 

the N. gonorrhoeae mosaic penA allele is thought to be the result of horizontal gene transfer 218 

of the commensal orthologues (36, 37). Therefore, in order to assess the level of cross-219 

reactivity for all nine genetic targets included in our multiplex real-time PCR platform, a 220 

panel of ten different non-gonococcal Neisseria species (overall, 19 strains) was tested.  221 

As shown in Table S1, none of these strains showed positive amplification for opa and 222 

porA. This was expected, since both genetic regions were previously proven to be specific for 223 

N. gonorrhoeae (34, 35). The GyrA Ser91Phe reaction was also specific for N. gonorrhoeae. 224 

In contrast, several non-gonococcal species showed cross-reactions for all remaining target 225 

sequences (Table S1). In only a few cases, cross-amplification could be distinguished from N. 226 

gonorrhoeae by a different Tm (i.e., 23S rRNA A2059G), but for most targets the Tm of the 227 

amplified commensal target matched the expected Tm of the gonococcal wild-type sequence 228 

(e.g., 23S rRNA C2611, 16S rRNA C1192). However, none of the cross-reacting species had 229 

a Tm equal to that of the mutated N. gonorrhoeae sequence for any of the targets, indicating 230 

 on July 5, 2016 by U
niversitaetsbibliothek B

ern
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://jcm.asm.org/


11 
 

that false-positives deriving from the presence of commensals are unlikely. Even in the 231 

presence of a positive penA A501 reaction, the lack of amplification of target sequence penA 232 

Gly545Ser or the absence of the Gly545Ser substitution allowed the differentiation of the 233 

gonococcal mosaic penA gene from its commensal counterpart, since this substitution is 234 

mostly found in gonococcus. On the other hand, excessive amounts of wild-type amplification 235 

due to commensal Neisseria spp. could potentially mask the presence of an AMR mutation in 236 

N. gonorrhoeae, especially in clinical specimens with low load of the pathogen (i.e., in 237 

pharyngeal samples) (38, 39).  238 

Analysis of the representative spiked negative and positive samples. To assess the extent of 239 

commensal interference on the detection of the AMR determinants in clinical specimens, four 240 

pharyngeal and four rectal samples negative for N. gonorrhoeae were spiked with gDNA of 241 

control strains possessing the mutations of interest for each multiplex reaction.  242 

The results obtained from the pharyngeal specimens showed strong background amplification 243 

of wild-type amplicons due to the presence of Neisseria spp. for most target reactions (e.g., 244 

23S rRNA C2611T, 16S rRNA C1192T, rpsE Thr24Pro). This background amplification 245 

would cause false negative results especially in the presence of low amounts of gonococcus. 246 

Additionally, nonspecific amplification strongly affected the melting curve interpretation of 247 

the gyrA Ser91Phe and 23S rRNA A2059G reactions. Finally, two samples exhibited positive 248 

amplification of the penA A501 reaction due to commensals (see examples in Figure S2 A-E). 249 

On the other hand, for the spiked negative rectal specimens, only strong cross-amplification 250 

of wild-type 16S rRNA C1192 was observed (see examples in Figure S3 A-D).  251 

Taken together with the relatively high LOD needed for proper HRM analysis, these 252 

limitations suggested that our method would not be suitable for direct screening of clinical 253 

specimens. For this reason, total DNA extracted from four pharyngeal, four rectal and four 254 

urethral clinical samples positive for N. gonorrhoeae was used to test the performance of our 255 

 on July 5, 2016 by U
niversitaetsbibliothek B

ern
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://jcm.asm.org/


12 
 

method. Results were also compared to the gDNA extracted from N. gonorrhoeae strains 256 

(when available) isolated from the specimens.  257 

Our platform indicated that all four pharyngeal samples tested positive for the opa reaction 258 

(Figure S4 A-D). Cross-amplification of commensals together with the relatively low 259 

gonococcal load led to a false positive result for the presence of a mosaic penA in one sample. 260 

Additionally, the melting curves of several reactions were not properly interpretable due to 261 

low or nonspecific amplification (e.g., gyrA Ser91Phe, 23S rRNA A2059G, rspE Thr24Pro). 262 

Similarly, low amplicon amounts strongly affected the melting curve interpretation of all four 263 

multiplex reactions in the positive rectal (Figure S5 A-D) and urethral specimens (Figure S6 264 

A-D), confirming that our method cannot be directly implemented for clinical specimens. 265 

Nonetheless, it could be a valuable tool for rapid screening of large isolate collections, both 266 

for surveillance and epidemiological purposes. For this reason, we compared our molecular 267 

methodology with the standard culture-based AST Etest method for a panel of 193 Swiss 268 

isolates. 269 

Analysis of the 193 clinical isolates. As shown in Table 3, the real-time PCR platform 270 

correctly identified all isolates as N. gonorrhoeae. Moreover, AMR characterization for CIP 271 

had both sensitivity and specificity of 100%, whereas AZM and SPC had specificity of 100%. 272 

In particular, our method correctly identified all isolates exhibiting resistance to CIP (58 out 273 

of 58). No mutations associated to SPC resistance were observed in agreement with the 274 

results obtained by phenotypic AST. Furthermore, none of the isolates tested positive for the 275 

23S rRNA C2611T or A2059G mutations associated with moderate or high AZM resistance, 276 

respectively. Consistently, none of the tested isolates exhibited AZM MICs >2 µg/ml. Finally, 277 

all 7 strains showing CFX resistance by phenotypic AST were positive for the presence of a 278 

mosaic penA allele. However, no resistance to CRO was observed. This was expected, since it 279 

is known that the presence of a mosaic penA gene is typically associated to raised MICs for 280 

ESCs, even if usually still in the susceptible range based on EUCAST criteria (40). 281 
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Thus, we further explored the MIC distribution of CFX and CRO in isolates harboring mosaic 282 

or non-mosaic penA patterns (Figure 1). Out of the 16 isolates positive for the presence of a 283 

mosaic penA allele, seven were CFX resistant and five were only a two-fold dilution apart 284 

from being resistant (MIC, 0.125 µg/ml). The remaining four strains with a mosaic penA gene 285 

had raised CFX MICs of 0.064-0.094 µg/ml, whereas all other non-mosaic isolates tested 286 

exhibited MICs of ≤0.047 µg/ml. Furthermore, all 16 strains harboring a mosaic penA allele 287 

also showed raised CRO MICs in the range of 0.023 to 0.094 µg/ml, which were noticeably 288 

higher compared to strains with non-mosaic patterns, in agreement with previous observations 289 

(37, 40, 41). 290 

Overall performance of the real-time PCR platform. Since some of the resistance mutations 291 

were not included among the 193 Swiss isolates, we also evaluated the performance of our 292 

test including the 35 control strains and 4 additional isolates harboring known, but very rare, 293 

AMR determinants (Table 3).  294 

Our platform accurately identified N. gonorrhoeae with a sensitivity and specificity of 100%. 295 

However, strain GC2 tested positive only for the opa reaction. Notably, this strain was 296 

previously reported to cause false-negative results in other porA-based PCRs due to the 297 

acquisition of a meningococcal porA allele (33). For this reason, our dual-target approach 298 

proved to be extremely valuable for the identification of even such exceptional isolates. 299 

With regard to the AMR detection, the platform correctly predicted resistance to ciprofloxacin 300 

in all 83 strains positive for a mutation in codon 91 of gyrA. Furthermore, the prediction of a 301 

mosaic penA allele allowed the detection of two fully CRO-resistant strains (F89 and A8806), 302 

as well as all isolates resistant to CFX with the execption of WHO L, which harbors a non-303 

mosaic penA allele with an additional substitution in amino acid  501. It is worth noting that 304 

the  mosaic penA allele of A8806 differs from the pattern XXXIV allele found in the high-305 

level CRO-resistant F89 strain. For this reason, no amplification of the penA Gly545Ser target 306 

was observed for A8806. Nevertheless, the strain was correctly identified as harboring a 307 
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mosaic penA allele due to the positive penA Ala501 reaction. Finally, the identification of 308 

either of the two mutations conferring resistance to AZM or SPC was correctly associated 309 

with resistance to those antibiotics. 310 

Conclusions. We developed and validated a new real-time PCR method coupled with HRM 311 

analysis that accurately detected several important mutations associated with resistance to 312 

antibiotics commonly used to treat gonorrhea. Cross-reactivity with commensal species and 313 

high limit of detection suggested that our method is not suitable for direct screening of 314 

clinical specimens. However, it proved to be a useful and rapid alternative to culture-based 315 

methods to assess the AMR profiles for ESCs, AZM, CIP and SPC of a large collection of N. 316 

gonorrhoeae isolates. 317 

 318 
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 457 

 458 

TABLE 1. Target genes, primer sequences, amplicon lengths, mutations and affected antibiotics, and multiplex combinations of the real-time PCR platform 459 

Note. ESCs, extended spectrum cephalosporins; AZM, azithromycin; CIP, ciprofloxacin; SPC, spectinomycin 460 
a GC clamps, which were added to the 5’-end of some primers to allow multiplexing, are shown in italics. 461 
b They confer moderate- to high-level resistance to AZM (i.e., MIC > 2 µg/ml) when at least 3 out of 4 copies are mutated (9)  462 

 463 

Target, mutation Primer name and oligonucleotide sequences a  Amplicon 
length Associated target and antibiotic affected Multiplex 

opa 
opa_F  5’-gttcatccgccatattgtgttga-3’                         

56 opa 
(Species identification) Triplex  

opa_R 5’-aagggcggattatatcgggttcc-3’ 

porA 
porA_F 5’-cagcaatttgttccgagtca-3’ 

44 porA 
(Species identification) Triplex 

porA_R 5’-ggcgtataggcggacttg-3’ 

penA Gly545Ser 
545_F 5’-cccgcccccgccgactgcaaacggttacta-3’ 

61 Mosaic penA 
(Decreased susceptibility/resistance to ESCs)  Triplex 

545_R 5’-cccgcccccgcggccctgccactacacc-3’ 

penA Ala501 
501_F 5’-cccgcccccgccgtcggcgcaaaaaccggtacg-3’ 

79 Mosaic penA  
(Decreased susceptibility/resistance to ESCs)  Duplex I 

501_R 5’-cccgcccccgccaatcgacgtaacgaccgttaaccaacttacg-3’ 

23S rRNA C2611T 
C2611_F 5’-acgtcgtgagacagtttggtc-3’ 

49 23S rRNA C2611T  
(Moderate AZM resistance) b  Duplex I 

C2611_R 5’-caaacttccaacgccactgc-3’ 

23S rRNA A2059G 
A2059_F 5’-ctacccgctgctagacgga-3’ 

142 23S rRNA A2059G  
(High AZM resistance) b Duplex II 

A2059_R 5’-cagggtggtatttcaaggacga-3’ 

gyrA Ser91Phe 
gyrA_S91_F 5’-taaataccacccccacggcgatt-3’ 

47 GyrA Ser91Phe  
(CIP resistance) Duplex II 

gyrA_S91_R 5’-atacggacgatggtgtcgtaaact-3’ 

rpsE Thr24Pro 
S5_T24_F 5’-atggtcgcagttaaccgtgta-3’ 

56 RPS5 Thr24Pro  
(SPC resistance) Duplex III 

S5_T24_R 5’-aaagccataatgcgaccacc-3’ 

16S rRNA C1192T 
16S_1192_F 5’-ccgccccccggaggaaggtggggatga-3’ 

64 16S rRNA C1192T  
(SPC resistance) Duplex III 

16S_1192_R 5’-ccgcccccctggtcataagggccatgag-3’ 
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TABLE 2. Results of the method validation using the 35 well-characterized N. gonorrhoeae isolates 464 

Target sequence 
Sequence type of the 35 control isolates by: Tm (°C) Mean ΔTm 

± SD (°C)  
Sensitivity, c 
% (95% CI) 

Specificity, c  
% (95% CI) DNA sequencing Real-time PCR/HRM analysis Range  Mean ± SD 

opa 
Positive (n=35) Positive (n=35) 76.63 - 77.22 76.98 ± 0.13 

n/a 100 (90-100) n/a d 
Negative (n=0) Negative (n=0) n/a n/a 

porA 
Positive (n=35) Positive (n=35) 73.79 - 74.88 74.36 ± 0.20 

n/a 100 (90-100) n/a d 
Negative (n=0) Negative (n=0) n/a n/a 

penA Gly545Ser 

Non-mosaic (n=23) Non-mosaic (n=23) n/a a n/a a  

100 (66-100) 100 (87-100) Non-mosaic Gly545 (ggc) (n=3) Non-mosaic Gly545 (ggc) (n=3) 85.05 - 85.23 a 85.14 ± 0.08 a 
0.46 ± 0.05 

Mosaic Gly545Ser (agc) (n=9) Mosaic Gly545Ser (agc) (n=9) 84.09 - 84.72 84.47 ± 0.20 

penA Ala501 
Non-mosaic (n=26) Non-mosaic (n=26) n/a b n/a b 

100 (66-100) 100 (87-100 
Mosaic (n=9) Mosaic (n=9) 83.59 - 84.35 84.17 ± 0.19 n/i 

gyrA Ser91Phe 

GyrA Ser91 (tcc), Ala92 (gca) (n=11) GyrA Ser91 (tcc), Ala92 (gca) (n=11) 77.97 - 78.16 78.08 ± 0.05  

100 (86-100) 100 (72-100) GyrA Ser91Phe (ttc), Ala92 (gca) (n=23) GyrA Ser91Phe (ttc), Ala92 (gca) (n=23) 77.29 - 77.59 77.47 ± 0.07 0.61 ± 0.06 

GyrA Ser91Phe (ttc), Ala92Ser (tca) (n=1) GyrA Ser91Phe (tcc), Ala92Ser (tca) (n=1) 76.15 - 76.17 76.16 ± 0.02 1.25 ± 0.01 

23S rRNA A2059G 
A2059 (n=34) A2059 (n=34) 81.33 - 81.52 81.44 ± 0.03 

0.22 ± 0.02 100 (3-100) 100 (90-100) 
A2059G (n=1) A2059G (n=1) 81.61 - 81.70 81.67 ± 0.03 

23S rRNA C2611T 
C2611 (n=34) C2611 (n=34) 75.69 - 76.33 76.12 ± 0.16 

0.75 ± 0.05 100 (3-100) 100 (90-100) 
C2611T (n=1) C2611T (n=1) 75.08 - 75.55 75.30 ± 0.20 

rpsE Thr24Pro 
Thr24 (acc) (n=34) Thr24 (acc) (n=34) 73.87 - 74.34 74.08 ± 0.07 

0.68 ± 0.01 100 (3-100) 100 (90-100) 
Thr24Pro (ccc) (n=1) Thr24Pro (ccc) (n=1) 74.66 - 74.94 74.76 ± 0.09 

16S rRNA C1192T 
C1192 (n=34) C1192 (n=34) 81.38 - 81.72 81.56 ± 0.08 

0.69 ± 0.01 100 (3-100) 100 (90-100) 
C1192T (n=1) C1192T (n=1) 80.74 - 80.94 80.82 ± 0.09 

Note. Tm, melting temperature; ΔTm, melting temperature difference between wild-type and mutated sequence; n/a, not applicable; n/i, not interpretable 465 
a Only non-mosaic pattern XIX (with penA Gly545) showed cross-amplification 466 
b No amplification was observed for all other non-mosaic penA pattern tested 467 
c Sensitivity is the probability that an isolate was correctly identified as positive by HRM analysis for the target sequence (species ID, mosaic or mutation); specificity was the probability that an 468 

isolate was correctly identified as negative by HRM analysis for the target sequence (species ID, mosaic or mutation). 469 
d Specificity was 100% considering that all 19 non-gonococcal control strains were correctly characterized as non-N. gonorrhoeae (see Table S1)  470 
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TABLE 3. Performance of the real-time PCR platform in characterizing the collection of 193 N. gonorrhoeae isolates alone and combined with the 39 N. gonorrhoeae control strains  71 

Phenotypic target Target sequence 

N. gonorrhoeae isolates collected during 1989-2014 (n=193) Overall N. gonorrhoeae strains (n=232), including the 39 controls 

Test 
result 

No. of 
isolates a 

AST b Sensitivity d 
% (95% CI) 

Specificity d 
% (95% CI) Test result No. of strains a, e 

AST b Sensitivity d  
% (95% CI) 

Specificity d 
% (95% CI) 

  S   R   S   R

Species  
identification 

opa   
and/or 
porA  

Positive 
 
193 
  

n/a 
 

n/a 100  
(97-100) n/a 

 
Positive e 

 
232 

n/a 
 
n/a 
 

 
100 
(98-100) e 
 

 
100 
(82-100) e 
 Negative - Negative e 19 

Ceftriaxone  
(CRO) 

penA Gly545Ser 
and/or 
penA Ala501 

Positive 
 
16 
 

 
16 

 
- 

n/a 

 
92  
(87-95) 
 

 
Positive 26 

 
24 

 
2 

100 
(16-100) 

90 
(85-93) 

Negative 
 
177 
 

 
177 

 
- Negative 206 206 - 

Cefixime  
(CFX) 

penA Gly545Ser 
and/or 
penA Ala501 

 
Positive 
 

 
16 
 

9 
 
7  

100  
(47-100) 
 

95  
(91-98) 

Positive 26 
 
14 

 
12 

92 
(64-100) 

94 
(90-96) 

Negative 177 177 - Negative 206 205 1 f 

Azithromycin  
(AZM) c 

23S rRNA A2059G 
or 
23S rRNA C2611T 

Positive 
 
- 
 

- 
 
-  

n/a 
 

100  
(97-100) 

Positive 
 
4 - 

 
4 

100 
(40-100) 

100 
(98-100) 

Negative 193 193 - Negative 228 228 - 

Ciprofloxacin  
(CIP) gyrA Ser91Phe 

Positive 58 - 58 
100  
(91-100) 

100  
(96-100) 

Positive 83 - 83 
100 
(96-100) 

100 
(98-100) 

Negative 135 135 - Negative 149 149 - 

Spectinomycin  
(SPC) 

rpsE Thr24Pro 
or 
16S rRNA C1192T 

 
Positive 
 

 
- 
 

- 
 
- 

n/a 
 

100  
(97-100) 
 

Positive 3 - 3 
100 
(29-100) 

100 
(98-100) 

Negative 193 193 - Negative 229 229 - 

Note. AST, antimicrobial susceptibility testing obtained with Etest; R, resistant; S, susceptible; CI, confidence interval; -, zero; n/a, not applicable 72 
a Numbers are based on the results of the multiplex real-time PCR platform 73 
b AST was categorized based on EUCAST criteria with exception for AZM (see below) 74 
c AZM resistance were defined as > 2 µg/ml 75 
d Sensitivity was the probability that an isolate categorized as resistant was identified as positive by real-time PCR; specificity was the probability that an isolate categorized as sensitive was identified as negative by 76 
real-time PCR 77 
e For the evaluation of the “Species identification” we also included the 19 non-gonococcal Neisseria spp. strains 78 
f Strain WHO L (non mosaic penA gene with an additional substitution in amino acid 501) 79 
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LEGEND TO FIGURE 1 480 

Ceftriaxone (black bars) and cefixime (grey bars) MIC distribution of the 193 gonococcal 481 

isolates. A, isolates harboring a non-mosaic penA gene (n=177); B, isolates carrying a mosaic 482 

penA gene (n=16). 483 
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