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Abstract 1 

Background: The population mixing hypothesis proposes that childhood leukaemia (CL) might 2 

be a rare complication to a yet unidentified subclinical infection. Large population influxes into 3 

previously isolated rural areas may foster localised epidemics of the postulated infection causing 4 

a subsequent increase of CL. While marked population growth after a period of stability was 5 

central to the formulation of the hypothesis and to the early studies on population mixing, there 6 

is a lack of objective criteria to define such growth patterns. We aimed to determine whether 7 

periods of marked population growth coincided with increases in the risk of CL in Swiss 8 

municipalities. 9 

Methods: We identified incident cases of CL aged 0-15 years for the period 1985-2010 from the 10 

Swiss Childhood Cancer Registry. Annual data on population counts in Swiss municipalities were 11 

obtained for 1980-2010. As exposures, we defined (i) cumulative population growth during a 5-12 

year moving time window centred on each year (1985-2010) and (ii) periods of ‘take-off growth’ 13 

identified by segmented linear regression. We compared CL incidence across exposure 14 

categories using Poisson regression and tested for effect modification by degree of urbanisation.  15 

Results: Our study included 1,500 incident cases and 2,561 municipalities. The incident rate 16 

ratio (IRR) comparing the highest to the lowest quintile of 5-year population growth was 1.18 17 

(95%-CI: 0.96, 1.46) including all municipalities and 1.33 (95%-CI: 0.93, 1.92) in rural 18 

municipalities only (p-value interaction 0.36). In municipalities with take-off growth, the IRR 19 

comparing the take-off period (>6% annual population growth) with the initial period of low or 20 

negative growth (<2%) was 2.07 (95%-CI 0.95, 4.51) overall and 2.99 (1.11, 8.05) in rural areas 21 

(p interaction 0.52).  22 

Conclusions: Our study provides further support for the population mixing hypothesis and 23 

underlines the need to distinguish take-off growth from other growth patterns in future 24 

research. 25 

 26 

Keywords: population mixing, leukaemia, infections, childhood cancer, take-off growth 27 
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Introduction 1 

The aetiology of childhood leukaemia (CL) is still poorly understood. The population mixing 2 

hypothesis proposes that CL might be a rare complication to a yet unidentified subclinical 3 

infection [1, 2]. Population influxes after a period of stable population - for instance immigration 4 

of the workforce needed for a new large-scale construction site into a previously isolated rural 5 

area - may foster localised epidemics of the postulated infection causing a subsequent increase 6 

in the incidence of CL. The population mixing hypothesis was originally proposed as an 7 

explanation for the higher incidence rates observed close to the nuclear reprocessing plants at 8 

Dounreay and Sellafield which could not be linked to ionizing radiation emanating from these 9 

installations [3]. 10 

Subsequently associations were reported for other historical events that involved extreme 11 

population mixing such as wartime movements [4, 5], large industrial sites [6, 7] or the creation 12 

of new towns [8]. All of these studies found an increased risk for childhood leukaemia during the 13 

period of population mixing. Results from other studies using census data to measure population 14 

mixing were less consistent [9-14]. These studies measured population growth or in-migration 15 

between census time points or over a defined period prior to the census to identify areas with 16 

higher population mixing. The advantage of these more objective measures is that they are 17 

widely applicable and can be compared across countries. Their main drawback is that they fail to 18 

take into account longer time-periods, leaving it unclear whether population increases followed 19 

periods of stable population or had already commenced a long time before the measured time 20 

window. Thus, they poorly capture the type of population mixing that is central to the 21 

hypothesis. Apart from investigating specific historical events, there is a lack of objective 22 

measures of population mixing that capture marked population growth following periods of 23 

stability based on commonly available population data. Only few studies have investigated the 24 

temporal association between such increases and the risk of CL, i.e. whether risks are higher 25 

during the growth period compared to the stable period [15, 8, 4]. 26 

In this study, we aimed to determine whether periods of marked population growth coincide 27 

with increases in the risk of CL and acute lymphoblastic leukaemia (ALL) in Swiss municipalities 28 

from 1985-2010. We developed two objective measures of growth, which can be used to 29 

contrast periods of high and low growth within municipalities. First, we identified periods of 30 

population growth based on average population change during a moving 5-year window. 31 

Second, we identified periods of marked population growth following periods of low growth 32 

(take-off growth) using segmented linear regression.  33 

  34 
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Methods 1 

Population 2 

We identified incident cases of leukaemia in children from the Swiss Childhood Cancer Registry 3 

(SCCR). All cases diagnosed in the period 1985-2010 who were aged 0-15 years and resident in 4 

Switzerland at the time of diagnosis were included. The SCCR [16, 17] is a population-based 5 

registry including all children and adolescents diagnosed with a tumour classified according to 6 

the International Classification of Childhood Cancer, third edition [18] (ICCC-3). Completeness of 7 

the SCCR was above 91% throughout the study period; since the mid-1990s coverage has been 8 

around 95% [19].  9 

Population counts were available for census years (1980, 1990, 2000, 2010) by municipality, age 10 

and sex from the Swiss National Cohort Study [20, 21]. Total population in municipalities 11 

(permanent residents only) for all years between these censuses were obtained from the Swiss 12 

Federal Statistical Office. These figures are based on the decennial census counts sequentially 13 

updated with annual population changes due to births, deaths and migration.  14 

Outcomes  15 

Outcomes were any leukaemia (ICCC-3 diagnostic group I) and acute lymphoblastic leukaemia 16 

(ALL; ICCC-3 diagnostic group Ia) diagnosed in children below 16 years of age.  17 

Measures of population mixing 18 

We measured population mixing at the level of municipalities, the smallest administrative area 19 

in Switzerland. We merged all neighbouring municipalities that underwent territorial changes to 20 

ensure consistent area boundaries throughout the study-period (1980-2010). We used a 21 

classification scheme from the Federal Statistical Office to distinguish rural municipalities from 22 

urban and semi-urban areas [22].  23 

We measured population mixing using two separate approaches as follows: 24 

Approach A (5-year growth): This approach measures relative population growth over a moving 25 

time window of 5 years. For each municipality and year (1985-2008) we calculated population 26 

growth during a 5-year period centred on that year as percentage of the 1980 population: 27 

5 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦 𝑐𝑐ℎ𝑦𝑦𝑎𝑎𝑎𝑎𝑦𝑦 𝑟𝑟𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑟𝑟 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡+2−𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−3
𝑃𝑃𝑃𝑃𝑃𝑃80

, 28 

where Popt is the total population at the end of year t. 29 

Approach B (take-off growth): This approach aimed to identify calendar periods with distinct 30 

levels of average growth. We standardised annual population counts for each municipality for 31 

the years 1981-2010 by dividing by the population in 1980. We fitted segmented linear 32 
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regression models with two variable breakpoints using the standardized population growth as 1 

dependent variable and calendar year as independent variable. The models were fitted using the 2 

package ‘segmented’ in the R environment for statistical computing version 3.1.3 [23, 24]. This 3 

method simultaneously estimates breakpoints and regression slopes of a continuous piece-wise 4 

linear regression line.  5 

The three periods (i = 1,2,3) of each segmented regression were classified according to whether 6 

their respective slopes si (these correspond to mean annual growth relative to the 1980 7 

population) were below a lower threshold a (si < a) (low growth period), above an upper 8 

threshold b (si > b) (high growth period) or between these two (a <= si<= b). We defined periods 9 

of “take-off growth” as periods of high population growth (si > b) following a period of low 10 

growth (sj < a for j<i) (Fig. S1). We used four pre-specified combinations of threshold values with 11 

a = 1% or 2% and b = 4% or 6%, respectively. The four combinations of threshold values are 12 

nested in each other with the combination a = 2% b = 4% containing all the other combinations. 13 

More details on the definition of take-off growth are provided in the online supplementary 14 

material. 15 

Statistical analyses 16 

We calculated person-years at risk for all Swiss residents aged 0-15 years at diagnosis by sex, 17 

age group (0-4, 5-9, 10-15), calendar year (1980-2010) and municipality. In order to do this we 18 

calculated the fraction of the total population in each municipality belonging to each sex and age 19 

group in census years (1980, 1990, 2000, 2010). Corresponding fractions for the years between 20 

censuses were obtained through linear interpolation. For a given municipality, we then 21 

calculated person years as the product of these fractions and the total population of that 22 

municipality. Incident cases of cancer were identified from the SCCR and assigned to 23 

municipalities and calendar years according to their place of residence at diagnosis. This 24 

resulted in a multilevel dataset with multiple records (calendar years) per municipality 25 

containing numbers of person-years and cases. 26 

We investigated associations between CL incidence and population mixing using Poisson 27 

regression models adjusting for sex, age group (0-4, 5-10, 10-15), year category (5-year blocks) 28 

and language region (German, French, Italian). Since the existence of a general cantonal cancer 29 

registry might have affected the completeness of registration in a canton [25] we also adjusted 30 

for this using a time-varying dichotomous variable indicating the presence or absence of such a 31 

registry. We also ran Poisson regression models including a random effects term on the 32 

intercept to allow for varying average incidence rates across municipalities. These random 33 

effects account for any purely spatial differences such that model estimates only contrast 34 

temporal differences within municipalities, i.e. periods of high vs. low population growth. We 35 
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also investigated effect modification by degree of urbanisation (urban/rural). Incidence rate 1 

ratios (IRR) and their 95% confidence intervals (CI) were calculated from these models.  2 

For approach A (5-year growth) the exposure of interest, 5-year relative change, was divided 3 

into quintiles with the lowest quintile (lowest growth) set as reference category. We also fitted 4 

models with the outcome variable shifted by a 1 to 4-year lag after exposure. This allows for 5 

possible latent periods between population growth and the onset of overt CL.  6 

For approach B (take-off growth) we calculated incidence rate ratios for periods of intermediate 7 

growth (a <= s <= b) and high growth (s > b) compared to periods of low growth (s < a). This was 8 

done for all four possible combinations of a = 1% or 2% and b = 4% or 6%. Models were fitted 9 

separately including all municipalities and including only municipalities with take-off growth.  10 

Results 11 

We identified 1,500 incident cases of CL diagnosed 1985-2010 under the age of 16 years and 12 

resident in Switzerland at time of diagnosis. Of these 1,191 (80%) were diagnosed with ALL and 13 

862 (58%) were male (supplementary Table S2). Overall, our analyses included 39.7 million 14 

person-years at risk over the period 1985-2010 across 2,561 municipal entities (after 15 

accounting for boundary changes; hereinafter referred to simply as ‘municipalities’). Of these 16 

municipalities, 1,651(64%) were rural and 396 (15.5%) could be classified as municipalities 17 

with take-off growth based on threshold value combinations of mean annual population growth 18 

of below a = 1% or 2% (low growth period) and above b = 4% or 6% (high growth period) 19 

(Table 1). Median population size was 794 in 1980 increasing to 1,151 in 2010, and average 20 

annual population growth over this period had a median of 1% (Table 1).  21 

Table 2 shows the results of analyses of the association between CL and 5-year growth 22 

(approach A). Analysing all municipalities combined, the IRR comparing the highest with the 23 

lowest quintile was 1.18 (95% CI: 0.96-1.46, p likelihood ratio (LR) test for no differences 24 

between quintiles: 0.50) and 1.33 (95% CI: 0.35-1.92, p LR test: 0.30) for rural municipalities 25 

only. There was no evidence of effect modification by degree of urbanisation (p LR test: 0.36). 26 

Similarly, there was little evidence of an association between leukaemia incidence and 5-year 27 

growth or for effect modification by degree of urbanisation when we accounted for different 28 

latent periods between population growth and CL (Supplementary Tables S3-S6). Results for 29 

ALL were also similar (Supplementary Table S7). 30 

Segmented linear regressions used to define municipalities with take-off growth (approach B) 31 

generally showed a good fit to annual growth curves (Some randomly selected examples are 32 

shown in Fig. 1); however, in some cases three breakpoints might have been more appropriate. 33 

Among municipalities with take-off growth, the high growth period was most marked if it was 34 
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preceded and followed by a low growth period (Fig. 2). Municipalities with take-off growth were 1 

distributed across the whole country (Fig. 3).  2 

Table 3 shows the results of analyses comparing high and low growth periods. Here periods of 3 

high mean annual growth relative to 1980 population (s > b) or medium growth (a ≤ s ≤ b) are 4 

compared to periods of low growth (s < a) for different thresholds (a, b) without taking into 5 

account the sequence of these periods, i.e. disregarding take-off growth. Including all 6 

municipalities, IRRs tended to be higher for periods of high annual growth compared to periods 7 

of low growth, but there was little evidence for an association (p > 0.4). When we included only 8 

rural municipalities, IRRs for periods of high growth were about 1.45. While lower bounds of 9 

95%-CIs exceeded unity for the annual growth threshold of b = 4%, p-values did not show strong 10 

evidence of an association (p > 0.1) (Table 3). There was little evidence of effect modification by 11 

degree of urbanisation (p LR test: 0.15).  12 

Restricting the analyses only to municipalities with take-off growth, effect estimates were 13 

consistently higher, particularly in rural areas for periods with annual growth exceeding 6% 14 

(Table 4 and Fig. 4); IRRs were 2.37 (95%-CI: 0.63, 8.85) when comparing to low growth of <1%, 15 

and 2.99 (95%-CI: 1.11, 8.05) comparing to low growth of <2%. However, the number of cases 16 

observed during periods of high growth was low; LR tests provide only weak evidence of 17 

association (p > 0.1). There was no evidence for differences between rural and urban 18 

municipalities except for the least restrictive combination of cut-offs (a = 2%, b = 4%; p 19 

interaction: 0.06).  20 

In separate analyses of cases of ALL, the pattern of associations was more pronounced with 21 

evidence of association both in urban and rural municipalities for growth periods exceeding 6% 22 

annually (Table 5). In rural areas, IRRs for ALL comparing the take-off growth period to the low 23 

growth period exceeded 4 (a = 1%, b = 6%: IRR: 5.61, 95%CI: 1.26-21.10, p LR: 0.043; a = 2%, b 24 

= 6%: IRR: 4.89, 95%CI: 1.74-13.71, p LR: 0.006). Results from models including random 25 

intercepts for municipalities were highly similar (data not shown).  26 

 27 

  28 
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Discussion 1 

Summary of results 2 

In this study, we investigated whether the risk of developing CL was increased during periods of 3 

higher population growth compared to periods of low growth in Swiss municipalities using two 4 

different measures of population growth. Taking 5-year moving average growth as growth 5 

measure, we found little evidence for an association with risks of CL although risks tended to be 6 

higher during periods of higher growth. Using segmented linear regression to identify periods 7 

with average annual growth above specific thresholds, we found some evidence of an increased 8 

risk of CL in rural municipalities during periods with annual growth above 4%. When we 9 

restricted the analyses to municipalities with take-off growth (defined as periods of high growth 10 

following low growth as identified by segmented linear regression), we found evidence of an 11 

increased risk of ALL during periods of high growth exceeding 6% both in urban and rural areas. 12 

There was little or only weak evidence for effect modification by degree of urbanisation in all 13 

models. 14 

Comparison to other studies 15 

Previous studies that tried to isolate events of extreme population mixing to analyse the 16 

association with CL incidence mostly focused on specific historical events. Our study is best 17 

compared with studies that have investigated a temporal association, i.e. that have calculated 18 

rates during the event of interest as well as rates before or after the event. One such study found 19 

an excess of leukaemia mortality in rural new towns during the main growth period compared 20 

to national rates but not thereafter [8]. Another study found that leukaemia mortality was 21 

increased for children exposed to wartime population mixing in Orkney and Shetland, where 22 

many servicemen were stationed, compared to children from the post war period, when 23 

servicemen had left [4]. A third study found an excess risk of leukaemia incidence during the 24 

construction period of large construction sites and the year after compared to national rates, but 25 

not during the 5-year periods before construction and after completion [15]. In contrast to these 26 

historical studies, we identified municipalities and periods with rapid growth based purely on 27 

routine population statistics without any indication of historical events that may have caused 28 

particularly rapid migration movements. The increases we identified do not appear to be 29 

abnormally high and are less dramatic than the historical events previously investigated by 30 

these studies.  31 

In our own previous study [26], we had used a nationwide cohort study approach and did not 32 

find an increased incidence of CL in municipalities with high population mixing. However, as 33 

commonly done in other studies, we had measured population growth only during a fixed (5-34 

year) period preceding census points irrespective of the pattern of population change before or 35 
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after that period. This approach cannot capture the starting point of population increases, i.e. 1 

take-off population growth. Similarly, a number of other studies have used population increases 2 

or in-migration of short time periods (irrespective of prior growth) to measure population 3 

mixing [10, 13, 12, 9]. Other measures of population mixing that have been studied in relation to 4 

the risk of childhood leukaemia include diversity of place of origin of in-migrants [27, 14], social 5 

contacts at parents’ workplace [28-30], or population density [31-33]. The results of these 6 

studies are heterogeneous.  7 

Strengths and weaknesses 8 

The main strength of our study was that we were able to analyse population mixing over an 9 

extensive period allowing us to identify municipalities with periods of high growth following an 10 

initial period of low growth (take-off growth). This corresponds more closely to the population 11 

mixing events – such as the influx of workers into the village of Seascale, north-west England, 12 

during construction and operations of the Sellafield nuclear fuel reprocessing plant - that 13 

motivated Kinlen’s hypothesis [1]. Our measures of population growth and take-off growth were 14 

defined a priori and can be reproduced in different settings provided annual population data for 15 

extensive periods are available. Our analyses were not restricted to a singular historical event or 16 

to periods dictated by census time points. Incident cases were identified from a population-17 

based registry with high coverage during the study period.  18 

A major weakness that our study shares with other studies is that we were only able to test 19 

indirect measures of exposure to infections based on population growth. We could not verify 20 

whether the identified periods of high growth were indeed associated with higher transmission 21 

rates of a particular infection in the respective municipalities. Furthermore, some municipalities 22 

were quite large in size or population, or both, which might have diluted very localised effects. 23 

The segmented linear regression models with two variable breakpoints might have been too 24 

imprecise for some municipalities for which three breakpoints or only one would have provided 25 

a better fit. Restricting the analyses to the municipalities with take-off growth greatly reduced 26 

statistical power as only few municipalities fitted these strict criteria. In order to avoid too 27 

restrictive a selection, we had to allow for some heterogeneity in municipalities with take-off 28 

growth, e.g. to include municipalities which returned to stable growth after the period of high 29 

growth or to allow for a wider variation in the duration of the periods of stable or take-off 30 

growth.  31 

Interpretation of results  32 

Under the population mixing hypothesis, CL risk is predicted to rise in rural areas that 33 

experience a sudden population influx. Our findings of a higher risk in municipalities with take-34 

off growth are thus in good agreement with this hypothesis, while little evidence of increased 35 
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risk was found for more general measures of population growth. Estimated risk increases were 1 

stronger in rural than in urban municipalities – though these differences were not supported by 2 

interaction tests – and particularly strong for ALL. Assuming that these observed risk increases 3 

were caused by a putative infection, as implicated by the hypothesis, then our findings 4 

demonstrate the necessity of measuring take-off growth rather than growth in general as many 5 

previous studies have done.  6 

Finding the appropriate measures of population mixing will not be sufficient to confirm the 7 

population mixing hypothesis, however, as it would also have to be shown that an association 8 

with an increased leukaemia risk is mediated through a circulating infection. A number of 9 

studies have suggested that infectious exposure in early life is associated with a reduced risk of 10 

CL. This association is particularly evident for day-care attendance [34, 35] and has been widely 11 

seen as supporting Greaves delayed infection hypothesis [36]. This hypothesis states that a lack 12 

of exposure to common early infections could predispose the immune system to an aberrant 13 

response to later (delayed) infections resulting in leukaemia. These observations do not 14 

necessarily conflict with the findings of our study, however. In fact, Kinlen’s population mixing 15 

hypothesis describes specific events in which mini-epidemics of infections might result in a 16 

higher incidence of leukaemia development among children who are more susceptible due to the 17 

fact that they were previously less or not exposed to these infections. The observed association 18 

between take-off growth and leukaemia risk in our data set, which was more pronounced in 19 

rural than in urban municipalities, thus bears out the hallmarks of the Kinlen hypothesis without 20 

conflicting with Greaves’ hypothesis. 21 

Care must be taken not to over-interpret our results: even though we found increased risk 22 

during periods of high growth, the evidence for an association was weak except for ALL in 23 

association with take-off growth with annual growth >6% compared to 1980 levels. The lack of 24 

consistent evidence may be due to the low number of cases in municipalities that met the strict 25 

criteria for take-off growth. It remains to be seen whether the association between CL and take-26 

off growth is reproduced in other populations. Furthermore, it would be important to validate 27 

that periods of take-off growth do in fact coincide with increased incidence of known infections. 28 

This would provide further support that an infection still to be identified, is driving the 29 

associations observed in our and other studies.  30 

Conclusions 31 

Our study provides further support for the population mixing hypothesis. We defined an 32 

objective measure of population mixing a priori by analysing the temporal patterns of 33 

population growth in municipalities and isolating municipalities with high population growth 34 

following a period of low growth (take-off growth). As predicted by the hypothesis, leukaemia 35 
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risks in these municipalities tended to be higher during the period of high growth compared to 1 

the period of low growth, especially in rural areas. We propose that future studies on population 2 

mixing and childhood leukaemia should observe population change over long periods and 3 

distinguish take-off growth from ordinary growth periods.  4 

 5 

 6 
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Tables 

Table 1: Characteristics of municipalities 

    Population count 1980 Population count 2010 
Mean annual growth 1985-

2010 [%] 

  N % 
media

n 
minimu

m 
maximu

m 
media

n 
minimu

m 
maximu

m 
media

n 
minimu

m 
maximu

m 
All municipalities  2561  100 794 24 370103 1151 15 371633 0.98 -3.55 5.32 

Municipalities with take-off growtha                       
a = 1%; b = 4% 188 7.3 403 30 12523 501 29 17412 0.64 -1.46 3.47 
a = 1%; b = 6% 85 3.3 363 31 12523 470 29 16077 0.56 -1.46 3.47 
a = 2%; b = 4% 396 15.5 536 25 12523 766 29 17412 1.18 -1.46 4.72 
a = 2%; b = 6% 177 6.9 447 31 12523 609 29 16077 1.15 -1.46 4.72 

Rural municipalities  1651  100 533 24 10161 719 15 12232 0.81 -3.55 4.72 
Municipalities with take-off growtha                       
a = 1%; b = 4% 156 9.4 357 30 5477 442 29 6972 0.51 -1.46 3.47 
a = 1%; b = 6% 74 4.5 358 31 5477 439 29 6972 0.41 -1.46 3.47 
a = 2%; b = 4% 292 17.7 403 25 5477 554 29 6972 1.01 -1.46 4.72 
a = 2%; b = 6% 137 8.3 356 31 5477 482 29 6972 0.94 -1.46 4.72 

a Defined as a period of low (< a) followed by a period of high (> b) mean annual growth.  
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Table 2: Association between childhood leukaemia and quintiles of 5-year population growth (1985-2010) 

5-year population growth               

  Quintile Median (%) Range (%) Cases IRa IRR 95% CI p LR p interactionb 
All municipalities  1 -3.64  (-60.0  to  -0.7) 223 4.12 1.00   0.503   
  2 1.40  (-0.7  to  3.3) 413 4.52 1.11  (0.93  ,  1.32)     
  3 5.21  (3.3  to  7.4) 341 4.66 1.15  (0.96  ,  1.37)     
  4 10.04  (7.4  to  13.6) 231 4.24 1.07  (0.88  ,  1.30)     
  5 19.86  (13.6  to  200.0) 179 4.89 1.18  (0.96  ,  1.46)     
                    
Rural municipalities 1 -3.98  (-60.0  to  -0.7) 71 4.05 1.00   0.301 0.365 
  2 1.33  (-0.7 to  3.3) 95 4.14 1.12  (0.81  ,  1.55)     
  3 5.17  (3.3 to  7.4) 107 4.92 1.30  (0.94  ,  1.79)     
  4 10.00  (7.4 to  13.6) 73 3.85 1.03  (0.72  ,  1.46)     
  5 19.40  (13.6 to  200.0) 65 5.00 1.33  (0.93  ,  1.92)     

IR incidence rate, IRR incidence rate ratio, CI confidence interval, LR Likelihood ratio test 
a From Poisson regression models adjusted for sex, age group, calendar year, language region and presence of a general cancer registry in the canton of 
residence. 
b Test for interaction between urbanisation and quintiles of 5-year growth 
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Table 3: Association between childhood leukaemia and time periods of high, medium and low growth (1985-2010) 

  All municipalities    only rural municipalities  
Growth thresholds Perioda No. Cases IR IRRb 95% CI p LR   No. Cases IR IRRb 95% CI p LR p interactionc 

                                

a =1%; b = 4% 
low growth 862 4.50 1.00     0.722   239 4.39 1.00     0.146 0.149 

medium growth 549 4.37 0.99 0.89  ,  1.11     174 4.21 1.03 0.83  ,  1.27     
high growth 89 4.96 1.09 0.87  ,  1.38     36 6.30 1.46 1.01  ,  2.11     

                                

a = 1%; b = 6% 
low growth 862 4.50 1.00     0.471   239 4.39 1.00     0.502 0.631 

medium growth 602 4.38 1.00 0.89  ,  1.11     199 4.40 1.07 0.87  ,  1.30     
high growth 36 5.75 1.25 0.88  ,  1.78     11 5.97 1.43 0.77  ,  2.65     

                                

a = 2%; b = 4% 
low growth 1194 4.44 1.00     0.706   345 4.39 1.00     0.150 0.151 

medium growth 217 4.48 1.02 0.87  ,  1.19     68 3.98 0.99 0.75  ,  1.29     
high growth 89 4.96 1.10 0.88  ,  1.38     36 6.30 1.44 1.01  ,  2.05     

                                

a = 2%; b = 6% 
low growth 1194 4.44 1.00     0.457   345 4.39 1.00     0.508 0.735 

medium growth 270 4.49 1.02 0.89  ,  1.17     93 4.44 1.08 0.85  ,  1.36     
high growth 36 5.75 1.26 0.89  ,  1.78     11 5.97 1.41 0.77  ,  2.59     

IR incidence rate, IRR incidence rate ratio, CI confidence interval, LR likelihood ratio test 
a Municipality specific time periods differing in mean annual population change (s) as identified by segmented linear regression: low growth (s < a), 
medium growth (a ≤ s ≤ b), high growth (s > b) 
b From Poisson regression models adjusted for sex, age group, calendar year category, language region and the presence of general cancer registry in the 
canton of residence.  
c Interaction growth periods and urbanisation  
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Table 4: Only municipalities with take-off growth: Association between childhood leukaemia and time periods of high and low growth (1985-
2010)  

  All municipalities    only rural municipalities  
Growth thresholds Perioda  No. Cases IR IRRb 95%CI p LR   No. Cases IR IRRb 95%CI p LR p interactionc 

                                

a = 1%; b = 4% 
low growth 45 5.47 1.00     0.064   27 5.35 1.00     0.116 0.776 
high growth 14 6.66 1.06 0.55  ,  2.02     8 7.53 1.34 0.53  ,  3.36     

                                

a = 1%; b = 6% 
low growth 15 4.32 1.00     0.350   12 4.83 1.00     0.449 0.842 
high growth 6 14.50 2.27 0.75  ,  6.87     4 15.66 2.37 0.63  ,  8.85     

                                

a = 2%; b = 4% 
low growth 106 4.73 1.00     0.182   52 4.67 1.00     0.194 0.059 
high growth 27 5.24 1.04 0.67  ,  1.62     19 7.41 1.61 0.91  ,  2.86     

                                

a = 2%; b = 6% 
low growth 31 3.52 1.00     0.131   19 3.99 1.00     0.110 0.517 
high growth 10 8.69 2.07 0.95  ,  4.51     7 11.31 2.99 1.11  ,  8.05     

IR incidence rate, IRR incidence rate ratio, CI confidence interval, LR likelihood ratio test 
Note: The medium growth period is not presented here, as it is restricted to individual break point years between the low and high growth periods. By 
definition, municipalities with take-off growth should only have periods of low and high growth. However, breakpoints occur on a continuous time scale 
and annual growth during a year with a breakpoint was obtained as a time-weighted average of high and low-growth sometimes resulting in medium 
growth. Only one case occurred in the medium growth category and the resulting imprecision in the effect estimates for this category explains why LR-
tests are non-significant even when lower confidence bounds for the high growth category are close to or exceed 1. 
a Municipality specific time periods differing in mean annual population change (s) as identified by segmented linear regression: Low growth(s < a), 
medium growth (a ≤ s ≤ b), high growth (s > b) 
b From Poisson regression models adjusted for sex, age group, calendar year category, language region and the presence of general cancer registry in the 
canton of residence.  
c Interaction growth periods and urbanisation  
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Table 5: Only municipalities with take-off growth: Association between childhood ALL and time periods of take-off growth (1985-2010) 

  All municipalities    only rural municipalities  
Growth thresholds s Perioda  No. Cases IR IRRb 95%CI p LR   No. Cases IR IRRb 95%CI p LR p interactionc 

                                

a = 1%; b = 4% 
low growth 36 4.37 1.00     0.135   22 4.36 1.00     0.260 0.980 
high growth 11 5.23 1.08 0.52  ,  2.25     5 4.71 1.27 0.42  ,  3.86     

                                

a = 1%; b = 6% 
low growth 12 3.46 1.00     0.044   9 3.62 1.00     0.043 0.968 
high growth 6 14.50 3.54 1.12  ,  11.19     4 15.66 5.16 1.26  ,  21.10     

                                

a = 2%; b = 4% 
low growth 82 3.66 1.00     0.368   41 3.68 1.00     0.319 0.096 
high growth 22 4.27 1.06 0.64  ,  1.74     15 5.85 1.63 0.85  ,  3.12     

                                
a = 2%; b = 6% 

 
low growth 24 2.73 1.00     0.022   14 2.94 1.00     0.006 0.320 
high growth 9 7.82 2.48 1.07  ,  5.72     7 11.31 4.89 1.74  ,  13.71     

IR incidence rate, IRR incidence rate ratio, CI confidence interval, LR likelihood ratio test, ALL acute lymphoblastic leukaemia  
Note: The medium growth period is not presented here, as it is restricted to individual break point years between the low and high growth periods. By 
definition, municipalities with take-off growth should only have periods of low and high growth. However, breakpoints occur on a continuous time scale 
and annual growth during a year with a breakpoint was obtained as a time-weighted average of high and low-growth sometimes resulting in medium 
growth. Only one case occurred in the medium growth category and the resulting imprecision in the effect estimates for this category explains why LR-
tests are non-significant even when lower confidence bounds for the high growth category are close to or exceed 1. 
a Municipality specific time periods differing in mean annual population change (s) as identified by segmented linear regression: Low growth(s < a), 
medium growth (a ≤ s ≤ b), high growth (s > b) 
b From Poisson regression models adjusted for sex, age group, calendar year category, language region and the presence of general cancer registry in the 
canton of residence.  
c Interaction growth periods and urbanisation  
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Figures Texts 

 

Fig. 1: Examples of segmented linear regression with two knots (variable breakpoints) for 
9 randomly selected municipalities.  

Standardised population size relative to the 1980 population shown in black and fitted 
segmented regression shown in red.   
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Fig. 2: Patterns of segmented linear regression for randomly selected municipalities with 
different types of take-off growth.  

Type I: 1st period low growth (average annual growth <a), 2nd and 3rd period high growth 
(average annual growth >b); Type II: 1st and 2nd period low growth, 3rd period high growth; Type 
III: 1st and 3rd period low growth, 2nd period high growth. Curves show fitted standardised 
population size relative to the 1980 population. 
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Fig. 3: Municipalities with take-off growth defined as period of high growth following an 
initial period of low growth based on segmented linear regression 
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Fig. 4: Comparison of childhood leukaemia risk in high versus low growth periods in 
municipalities with take-off growth.  

Take-off-growth is defined as an initial period of high growth (regression slope s > b) following a 
period of low growth (s < a). The periods and their slopes were defined for each municipality 
individually using segmented linear regression.  
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