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Abstract

Background and Purpose

In clinical diagnosis, medical image segmentation plays a key role in the analysis of patho-

logical regions. Despite advances in automatic and semi-automatic segmentation tech-

niques, time-effective correction tools are commonly needed to improve segmentation

results. Therefore, these tools must provide faster corrections with a lower number of inter-

actions, and a user-independent solution to reduce the time frame between image acquisi-

tion and diagnosis.

Methods

We present a new interactive method for correcting image segmentations. Our method pro-

vides 3D shape corrections through 2D interactions. This approach enables an intuitive and

natural corrections of 3D segmentation results. The developed method has been imple-

mented into a software tool and has been evaluated for the task of lumbar muscle and knee

joint segmentations from MR images.

Results

Experimental results show that full segmentation corrections could be performed within an

average correction time of 5.5±3.3 minutes and an average of 56.5±33.1 user interactions,

while maintaining the quality of the final segmentation result within an average Dice coeffi-

cient of 0.92±0.02 for both anatomies. In addition, for users with different levels of expertise,

our method yields a correction time and number of interaction decrease from 38±19.2 min-

utes to 6.4±4.3 minutes, and 339±157.1 to 67.7±39.6 interactions, respectively.
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Introduction
Medical image segmentation is still an on-going research topic. The wide range of imaging pro-
tocols with their respective scanning parameters makes it difficult to have an unique solution
for image segmentation [1, 2]. Moreover, the performance of segmentation methods is also
impaired by the presence of pathologies. For example, MR images acquired with sequences
such as DIXON or IDEAL [3, 4] produces two images, fat and water, which are used to study
fat infiltration in the musculoskeletal system. However, the low contrast quality of the edges
that describe the interfaces between muscles affects the performance of the segmentations
algorithms.

From the early 1980s, the problem of segmentation has been addressed from a variety of
directions [5–9]. Pattern recognition, image processing, and computer vision fields have
assembled a wide spectrum of segmentation algorithms. Nevertheless, the performance of
these algorithms is still application-specific. As a result, the segmentation task has become a
process where a post-correction and checking has to be performed to achieve an optimal solu-
tion. Additionally, another problem that arises with interactive corrections is the processing
and analysis of a massive amount of data, which lowers the successfulness of these techniques
in light of high-throughput data analysis. Currently, the most popular correction method used
in the clinics is the so-called Brushing Tool. Clinicians (typically a radiologist) spend several
hours verifying and correcting slicewise segmentation results using these tools. For instance, as
we will show in the result section, the correction procedure of lumbar muscle segmentation
using a Brushing Tool takes between 24 minutes and 68 minutes, depending on the expertise of
the user using the tool and his knowledge of the anatomy (cf. results section). In this regard,
the key to tackle this issue is to reduce the correction time, while maintaining the quality of the
segmentation and enforcing a user-independent result.

Several correction methods have been proposed in the literature to handle errors produced
by automatic and semi-automatic segmentation algorithms. The work of Heckel et al. [10]
presents a comprehensive overview of correction/editing segmentation algorithms for 3D med-
ical images. These correction techniques could be grouped into intensity-based and shape-
based segmentation techniques. To mention some of the approaches on intensity-based seg-
mentation correction, Heckel et al. [11] used a variational interpolation for object reconstruc-
tion, Grady et al. [12] used a graph based approach to edit the initial segmentation, and
Kronman et al. [13] used a combination of min-cut segmentation and Laplacian deformation
for the correction. Criminisi et al. [14] created a segmentation tool (GeoS) based on a condi-
tional random field and geodesic distance, which can also be used for segmentation correction
through two approaches: (1) using the segmentation input as guide to set the background and
foreground brushes that this algorithm requires for the segmentation, (2) manual correction
using brushes provided by the tool. However, these approaches are still application-specific,
and the performance of the method is linked to the quality of intensity distribution on the med-
ical image, or to the user expertise on tuning the parameters under different scenarios, which
could be time-consuming. In the case of shape based segmentation correction there are differ-
ent ways to approach this problem [15–20]. For example, Timinger et al. [21] proposed a mod-
ified active shape model-based (ASM) segmentation that introduces user interactions into a
user-defined deformation energy term. Schwarz et al. [17] proposed the use of contour-drag-
ging interactions and a Gaussian kernel in order to weight the local influence of 3D shape
deformations. The problem with these approaches is that the correction depends on the num-
ber of modeled shapes, which is a main problem of shape-based segmentations [22].

We propose, based on our preliminary work [23], a new Fast Image SegmentatIon COrrec-
tion (FISICO) method that produces a real-time 3D shape correction through 2D contour
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manipulation, which only depend on the user input and is not linked to the quality of the medi-
cal image. We combined and adapted the Direct Manipulation (DM) approach presented by
Hsu et al. [24] with Free Form Deformation (FFD) of Sederberg et al. [25] to create an intuitive
and fast correction tool.

Our preliminary study, presented as a conference paper [23], describes a proof-of-concept
strategy for improving segmentations for quantification of fat infiltration in lumbar muscles.
The results suggest that a fast correction method improves the segmentation, and has potential
to be incorporated as an additional tool into clinical usage. These preliminary results further
motivated us to perform a full evaluation of FISICO from the point of view of clinical usage,
and assess the performance on the segmentation correction. Consequently, in this work we
aimed at benchmarking the performance of FISICO under different anatomies and with
another freely available segmentation correction tool, and evaluating its real-time correction
capabilities. Additionally, this study also reports known limitations of the preliminary version
and proposes a variation of the method to circumvent them.

In comparison with the standard correction process used in clinics, we demonstrate the abil-
ity of the proposed approach to yield a substantial correction speed-up on segmentations pro-
duced with ASM [26]. In addition, a test with different users led to comparable results,
reducing the gap on time and number of interaction between users.

Materials and Methods

Methods
From the clinical point of view, a 3D image correction tool has to provide an intuitive 2D envi-
ronment. We developed a 2D slice-wise interface, where the clinician can explore and correct
the 3D segmentation results. Additionally, we selected a deformation algorithm that reduces
the number of interactions, and enables real-time 3D deformations through 2D interactions.
The correction pipeline (Fig 1) starts with a medical image and its initial segmentation. Three
views (sagittal, coronal and axial) with the contour of the 3D segmented shape are displayed.
These contours represent the intersections between the 3D segmentation result and the image
planes.

The correction process is performed through Contour Manipulation, meaning that the user
can drag and drop any point of the contour (see Fig 2). Upon contour manipulation, the defor-
mation method computes the new shape based on the current position. The time difference
between the events lapses less than a second, enabling a steady correction process.

Deformation-based correction method To create a fast and intuitive interactive correction
framework, we propose a FFD [25] based model to generate 3D deformations from 2D user
interactions. In particular, the shape is represented by a tensor product of trivariate Bezier
polynomials. The new shape of the geometrical model X can be computed as
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where xffd is the deformed position of the point x, P is a vector containing the cartesian coordi-
nates of the control points (yellow spheres in the right side of Fig 2) created on the parallelepi-
ped region of X, and (s, t, u) are the local coordinates of the point x.

The essential idea behind Eq (1) is that the deformation of the shape can be achieved
through 3D control point manipulation. However, it is difficult to find the correct position of
the control points yielding a specific deformation. The solution to this was proposed by Hsu
et al. [24], where the user defines a desired deformation through 3D vertex manipulation. The
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position of the control points that produces the deformation is computed by solving an
“inverse” FFD. In this way the deformation becomes more intuitive. However, 3D-based
manipulation techniques, as presented in Hsu et al. [24], require a user (i.e. radiologist) to
become familiar with a 3D environment. To tackle this, we modified the method to work
directly in 2D images, as typically performed by radiologists, while keeping 3D deformations as
explained in the next section.

Correction Pipeline The correction pipeline starts with a 2D visualisation of the 3D medi-
cal image and 3D segmented shape (Fig 2). Initially, three 2D viewers (axial, sagittal and coro-
nal views located at the center of the image) are shown to the user. The position and
orientation of these slices can be defined by the user (i.e. arbitrary re-slicing). The correction
process starts when the user drags the contour to a new position (red arrow, Fig 2). This gives
the initial and end-points of the 2D displacement, which are transformed to the 3D coordinate

Fig 1. Correction Pipeline. The process receives as input a medical image (e.g. MRI or CT) and the segmentation result (labeled image or mesh).
Afterwards, the user performs the contour manipulation in a 2D environment, the deformation method and the contours shape are computed.

doi:10.1371/journal.pone.0156035.g001

Fig 2. Detailed Correction Pipeline. Left: Central part of the Graphical User Interface (GUI) and a 2D vector (red arrow) that represents interactions on
2D contour deformation. Right: Position of the control points before and after the deformation. Note: The grid of control points (full and local deformation
method) is shown only for illustrative purposes. It is not shown to the user in practice.

doi:10.1371/journal.pone.0156035.g002
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system. The resulting 3D displacement is passed to the Direct Manipulation of Free Form
Deformation (DM-FFD) algorithm [24], which computes the position of each control point.
Then, using the computed control points, the FFD algorithm updates the new shape. Finally,
the contours of the 2D viewers are updated. Note that the complete pipeline is executed in real-
time, which gives a smooth correction process.

However, as discussed in the section “Method Limitations and Future Work”, surfaces with
a complex shape, which commonly need more precise local deformations, could not be cor-
rected properly with a global FFD deformation grid, Fig 3a. To improve the local correction,
FISICO has a local correction mode, which re-sizes and locates the grid of the control points to
a specific region selected by the user, Fig 3b. To activate the mode, the user selects the region
by a simple right click in any of the 2D viewers, which produces an automatic visualization of
the area on all orientation views. This provides a clear picture of the region of interest and sets
the center of the bounding box of the control grid. After this, the user has to manually define
the bounding box size of the grid of control points (this will not affect the number of control
points); the software provides the size information of the global grid, which could be used as
reference to define the new dimensions of the local grid. From now on, the user has to follow
the same correction procedure mentioned above.

Correction Protocols To test the correction method, two different users (a software engi-
neer “User A”, expert in the tool and no expertise in the anatomy, and a clinician “User B”,
expert in the anatomy and correction of segmentations) were asked to perform the corrections
on fourteen randomly selected subjects from the database.

The users followed a correction protocol consisting of three steps: First, to start the correc-
tions, the user had to select one subject from the database (we did not specify an order). After
the selection, the MR image, contours of the initial segmentation and initial Dice coefficient
(blue status bars) are displayed, Fig 4. The Dice coefficient could be computed at any time dur-
ing the correction and does not interfere with the rest of the process. Second, for the correction,
the user could explore the image using any 2D viewer. Once the error is located by the user, he

Fig 3. Grid adaptation. (a) Initial grid of the input surface. (b) Local grid in a specific location provided by the user, the number of control points is
unchanged enabling higher detailed correction at no extra computational cost.

doi:10.1371/journal.pone.0156035.g003

FISICO

PLOSONE | DOI:10.1371/journal.pone.0156035 May 25, 2016 5 / 17



has to drag the segmented contour and drop it to its new position, which produces a 3D correc-
tion for the overall segmentation. A global internal counter stores the number of interactions
performed on all the slices. Third, once the user is satisfied with the result, the internal chro-
nometer is stopped. The number of corrections, and correction times were saved automatically.
Furthermore, no additional information about the correction using the tool was provided to
the user. To perform the corrections, the users should only rely on their expertise of the anat-
omy and the provided visualizations.

Materials
To test the performance of the proposed correction methodology, we developed a software tool
(The tool is freely available under the General Public License, version 2.0, (GPL-2.0) on http://
www.istb.unibe.ch/research/medical_image_analysis/software/) and evaluated it on the segme-
nation of the PSoas and the Knee joint using ASM-approaches (the evaluation database is avail-
able on https://github.com/istb-mia/fisico_data).

Images from these two anatomies were acquired with different MR-sequences (DIXON cre-
ates separate fat and water images, and a T2-weighted sequence), which gives us a large set of
MR images to test the method under different scenarios. The results were compared with man-
ually segmented images of these anatomies. In the following subsection, we will describe all the
steps of the evaluation procedure.

Evaluation Database and Initial Segmentations Scans from 20 volunteers were used to
create the testing database for muscle segmentation analysis. MR images with a DIXON
sequence (fat and water images) were acquired. The lumbar section was located between

Fig 4. Correction software. The center part shows three 2D viewers with MR image planes and contours of the input segmentation, the third panel shows
3D environment. The right side is optional and shows the corrections metrics: Correction Time, Dice coefficient and user information. Also, contains the
controls of the local and full correction modes.

doi:10.1371/journal.pone.0156035.g004
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vertebrae L1 and S1. These images were used as input (see Fig 2). The image size is
408x308x208 voxels with voxel size of 0.8x0.8x0.8mm3.

To create the initial segmentations we implemented ASM-based segmentation proposed by
Cootes et al. [26]. We used a multi-resolution scheme to speed up the segmentation and a sta-
tistical model of the intensity profile for the fitting part. As initialization, we performed manual
alignment of the mean shape to each patient image. The statistical model of the Psoas muscle
was created using 6 random manually segmented cases and the remaining 14 were used for the
ASM-based segmentation. The average Dice coefficient of the ASM-based segmentation was
0.81±0.02 (Fig 5).

For the knee joint segmentation, we used two different databases. To create the statistical
model of the knee joints, we used the database of Kozic et al. [27] and Bou Sleiman et al. [28],
which consists of 190 manually segmented computed tomography (CT) images from normal
volunteers. For the ASM-based segmentation, we used the database of Bauer et al. [29], which
comprises 42 MR images of knee joints. From the 42 segmented cases, we selected ten cases
with the lowest quality. These cases allowed us to have similar initial Dice coefficient for both
anatomies.

The tool and the ASM-based segmentation method were implemented in C++, using the
Insight Toolkit for Segmentation and Registration (ITK) [30], and the visualization Toolkit
(VTK) [31] and Qt (http://qt-project.org/) for visualization and GUI, respectively. The soft-
ware was tested on a normal desktop computer of 4GB RAM and Intel(R) Core(TM)2 Quad of
2.3GHz, and on a MacBook Air of 4GB RAM and Intel(R) Core(TM)2 i5 of 1.3GHz.

Results and Discussion
We tested the performance of the proposed method using three different approaches. First, we
compared it with the Brushing Tool, for which the comparison variables were correction time
and number of user interactions. For this test we used ASM-based segmentations of the Psoas
muscle. Second, we focused our attention on correction speed and accuracy of FISICO with dif-
ferent anatomies, and their differences between users. For this test we used ASM-based seg-
mentations of the knee joints (Tibia and Femur), Fig 6. Finally, we compared the method with
GeoS a research tool that could be used in the clinics and is freely available.

Fig 5. Initial and Final Dice coefficient per case and user from different methods after corrections.

doi:10.1371/journal.pone.0156035.g005

FISICO

PLOSONE | DOI:10.1371/journal.pone.0156035 May 25, 2016 7 / 17

http://qt-project.org/


Muscle corrections results
The correction time measured for a full muscle correction using FISICO and Brushing were 6
±4 minutes and 38±19 minutes, respectively (Fig 7b). Similarly, the number of interactions for
FISICO and Brushing were 68±37 and 327±165 interactions, respectively (Fig 7a). These results
demonstrate that the proposed correction approach yields a six-fold speed-up with respect to
the Brushing Tool. The main reason of this result is attributed to the complete 3D deformation
performed with one interaction on the contour, which automatically covers sections close to
the slice where the user is correcting. This reduces the slice-wise correction on the image.

To measure how similar the results are between users we compute the differences of correc-
tion time and number of interactions, Fig 8. As a result, there are only 4±2 minutes of differ-
ence between the correction time of users A and B using FISICO, which is lower in comparison
with 16±12 minutes of the Brushing Tool. A similar pattern was found with the number of
interactions: only 42±32 difference in the number of interactions between users A and B was
found with FISICO, which is also lower in comparison with 159±118 difference in the number
of interactions produced with the Brushing Tool. In addition, a Wilcoxon’s signed-rank test,

Fig 6. Correction results. The green line represents the segmentation result of ASM-based segmentation algorithm. The red contour represents the
result after correction using FISICO.

doi:10.1371/journal.pone.0156035.g006

Fig 7. Comparison between correction methods.Number of interactions (a) performed, and correction time (b) used by each user to correct the
fourteen cases with Brush and FISICO.

doi:10.1371/journal.pone.0156035.g007
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with α = 1% and p = 0.04187 shows that there is not sufficient evidence to support a significant
difference on the accuracy between users. These results give us a clear indication that users
with different degree of expertise could reach similar accuracy with a similar correction time
(p = 0.8753) and number of interactions (p = 0.02954).

Knee joint results
Our result shows that the correction time used on a joint segmentation was 5±2 minutes (see
Fig 9b) and the number of interactions was 49±20 (see Fig 9a). Furthermore, the final Dice
coefficient between users shows no significant differences (Tibia p = 0.02954 and Femur
p = 0.1934), Fig 10.

In addition, Fig 9 shows that there are no significant differences between users among anat-
omies (femur p = 0.3077, tibia p = 0.2324 and muscle p = 0.1353) regarding to the correction
time. However, the same conclusion can not be derived from the number of interactions from
Tibia (p = 0.008) and Femur (p = 0.004), and only for muscle correction no significant differ-
ences between users were found (p = 0.03). This is, however, mostly due to the smoothness of
the muscle shape, as compared to the knee anatomy where the user expertise plays a more
important role on the correction process. Additionally, the range of correction values is the
largest on the muscle anatomy. This increase was expected because the muscle correction was
performed on the fat image of DIXON sequence, and the edges between muscle are not well
defined on this image. The fat image of DIXON sequence enhances the presence of fat and pro-
duced a low contrast of edges between muscles, which increases the difficulties to locate them.
These difficulties are reflected in a lower Dice coefficient between anatomies, as well as in an
increase in the number of interactions, and in the correction time (see Fig 9).

Comparison against GeoS tool
Our first analysis was focused on correction time and number of interactions against the brush-
ing techniques that are widely used in clinics. However, correction tools specialised on image
segmentation for the clinical environment have not received much attention in research, and
choosing a tool for comparison, which could be used in the clinic and satisfies the designed cri-
teria of computation speed and lower number of interaction is difficult. Nevertheless, apart
from the speed requirement, GeoS tool [14] fulfils almost all requirements that a correction
tool has to have to be used in clinics. Also, the computation speed and the hardware

Fig 8. Differences between users by correctionmethod. The boxplots show the differences between users on muscle correction.

doi:10.1371/journal.pone.0156035.g008
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Fig 9. Comparison of the correction time and number of interactions between anatomies.Number of interactions (a), and the correction time (b) of
each user among anatomies.

doi:10.1371/journal.pone.0156035.g009

Fig 10. Initial and final Dice coefficients per user of femur and tibia datasets.

doi:10.1371/journal.pone.0156035.g010
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requirements coincide with testing FISICO’s requirements, which makes it a good candidate
for comparison.

GeoS correction protocol The same initial segmentation and images were used to measure
the performance of GeoS. After the user has uploaded the images, the correction process has
two steps. First, using the initial segmentation as guide, the user has to define the background
and foreground of the region of interest using mouse buttons (see Fig 11). Second, once the
brushes are defined, the user runs the segmentation correction. This process continues until
the user is satisfied with the result.

Comparison Both tools were compared in terms of correction speed and segmentation
accuracy. As an additional metric to measure the segmentation accuracy we included the Haus-
dorff distance. However, the number of interactions was not measured because GeoS does not
measure it internally. Also, the time used to compute the evaluation metrics was not included
in the final correction time.

Fig 12 shows the correction times and the Dice coefficient results of the correction of ten tib-
ias and femurs, and fourteen psoas muscles. As observed from Fig 12a, FISICO is three times
faster than GeoS with similar accuracy. The compared segmentation accuracy is confirmed by
the measured Dice coefficients. In addition, the main difference between algorithm stems from
the slide-wise search that the user has to perform to define the brushes, which in the case of
FISICO is reduced.

Fig 13 shows the results of the Hausdorff distance per case. For all bone cases (i.e. tibia and
femur), FISICO yields a lower Hausdorff distance than GeoS. However, in four cases (out of
fourteen) of muscle correction task GeoS had a better performance than FISICO. The main rea-
son of the differences between bone correction and muscle correction comes from the accuracy
of the method on local corrections. The muscle connected to the vertebra as Psoas contains
complex areas in regions close to the vertebra, and it is in these areas where FISICO fails due to

Fig 11. GeoS: Geodesic Image Segmentation tool. Red: background brush, Dark blue: foreground brush,
Blue: initial segmentation.

doi:10.1371/journal.pone.0156035.g011
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the fixed number control points used. To increase the accuracy in these areas FISICO needs to
increase the number of control points. In the case of bone, such complex areas are not present
and the number of control points used was sufficient.

Evaluation of the grid density
An increase in the number of control points increases the computation time of the deformation
model, affecting the real-time response of the tool as shown in Fig 14. Nevertheless, in our
experiments 216 control points (equally distributed) allowed us to keep real-time response,
which produced computation times of 0.02, 0.04 and 0.1 seconds for surfaces with a total num-
ber of vertices of 2562, 8194 and 22266, respectively. However, with an increase on the number
of control points beyond 3000 points (on normal mode) and without any other acceleration
scheme (e.g. multi CPU parallelization), the method cannot be used with real-time response,
Fig 14. However, based on the ability of parallelization of the FFD algorithm and the current
hardware of personal computers, which provides them with at least two CPUs, we could
increase the number of control points by at least 20 times as compared to a single CPU imple-
mentation (Fig 14). Furthermore, with the current implementation and running machine spec-
ifications, increasing the number of control points of the grid to 3000, the computation time is
of 0.7 seconds (Fig 14), which still is considered as real-time response.

Fig 12. Comparison of the correction time and Dice coefficient of GeoS and FISICO.

doi:10.1371/journal.pone.0156035.g012

FISICO

PLOSONE | DOI:10.1371/journal.pone.0156035 May 25, 2016 12 / 17



User Evaluation
We used the work of John Brook [32] to evaluate our correction tool. This survey contains 10
questions that are focused on evaluating usability of a system. From the survey (Fig 15) we
could infer: 1) All users agreed that the system is well implemented and it is simple (questions
2, 5 and 6). 2) Regarding the usability of the system there was a general agreement between the
users that the system is easy to use (questions 3, 8 and 9). 3) Regarding the information needed
before using the system, there was a general agreement between users that no prior knowledge
is needed. They did not needed additional information before start using the system. Finally,
all the user agreed that they would like to use the system, Fig 15 question (1).

Fig 14. Computation time of full deformation using FISICO. Relationship between the number of control points vs. the computation time at different
surfaces resolution.

doi:10.1371/journal.pone.0156035.g014

Fig 13. Hausdorff distance of the individuals cases for Tibia, Femur and Psoasmuscle.

doi:10.1371/journal.pone.0156035.g013
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Method Limitations and Future Work
Amajor limitation of the proposed method is based on the complexity of the segmented shape,
which affects the performance of the FFD component. On shapes with complex areas the cor-
rection process of a specific region could produce undesirable results in other regions that are
correctly segmented. In these cases the deformation has to be local. To achieve precise local
deformations on complex shapes, one approach is increasing the number of control points, but
as proved in the results section this has an undesirable direct effect over the real-time response
of the algorithm. To overcome this limitation, FISICO implements a local correction mode
(Fig 3b), where the grid is located and re-sized (keeping the number of control points) to the
region of interest, increasing the deformation capabilities of the algorithm. However, this mode
needs a manual input from the user, which, if not properly set, could also yield a direct increase
in the number of interactions and correction time. Future work will focus on improving the
deformation capabilities of FFD component through adaptive local deformation schemes, tak-
ing in consideration the works of Peters et al. [33, 34] on boundary detection, and the works of
Jackowski et al. [35], Egger at [36] and Steger et at. [37] on error correction and interactive sur-
face adaptation. Furthermore, to improve the deformation capabilities of FFD, our future work
will also focus on an scheme for automatic distribution of the control points in areas where the
user is working, or in areas where the complexity of the shape is high. Techniques such as the
ones proposed by Top et al. [38] and Prassni et al. [39] on automatic error location, will help us
to define the best strategy to tackle this issue. Additionally, as mentioned before, the user has to
locate the error through visual inspection of each slice in the image volume, which is accounted
in the correction time. Therefore, these techniques will help the users to reduce the inspection
time. Furthermore, to reduce the correction time we will investigate machine learning tech-
niques to predict error location.

The presented technology can be further extended to consider the scenario of multi-organ
segmentation, for instance by incorporating statistical shape models of shape variability, as pre-
sented at the workshop IMIC 2015 [40]. However, more research is needed in order to increase
the robustness of these statistically-based shape priors, needed for clinical use.

Fig 15. Feedback result from six users. A survey was performed to evaluate the correction tool from the point of view of the users.

doi:10.1371/journal.pone.0156035.g015
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Conclusion
The variety of MR image protocols and the quality of these images have shown to produce
errors in the result of segmentation algorithms. Therefore, correction of the segmentations is
critical for clinical analysis, where the correction time and the quality of the results plays a key
role.

In this paper we present a new method for medical image segmentation correction. Our
approach combines the direct manipulation of free form deformation algorithm within a 2D
environment used in clinics, which enables 3D shape deformations through 2D interactions.
This approach produces an intuitive and time-effective correction method, providing a intui-
tive user-interface for correction of 3D medical image segmentations.

Experimental results show that only an average time of 6±4 minutes with an average of 68
±37 interactions are needed to correct a muscle segmentation with a Dice coefficient of 0.91
±0.01, which in comparison with the current approach used in clinics yields a six-fold correc-
tion time speed-up. Similarly, results on a different anatomy such as knee joints, showed an
average of 5.15±2 minutes with an average of 49±20 interactions, suggesting the potential of
FISICO to be used in the clinical environment. Finally, in comparison with an existent segmen-
tation correction tool (GeoS), our correction method presents a faster correction solution.

Supporting Information
S1 Video. Speed Comparison. The video shows a complete correction of the Femur. The
input segmentation is an extreme case, where the initial Dice coefficient was 0.6. For the brush-
ing procedure we used the GeoS tool, which has a manual correction tool. The correction times
were 2 hours for Brush (GeoS-based) correction, and 16 minutes for FISICO.
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