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Paleoceanography

Evolution of the stable carbon isotope composition
of atmospheric CO2 over the last glacial cycle
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Abstract We present new 𝛿
13C measurements of atmospheric CO2 covering the last glacial/interglacial

cycle, complementing previous records covering Terminations I and II. Most prominent in the new record
is a significant depletion in 𝛿

13C(atm) of 0.5‰ occurring during marine isotope stage (MIS) 4, followed by an
enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record
is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as
changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due
to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling
of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling
studies, we propose constraints on some of these processes during specific time intervals. The decrease in
𝛿

13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This
period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling
during Heinrich event 6, indicating that it is likely that a large amount of 𝛿13C-depleted carbon was
transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at
the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water
in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically
light carbon was released into the atmosphere.

1. Introduction

Polar ice cores provide a valuable archive of past atmospheric concentrations of climatically important green-
house gases including CO2. Ice core research over the past several decades has shown that atmospheric CO2

concentrations, [CO2], have varied naturally between approximately 180 and 280 ppm over the past 800 kyr
and correlate well with the air temperature over Antarctica [Jouzel et al., 2007; Lüthi et al., 2008]; during glacial
periods, [CO2] was at the lower end of this range, and warmer periods witnessed higher [CO2]. Such a large
variation in the atmospheric concentration of this gas indicates that massive shifts of carbon storage between
the main reservoirs—atmosphere, terrestrial biosphere, oceans, and sediments—must have occurred on
glacial/interglacial timescales.

Atmospheric [CO2] has been found to vary naturally on millennial timescales as well; it has been hypothe-
sized that such variations are controlled largely by processes occurring in the Southern Ocean (SO) [Sigman
and Boyle, 2000; Ahn and Brook, 2008; Bereiter et al., 2012], including carbon uptake and export by the marine
biological soft-tissue pump, reduced subsurface vertical mixing, and increased surface stratification in the
SO during glacial times, as well as release through upwelling events documented in the marine sediment
record [Anderson et al., 2009; 2014, Jaccard et al., 2013; Gottschalk et al., 2015]. Antarctic ice core and SO marine
records are, however, also largely influenced by the Northern Hemisphere through teleconnections including
the bipolar seesaw [e.g., Stocker, 1998; Broecker, 1998; Stocker and Johnsen, 2003]: this describes the phe-
nomenon of a reduction of the Atlantic meridional overturning circulation (AMOC) leading to rapid cooling in
the Northern Hemisphere but slow warming in the SO. In particular, cold conditions during stadials between
Dansgaard-Oeschger (DO) events during the last glacial period correspond to periods of warming in Antarc-
tica [EPICA Community Members, 2006]; the longest of these periods are also recorded in the CO2 record as a
rise in [CO2] [Bereiter et al., 2012; Ahn et al., 2014]. Heinrich events, defined as periods of significant amounts
of ice-rafted debris in North Atlantic sediment cores [e.g., Hemming, 2004], have also been linked to signif-
icant cooling in the Northern Hemisphere, weakening of the AMOC, and significant southward shifts in the
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intertropical convergence zone, thus with important implications for [CO2] [e.g., Marcott et al., 2011; Barker
et al., 2015].

Each of the processes by which carbon is transferred from one reservoir to another causes fractionation of the
stable carbon isotope to some degree. Thus, measurements of 𝛿13C(atm) can be very useful in understanding
both longer- and shorter-term changes in the global carbon cycle. Thus motivated, previous studies recon-
structing 𝛿

13C(atm) [e.g., Lourantou et al., 2010a, 2010b; Schmitt et al., 2012; Schneider et al., 2013] have made
use of this fact to constrain the most important processes involved in the increase of [CO2] documented at
glacial terminations. These studies, complemented by modeling studies [e.g., Köhler et al., 2010; Menviel et al.,
2012], have indicated that the most important processes governing [CO2] at these transitions are (i) increased
upwelling in the SO, (ii) warming of the sea surface, (iii) decreased biological export from the surface ocean to
depths most likely due to waning of aeolian iron fertilization in the SO, (iv) increase of the formation of North
Atlantic Deep Water (NADW), (v) growth of the terrestrial biosphere, and, (vi) on longer timescales, carbon-
ate compensation. These processes partly compensate each other; while warming of the sea surface leads to
an increase in both [CO2] (reduced solubility) and 𝛿

13C(atm) (reduced fractionation at the air-sea interface),
sea level rise and melting of sea ice have the opposite effects. Similarly, increased upwelling of 13C-depleted
and CO2-rich water in the SO, decreased efficiency of the marine biological soft-tissue pump tied to Fe limita-
tion, as well as increased formation of NADW lead to an increase in [CO2] but a decrease in 𝛿

13C(atm) [Köhler
et al., 2010]. In contrast, growth of the terrestrial biosphere (e.g., uptake of isotopically light CO2) reduces
[CO2] and increases 𝛿13C(atm). Moreover, the net change in 𝛿

13C(atm) due to changes in the efficiency of the
SO soft-tissue pump may be caused by several processes, which per se cannot be discerned from 𝛿

13C(atm)
alone, such as changes in iron fertilization, vertical nutrient supply to the SO surface waters by upwelling, or
an enhanced stratification of the SO surface ocean. Thus, while it is impossible to disentangle the magnitudes
of the impacts of each of these processes on [CO2] based solely on the stable carbon isotope data, coupled
with other proxy records, this provides an important constraint on the system. It has been suggested that
the same processes could be used to explain the evolution of [CO2] and 𝛿

13C(atm) during Terminations I and
II, though the relative magnitudes and timing of the various processes must have differed [Schneider et al.,
2013]. Overall, the results indicate that the SO plays a major role in determining both [CO2] and 𝛿

13C(atm), as
previously hypothesized [e.g., Sigman and Boyle, 2000; François et al., 1997].

Due to the lack of a complete 𝛿
13C(atm) record connecting the various data sets, unanswered questions

remained. Most importantly, the penultimate glacial maximum (PGM) was found to be 0.4‰ isotopically
lighter in 𝛿

13C(atm) than the Last Glacial Maximum (LGM), and the penultimate warm period (marine isotope
stage (MIS) 5e) was also more negative in 𝛿

13C(atm) by a similar amount. This is a surprisingly large differ-
ence, on the order of the changes in 𝛿

13C(atm) observed during glacial terminations. Furthermore, it has been
hypothesized that a pool of “old” and isotopically light carbon was present at the LGM in the deep oceans,
likely connected to an expansion of less well-ventilated Antarctic Bottom Water (AABW) [Skinner et al., 2010].
The release of carbon from this pool into the atmospheric reservoir due to increased upwelling in the SO led
to a drop in 𝛿

13C(atm) at Termination I [Anderson et al., 2009; Schmitt et al., 2012]. This begs the question as to
when over the course of the glacial the transfer of isotopically light carbon from the atmosphere to the deep
ocean occurred.

Here we present the first record of 𝛿13C(atm) over the entire last glacial period (Figure 1). Combined with the
records published by Elsig et al. [2009], Schmitt et al. [2012], and Schneider et al. [2013], this constitutes the first
complete data set over the last 155 kyr, thus elucidating some of the remaining questions regarding changes
in the global carbon cycle, both on glacial/interglacial as well as millennial timescales. Our data indicate that
the process of carbon transfer to the deep ocean had occurred at or before the MIS 5-4 transition, as proposed
by Hain et al. [2010] and further discussed by Bereiter et al. [2012], Adkins [2013], and Jaccard et al. [2016].

2. Methods and Data Quality

Due to its relatively high quality of ice over the period of interest, the Talos Dome deep ice core (72∘49’S,
159∘11’E, length of core: 1620 m, dated to a maximum age of 150 kyr B.P.) was selected as the primary core
for this study. To verify the robustness of the results, samples from the deep ice cores European Project for
Ice Coring in Antarctica (EPICA) Dome C (EDC; 75∘06’S, 123∘24’E, length of core: 3270.2 m, dated to a max-
imum age of 800 kyr B.P.) and EPICA Dronning Maud Land (EDML; 75∘00’S, 00∘04’E, length of core: 2774 m,
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Figure 1. (a) New 𝛿
13C(atm) record from 155 kyr B.P. to the present. Outliers, as determined by a bootstrapping method,

are shown as open symbols (circles: this study; squares, 25–0 kyr B.P.: Schmitt et al. [2012]; squares, 156–104 kyr B.P.:
Schneider et al. [2013]; diamonds: Schneider [2011]). An MCA cubic spline is shown with 1𝜎 and 2𝜎 error bars. In the
period 47–43 kyr B.P., there is disagreement between results from EPICA Dronning Maud Land (EDML) and Talos Dome
ice; accordingly, no spline is plotted. (b) 𝛿13C(ben) represents deep ocean (2500–5000 m) averages from benthic
foraminfera in the Atlantic and Pacific basins, where the value for each species is given relative to its value at the LGM
(21 kyr B.P.) (Oliver et al. [2010], age scale as published). (c) The [CO2] record is a compilation from four Antarctic ice
cores, showing the natural variability in [CO2] over the last glacial cycle using new and published data [Monnin et al.,
2001; 2004; Lourantou et al., 2010a, 2010b; Schmitt et al., 2012; Schneider et al., 2013; Siegenthaler et al., 2005; Bereiter
et al., 2012; Lüthi et al., 2010; Ahn et al., 2014]. (d) 𝛿D(H2O) from EPICA Dome C (EDC) is a proxy for Antarctic temperature,
with Antarctic Isotope Maxima indicating warm periods in the Southern Hemisphere [Jouzel et al., 2007]. (e) 𝛿18O(H2O)
from North Greenland Ice Core Project (NGRIP) correlates with Greenland temperature, showing 21 abrupt warming
(DO) events since the last interglacial period [NGRIP Community Members, 2004]. (f ) 𝜖Nd [Böhm et al., 2014; Roberts et al.,
2010] and (g) 231Pa/230Th [Böhm et al., 2014; Lippold et al., 2009; McManus et al., 2004] from the Bermuda Rise on the
timescale as published by Böhm et al. [2014]. (h) The EDC dust flux record shows that the three most prominent peaks
in Fe fertilization occurred during MIS 6, 4, and 2 [Lambert et al., 2012]. Note that in all figures, all ice core records
from EDC, EDML, Talos Dome, and NGRIP have been plotted on the modified AICC2012 age scale [Bazin et al., 2013;
Veres et al., 2013, see text].

dated to a maximum age of 140 kyr B.P.) were also measured at specific time intervals to check for inter-
core agreement. The Antarctic Ice Core Chronology 2012 (AICC2012) was used for dating the three cores
[Bazin et al., 2013; Veres et al., 2013]. However, as shown by Baumgartner et al. [2014], the methane records
for the cores used in AICC2012 do not match to the required degree over the entire age scale. Thus, for the
period 48.5–40 kyr B.P., where all three cores were more intensively measured, slight adjustments to the EDC
and EDML AICC2012 timescales were made by matching the CH4 records from EDC and EDML to the Talos
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Figure 2. Comparison of data from multiple ice cores and multiple laboratories for the time interval 65–34 kyr B.P. (a) An
analytical difference is seen in 𝛿

13C(atm) in Talos Dome and EDML between 47 and 43 kyr B.P.; the mean value from each
ice core over this period is plotted as a horizontal line. (b) The same ice cores show a small offset in [CO2] in the interval
62–42 kyr B.P. (circles: this study; triangles: Bereiter et al. [2012]). (c) Measured 𝛿

15N2 shows relatively little variability over
this period, demonstrating that the firn column in neither ice core changed significantly. (d) Atmospheric 𝛿

18O2 data
from this study agree well with those from (Severinghaus et al. [2009], age scale as published). All records have been
corrected for gravitational fractionation and those from Siple Dome additionally for gas loss. (e) 𝛿O2/N2 from EDML,
EDC, and Talos Dome indicative of gas loss. (f ) The CH4 records from EDC, EDML, Talos Dome, and Siple Dome match
relatively well over this interval, demonstrating the good agreement of the age scales (gray triangles denote tie points
for adjusting the EDC, EDML, and Talos Dome age scales), although slight discrepancies may be traced to the fact that
the Siple Dome age scale was created by matching the methane record to that of Greenland Ice Sheet Project 2 (GISP2).

Dome record. Five troughs in the record were selected as tiepoints and the offsets to the existing AICC2012
chronologies were then linearly interpolated between the tiepoints. These adjustments lead to differences
with the AICC2012 chronologies of no more than 370 years. The good agreement of the methane records in
the EDML and Talos Dome ice cores after this adjustment is shown in Figure 2.

For all samples, gas was extracted from the ice using the sublimation device described by Schmitt et al. [2011]
with one minor but vital adaptation: recollection of the bulk air to measure 𝛿

15N2 in order to remove the grav-
itational component from the firn and thus derive 𝛿

13C(atm) from the measured 𝛿
13C in the ice core sample.

After collecting CO2 and N2O on a stainless steel trap immersed in liquid nitrogen, the bulk air was collected
on a removable molecular sieve 5A trap at liquid nitrogen temperature. The bulk gases were released by
heating the molecular sieve and analyzed for stable isotope and molecular ratios of the major atmospheric
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components (𝛿15N2, 𝛿18O2, 𝛿40Ar/36Ar, 𝛿O2/N2, and 𝛿Ar/N2) using a Thermo Scientific Delta V Plus isotope
ratio mass spectrometer (IRMS) in dual-inlet mode. When running sublimation system standards (reference
air passed over gas-free ice during the sublimation step, subsequently freezing out CO2 and N2O as in the
samples), the resulting 𝛿

15N values show a consistent offset from zero of 0.014 to 0.026‰ (range given for
the four individual sample fingers) with a standard deviation of 0.008‰ (maximum for all sample fingers).
This small offset was thus subtracted from the samples for each of the molecular sieve sample fingers. The
result for 𝛿15N was then used directly as the correction for 𝛿13C to account for gravitational fractionation
in the firn column. This correction is on the order of −0.4‰ and is thus much larger than the offset of the
standard air. Based on the pooled standard deviation of replicate samples, the precision of the 𝛿

15N measure-
ment was 0.007‰. In the few cases where 𝛿

15N could not be measured at a certain depth, the interpolated
value between neighboring samples was used. As the variations in 𝛿

15N due to gravitational enrichment
are only about one-tenth of that of 𝛿13C, the additional error introduced by this approximation is negligible
compared to the experimental errors of the 𝛿

13C measurements, which are between 0.05 and 0.1‰.

2.1. Data Quality: Outliers
Two types of outliers have been identified and removed from the data set presented here. If a problem arose
during the extraction or IRMS measurement, the resulting values for 𝛿13C(atm) and [CO2] were eliminated from
the data set. Such issues included leaks in the system detected by unusually high pressure readings, as well
as sample contamination, most often caused by ice core drilling fluid. This was encountered primarily in the
brittle ice zone of each ice core where the core quality suffers, and cracks allow the drilling fluid to penetrate
into the ice sample. For EDML, Talos Dome, and EDC, the brittle ice zone roughly covers the time periods 23–7,
34–11, and 81–24 kyr B.P., respectively [Neff , 2014, and references therein]. For all three cores, the densifier in
the drilling fluid was Freon141b, which produces a fragment in the mass spectrometer source at m/z = 45, thus
an isobar of 13CO2 and CO17O. Despite gas separation by means of a gas chromatograph, contamination by
drilling fluid produced several peaks in the chromatograph separated in time, and samples were thus clearly
identifiable in the resulting chromatogram. As a result, however, the sample peaks following a contaminated
sample were also eliminated from the final results due to interference in the signal. We cannot exclude the
possibility that samples contaminated by very little drilling fluid may fall under these detection limits; this
could be a source of the scatter in the 𝛿

13C(atm) data within the brittle ice zones of the respective cores.

The second type of outlier was statistical in nature. To identify such outliers, a Monte Carlo bootstrapping
method was employed. For each point, a Monte Carlo cubic spline Average (MCA) was constructed using only
all other points in the data set; this method is described in more detail by Schmitt et al. [2012]. If the point lay
outside of the sum of twice the standard deviation of the spline and twice the standard deviation of the point
itself, it was identified as a statistical outlier. Outliers of this type are depicted in Figure 1 as open circles. Of
the 229 individual new samples measured in this study at 155 different depths, 60 fell into the first category of
outliers; of the remaining 133 different depths sampled, 16 data points were identified as statistical outliers.
We thus contribute new 𝛿

13C(atm) values at 117 new time steps to the preexisting database from Elsig et al.
[2009], Schmitt et al. [2012], and Schneider et al. [2013].

2.2. Offsets Between Records
Published and unpublished [CO2] data from Talos Dome and EDML over the period 127–43 kyr B.P. measured
at the University of Bern using the cracker extraction system (Talos Dome 68–43 kyr B.P., EDML 113–43 kyr B.P.
[Bereiter et al., 2012]; Talos Dome 127–70 kyr B.P., EDML 127–99 kyr B.P. this study) allow us to compare the
two ice cores as well as the two methods in the period of overlap with the present study (see Figure 2). Over
the most recent part of this period (62–43 kyr B.P.), Talos Dome shows [CO2] on average 4.7 ppm higher than
those measured at EDML [Bereiter et al., 2012]. For older ages, the difference in the two cores is negligible as
reported by Bereiter et al. [2012]. The stable carbon isotope data show an offset between the cores in the time
interval 47–43 kyr B.P. (discussed below), but between 62 and 47 kyr B.P., there is no detectable difference.

For the Talos Dome ice core during the period 62–47 kyr B.P., in situ production of CO2 from organic precur-
sor material is unlikely to explain the 4.7 ppm offset, because we would expect 0.2–0.4‰ lower 𝛿13C values
(assuming a source signature of approximately−20‰), which is clearly not the case. In the case that the in situ
production were from terrestrial carbonate, we would expect 0.15‰ heavier values (source signature around
0‰). Due to the low resolution of the EDML data in this interval, we cannot rule out this possibility; however,
based on the available data, this theory does not appear to be in line with our measurements.
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Figure 3. Box plot depicting the agreement and offsets observed in 𝛿
13C(atm) and [CO2] in this study and Bereiter et al.

[2012] from Talos Dome and EDML; indicated are means (stars), medians (horizontal bars), and outliers outside of 150%
of the interquartile range (plus signs). For each sublimation system measurement, the cracker system measurement
nearest in time but not more than 1 kyr away was taken for comparison; similarly for EDML and Talos Dome
measurements. (a) [CO2] data from EDML agree well between the two methods; similarly for data from Talos Dome. (b)
Offsets between the cores are seen both in the concentration as well as the isotope data; however, these offsets appear
to be unrelated, as the [CO2] data disagree between 67 and 46 kyr B.P., while the isotope data only show an offset later
(46–34 kyr B.P.).

To explain offsets between different [CO2] ice core records measured with mechanical extraction devices
with less than 100% extraction efficiency, Bereiter et al. [2012] hypothesized a CO2 fractionation of clathrates
relative to air bubbles in the Bubble-Clathrate Transition Zone (BCTZ). This could lead to different [CO2] in
clathrates of different sizes, together with a slow reequilibration of [CO2] below the BCTZ by diffusion through
the ice between individual clathrates, which may not be complete in EDML in the age range of 62–42 kyr B.P.
If the mechanical dry extraction method results in preferential extraction of gas from larger clathrates and
bubbles, this reasoning could explain the [CO2] offset measured by Bereiter et al. [2009, 2012]. However, this
would also imply that the sublimation method used in this study, with 100% extraction efficiency indepen-
dent of the physical structure of the ice, should not show a concentration offset, contrary to what is observed.
A nearest-neighbor test demonstrates no significant offset between the Talos Dome data measured in this
study compared to those presented by Bereiter et al. [2009, 2012]; the same holds true for the correspond-
ing EDML data. Accordingly, the offset between the two cores as discussed by Bereiter and colleagues is also
documented in the new data presented here using the sublimation method (see Figure 3).

Postcoring gas loss may be an alternative explanation. This has been shown to affect O2 and potentially N2

but not CO2, due to the lower permeation constants of N2 and CO2 in ice compared to that of O2 [Bereiter
et al., 2009; Ikeda-Fukazawa et al., 2005] and, in the BCTZ, because of the larger molecular diameter of CO2

[Craig et al., 1988]. Lower 𝛿O2/N2 values in EDML compared to Talos Dome indicate a significant loss of O2

relative to N2 in EDML (Figure 2). In the case that only O2 is lost, this would lead to an increase in [CO2] in EDML
relative to Talos Dome of about 0.4 ppm, contrary to what is observed. In the case that both O2 and N2 are lost
in EDML after coring, a much stronger change could be expected; again, however, this would lead to higher
CO2 mixing ratios measured at EDML if the gas loss occurred in EDML ice. Alternatively, a higher O2 and N2

gas loss in Talos Dome could explain the offset, as this would lead to higher CO2 mixing ratios in Talos Dome
ice; however, to account for the observed [CO2] offset, at least a loss of 2.7% of total air content would be
required in Talos Dome, which is not observed (O. Eicher, unpublished data, 2016). Finally, contamination of
the enclosed ancient air with recent air after coring can be excluded because of the good agreement of 𝛿13C
during the period in question. For the moment we cannot explain the 4 ppm [CO2] offset in the time interval
62–47 kyr B.P.; however, we acknowledge that the number and precision of the new sublimation data may
not yet be sufficient to resolve the puzzle.
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In contrast to 62–47 kyr B.P., the period 47–43 kyr B.P. (marked in gray in Figure 2) shows a significant differ-
ence of 0.17‰ in 𝛿

13C measured on the Talos Dome and EDML ice cores, with the 𝛿
13C values of EDML being

higher than Talos Dome. This was verified statistically by using a modified Student t test of the detrended data
over this interval, which indicates that the 𝛿

13C(atm) offset between Talos Dome and EDML is statistically sig-
nificant within the 95% confidence level (p < 0.05). In the time interval 43–38 kyr B.P., four of the EDML data
points agree well with the Talos Dome data while one is elevated by 0.2‰. Based on this limited number of
samples, it is not possible to determine whether the EDML and Talos Dome data are different in this interval as
well; however, in the time interval 47–43 kyr B.P., the difference is significant. In the following we concentrate
on the latter.

The data in the time interval 47–43 kyr B.P. of both cores were measured during the same measurement
campaign in the same laboratory, by the same user and with the same system; it is thus unlikely that the
observed difference is due to a methodological or standardization problem. Synchronization problems have
also been eliminated as a source of error by comparing the CH4 records measured on these two ice cores
(Figure 2). The sublimation technique used in this study results in 100% gas extraction regardless of the relative
amounts of gas enclosed in bubbles and clathrates, so changes in the physical composition of the ice due to,
e.g., differing storage times and relaxation of the ice should not be observed in these measurements. Thus, it
appears likely that the offset in Talos Dome and EDML in this time interval is due to a real difference in 𝛿

13C
values of the gas in the ice itself, though this cannot reflect local differences in 𝛿

13C(atm), as over the distance
between EDML and Talos Dome, no spatial gradients in [CO2] or in 𝛿

13C(atm) are to be expected.

From our 𝛿15N2 measurements (see Figure 2), it is also clear that no drastic change occurred in the depth of
the firn column at this point in time associated with possible changes in site temperature or accumulation
rate, precluding firn column fractionation effects as a possible explanation for the differences in [CO2] and
𝛿

13C reported here. The 𝛿
15N signals both in EDML and Talos Dome are rather constant during this period in

comparison to the observed 𝛿
13C offset.

Note that Talos Dome [CO2] is about 6 ppm higher than EDML during the CO2 peak at 46 kyr. Applying a simple
mass balance calculation for this point in time (Cobs = Catm+Csource; 𝛿obs ⋅Cobs = 𝛿atm ⋅Catm+𝛿source ⋅Csource), we
can estimate the isotopic signature of the extra CO2 in the Talos Dome ice core that could lead to the observed
values. With a difference in [CO2] of 6 ppm and 𝛿

13C approximately −6.5‰ and −6.8‰ at the peak maximum
in EDML and Talos Dome, respectively, this approach would indicate a source signature of −17.5‰, hinting at
the possibility of potential in situ production of CO2 from organic material in the Talos Dome ice core at these
depths. This is similar to what [Schneider, 2011] found when comparing EDML and EDC (128–125 kyr B.P.),
where the mean source signature of in situ produced CO2 in the EDML core was−17.4‰. However, chemically
and climatologically, the ice in the time interval 47–43 kyr B.P. is not expected to differ from that in the time
interval 62–47 kyr B.P. [Schüpbach et al., 2013], where no 𝛿

13C offset is observed.

Thus, although there is indication in our extended data set that certain time intervals show differences in
𝛿

13C(atm) between cores, these are only sometimes accompanied by differences in [CO2] and thus cannot be
explained solely by in situ production of CO2. Note as well that there is no evidence for EDML representing
more accurate values compared to Talos Dome, but there are very few known processes that can occur within
the ice that lead to lower [CO2] [e.g., Tschumi and Stauffer, 2000]; hence, it appears more likely that there is a
small amount of CO2 production in Talos Dome in this interval rather than CO2 consumption in EDML.

As mentioned above, several samples in the brittle ice zone were found to be contaminated with drilling
fluid, thus precluding accurate measurement of 𝛿13C(atm) on these samples. Furthermore, it is possible that
samples containing very little drilling fluid would not be detected by the method outlined above, resulting in
an anomalously high value for 𝛿13C with a nondetectable impact on [CO2]; this would thus be an explanation
of the observed isotopic offset if the EDML samples showed evidence of contamination. However, we find this
scenario highly unlikely for two reasons. First, this type of contamination has been observed to cause scatter
in the data; in samples identified with contamination, the 𝛿

13C(atm) offset is not constant due to differing
amounts of drilling fluid in the samples. Second, the samples in question are from 200–400 m below the
brittle zone in EDML. Unless the core were of particularly poor quality in this region (1400–1500 m), we have
no reason to believe that drilling fluid has penetrated into the ice.

Another mechanism that could account for a difference in both the concentration and isotopic signals of CO2

is a variation in the bubble enclosure characteristics at this point in time. If the age distribution were much
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broader in EDML due to exceptionally low accumulation rates, the amplitudes of both 𝛿
13C and [CO2] would

be dampened, similar to what is seen in this period. However, although it is predicted that the accumula-
tion rate at EDML was reduced with respect to Talos Dome during this period, this reduction is assumed to
be at most 25% (0.033 versus 0.045 m water equivalent yr−1 at EDML and Talos Dome, respectively) [Veres
et al., 2013]. Moreover, such an anomalous dampening would be expected in other gas records as well, but
as shown in Figure 2, dampening of the [CH4] signal is not observed [Schilt et al., 2010; Buiron et al., 2011;
Stenni et al., 2011].

In summary, there is good agreement among the 𝛿
13C(atm) measurements performed in this study from the

three cores except for the time interval 47–43 kyr B.P. We have no straightforward explanation for this discrep-
ancy and cannot determine which of the two records, Talos Dome or EDML, provides the true atmospheric
𝛿

13C signal in this time interval. We accordingly refrain from interpreting the carbon isotopic change in detail
during this short interval.

3. Results

Our new record shows a gradual enrichment of 𝛿13C(atm) throughout MIS 5 from the PGM value of −6.8‰
until 68 kyr B.P., at which point it has reached the LGM value of −6.4‰ (Figure 1). Most noteworthy, the
𝛿

13C(atm) signal shows no significant change simultaneous with the drop in [CO2] at the MIS 5-4 transi-
tion (circa 70 kyr B.P.); this signal is also not synchronous with net global changes in 𝛿

13C(CaCO3) in benthic
foraminifera, 𝛿13C(ben). A significant drop in 𝛿

13C(atm) of approximately 0.5‰, which is on the order of the
changes at Termination I (though over a somewhat longer time interval), begins only at around 64 kyr B.P.
A subsequent equally strong rise beginning at the MIS 4-3 transition is observed. Once the LGM level has
been reached again around 48 kyr B.P. (Heinrich event 5), the scatter in the data in combination with the low
resolution renders a detailed millennial-scale analysis difficult. However, there appear to be small declines
in 𝛿

13C(atm) on the order of 0.1–0.2‰ following Heinrich events 5, 4, and 2. Each of these local minima is
followed by a gradual enrichment of about the same order of magnitude. Note that we cannot rule out the
possibility of a similar pattern occurring in the data following Heinrich event 3; the data resolution in this time
interval precludes any definitive statement regarding this trend.

4. Discussion

To facilitate the discussion of these results, the record between 155 kyr B.P. and present has been divided into
five intervals, A–E, as shown in Figure 1; interval C has been further subdivided into seven subintervals. As
mentioned above, intervals A and E (Terminations II and I) have previously been published and discussed by
Schneider et al. [2013] and Schmitt et al. [2012]. Accordingly, the focus of this paper is on the time interval of
the progressing glaciation from about 120 kyr B.P. to 20 kyr B.P., which connects the previously existing time
series and allows for the analysis of the evolution of the global carbon cycle from MIS 5 to MIS 2 (intervals
B–D). Throughout the following discussion, we refer to Figure 4 as an indication of the signal expected from
various processes in CO2-𝛿13C(atm) space [Köhler et al., 2010].

4.1. Carbon Cycle Changes During MIS 5
As mentioned above, the last interglacial (around 120 kyr B.P., also known as MIS 5e) was characterized
by about 0.4‰ lower 𝛿13C(atm) values than the Holocene, an offset also seen when comparing the PGM
and LGM. Interval B (105–71.4 kyr B.P., or MIS 5d-a) directly following MIS 5e is characterized by an overall
increase in 𝛿

13C(atm) of 0.2–0.3‰, with 𝛿
13C(atm) reaching the MIS 3 and LGM levels for the first time early in

MIS 4. Accordingly, Interval B can be regarded as the time period where the enigmatic 𝛿13C(atm) shift between
the PGM and LGM and MIS 5e and the Holocene occurs. The largest increase in 𝛿

13C(atm) within this interval
occurs between 100 and 90 kyr B.P.; however, the resolution of our record does not allow us to pinpoint the
time of the 𝛿

13C(atm) increase exactly. Interval B is also characterized by only a subtle linear trend in [CO2]
over its entire duration, which, however, is superimposed by significant fluctuations in [CO2] on the order
of 20 ppm synchronous to the Antarctic Isotope Maxima (AIM) seen in Antarctic ice core temperature proxy
records [Bereiter et al., 2012; Ahn and Brook, 2008; EPICA Community Members, 2006].

Several processes could be potentially connected to the carbon cycle changes during this interval: increase
in marine biological export in the SO from the surface to depths; weakening of the AMOC over this period,
corresponding to enhanced storage of 𝛿13C-depleted carbon in the deep ocean [Köhler et al., 2010]; increase
in land carbon stocks, e.g., in Asian peatlands or permafrost at higher latitudes, overcompensating the loss
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Figure 4. Effects of various processes on [CO2] and 𝛿
13C(atm); the changes of the forcing parameters with respect to

modeled LGM values are indicated. For example, SST (+4K) represents an increase in average global sea surface
temperature of 4 K from the LGM to preindustrial era with a response of +0.5‰ and +30 ppm in 𝛿

13C(atm) and [CO2],
respectively, as indicated by the respective black dots [Köhler et al., 2010]. The sea ice coverage was reduced by 35% and
25% in the Northern and Southern Hemispheres, respectively. NADW and SO upwelling strength increased by 60% and
200%, respectively. Note that we are approximating the response of 𝛿13C(atm) and [CO2] to each of these processes as
linear.

of vegetation due to ice sheet expansion; and increase in sea ice in the Northern or Southern Hemisphere,
leading to a reduction of uptake of isotopically heavy CO2 by the ocean [Köhler et al., 2010].

Figure 4 shows results of a modeling study [Köhler et al., 2010] of the impacts of each of these processes on
[CO2] and 𝛿

13C(atm). This plot illustrates that the first three mechanisms listed here are expected to lead to
an increase in 𝛿

13C(atm) and a simultaneous decrease in [CO2], the reasons for which are discussed in more
detail by Köhler et al. [2010].

In the case of scenarios 1 and 2, 𝛿13C(ben) should show an overall decrease in this period as 13C-depleted
carbon is transferred from the surface to the deep ocean. However, the global benthic foraminiferal record
does not show a decrease [Raymo et al., 2004; Oliver et al., 2010] but rather long-term variations superimposed
on a rather constant 𝛿13C(ben) level over MIS 5e-a. In fact, individual records from the North and South Atlantic
[Martínez-Méndez et al., 2009; Charles et al., 2010] show—if any change—a slight increase in 𝛿

13C(ben) over
the entire MIS 5, similar to 𝛿

13C(atm). The latter would point to a net exchange of a carbon from a reservoir
outside of the atmosphere/ocean system being responsible for the observed carbon cycle changes, such as a
net terrestrial carbon build up (process 3), probably related to peat buildup in this time of overall progressing
glaciation. As illustrated in Figure 4, such a buildup in terrestrial biosphere also has the strongest impact on
𝛿

13C in the atmosphere and ocean, while the sensitivity of [CO2] changes to this effect is the weakest per
permille change in 𝛿

13C(atm). Accordingly, an increase in 𝛿
13C(atm) in this interval of 0.2–0.3‰ only implies

a decrease in [CO2] of 10 ppm which is still within the possible long-term variation seen in [CO2] during this
interval.

Previous studies have suggested that the reduction of sea ice during Termination I would lead to a decrease
in [CO2] and 𝛿

13C(atm) [e.g., Köhler et al., 2010], contrary to earlier studies where a large sea ice coverage is
believed to be responsible for low atmospheric CO2 concentrations [e.g., Stephens and Keeling, 2000]. Hence,
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an expected growth of sea ice during Interval B could have also led to an increase in [CO2] partly compensating
a net transfer of carbon to the terrestrial biosphere while leading to a further increase in 𝛿

13C(atm). Changes
in sea surface temperature must have also played a role in driving carbon system changes during the early
inception into the glacial. Based on the model results of Köhler et al. [2010], the cooling of the sea surface of
1–2 K in the high latitudes [Schneider Mor et al., 2012; Lawrence et al., 2009; Köhler and Fischer, 2006] could
have led to a decrease in [CO2] and 𝛿

13C(atm) of up to 20 ppm and 0.2‰, respectively; however, this process
would have again led to opposing effects in 𝛿

13C in the atmosphere and the ocean.

In summary, based on the new data presented in this study, we are not able to quantitatively constrain the
effects of all of these processes on [CO2] and 𝛿

13C(atm) without the use of our new data in dedicated modeling
efforts. However, the concurrent change in 𝛿

13C(atm) and 𝛿
13C(ben) in the Atlantic suggests that a net growth

of the terrestrial biosphere carbon storage (presumably by peat buildup) could have played a role.

4.2. Transient Changes at the Onset and End of MIS 4
Interval C (71.4–49.4 kyr B.P., see Figure 5) is characterized by the most pronounced variations in 𝛿

13C(atm)
during the last glacial and can be divided into seven subintervals defined by points at which the trend in
[CO2] changes. This division allows us to speculate which processes were most likely the major drivers of [CO2]
change during each of these periods; however, an unequivocal quantification of the size of the contribution
of individual processes to the overall [CO2] and 𝛿

13C(atm) changes has to await future modeling studies.

I: For preindustrial conditions, the SO represents a “leak” of CO2 to the atmosphere due to the upwelling
of carbon- and nutrient-rich water from depths combined with a relatively inefficient marine biological
soft-tissue pump defined by excess nutrients remaining in the surface ocean. This is in large part due to iron
limitation. It has therefore been suggested [Martin, 1990] and confirmed by experiments [e.g., Boyd et al.,
2007] and models [e.g., Hain et al., 2010] that significant increases in aeolian iron flux to the SO could cause
a drawdown of CO2 from the atmosphere into the ocean, thus reducing the oceanic CO2 leakage, leading
to a reduction in [CO2] by up to 40 ppm. At the MIS 5-4 transition in Interval I, such an increase in Fe flux
and corresponding decrease in [CO2] has been documented, suggesting that this mechanism could play an
important role at that time [e.g., Martin, 1990; Martínez-Garcia et al., 2014; Hain et al., 2010; Jaccard et al., 2016].
However, our new data show that this cannot be the only mechanism at play, as the mean level of 𝛿13C(atm)
does not change during Interval I. This time period is also marked by a decrease in temperature in Antarctica,
represented here by the stable water isotopes 𝛿18O (EDML) and 𝛿D (EDC), which we also regard as represen-
tative of the phasing of temperature changes in the SO region. Fractionation of 𝛿13C(atm) across the air-water
interface is temperature-dependent and decreases by approximately 0.1‰ per degree Celsius increase [Mook
et al., 1974; Zhang et al., 1995; Lynch-Stieglitz et al., 1995]. However, the sea surface temperatures (SST) of the
SO and North Atlantic must be more heavily weighted with respect to carbon exchange with the ocean, as
the surface waters in these regions are transported to depths through deepwater formation, thus efficiently
transferring carbon and its associated isotopic signature to the ocean interior. Moreover, the isotopic frac-
tionation is dependent on the degree of (isotopic) equilibrium reached during air/sea gas exchange before
surface water is exported to the deep ocean. This equilibration is itself dependent on [CO2] [Galbraith et al.,
2015] and may deviate somewhat from the value given above. However, in our interpretation we rely on the
model-derived 𝛿

13C(atm)/SST sensitivity derived by Köhler et al. [2010], which is very close to the value given
above and should include such disequilibrium effects.

At the MIS 5-4 transition, the global average SST decreased by approximately 1∘C [Shakun et al., 2015], with
a slightly more pronounced drop of about 2∘C in the SO [Crosta et al., 2004; Schneider Mor et al., 2005;
Martínez-Garcia et al., 2009; Ho et al., 2012]. Accordingly, this would have led to a decrease in 𝛿

13C(atm) of
0.1–0.2‰, though the corresponding increase in sea ice in the high latitudes may have slightly compen-
sated the decrease in both [CO2] and 𝛿

13C(atm). Thus, 0.2‰ is an upper limit of the effect of SST on 𝛿
13C(atm)

during this interval. As the 𝛿
13C(atm) signal shows only a negligible change (at most an increase of approx-

imately 0.05‰, which is within our experimental error), the influence of Fe fertilization could have caused
at most a rise in 𝛿

13C of 0.25‰ if it quantitatively counterbalanced the SST effect leading to the 𝛿
13C(atm)

signal observed during Interval I. Proxies for NADW production, including 𝜖Nd and 231Pa/230Th from marine
cores in the North Atlantic, allow for a possible reduction in NADW during this period, although this change
would have been small [Böhm et al., 2014]. A decrease in NADW production is expected to have led to a small
decrease in [CO2] and increase in 𝛿

13C; both of these changes are in the same direction as the effect of iron
fertilization on atmospheric carbon. Thus, our estimate of Fe fertilization effects can be regarded as an upper
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Figure 5. (a) 𝛿13C(atm) record in the time interval 80–48 kyr B.P. with other atmospheric and marine parameters. At the
MIS 4-3 transition shown here, the new data show a pronounced drop followed by an equally large rise with an
amplitude (approximately 0.5‰) similar to that observed at Termination I. (b) 𝛿13C(ben) values represent deep ocean
(2500–5000 m) averages for the Atlantic and Pacific basins [Oliver et al., 2010]. (c) [CO2] (for sources see Figure 1)
decreases and then increases rapidly at the onset and termination of MIS 4, respectively, and is thus not in phase with
the significant decrease and subsequent increase in 𝛿

13C(atm). (d) Dust flux at EDC [Lambert et al., 2012]. (e) SO opal flux
from core TN057-14PC (Jaccard et al. [2016] and Anderson et al. [2009], age scale as published). (f ) [CH4] at EDC (gray:
Loulergue et al. [2008]) and WAIS (black: Rhodes et al. [2015] and Buizert et al. [2015]) show high-frequency fluctuations
primarily due to wetland response. (g) EDML 𝛿

18O(H2O) [EPICA Community Members, 2006] and (h) EDC 𝛿D(H2O) [Jouzel
et al., 2007] are proxies for Antarctic temperature influenced by the bipolar seesaw process, which is controlled by rapid
changes in the North Atlantic as documented in (i) NorthGRIP 𝛿

18O(H2O) [NGRIP Community Members, 2004]. (j) The
stacked global average SST record compiled by (Shakun et al. [2015], age scale as published) is presented with respect to
the LGM. Note that although the ice core data are synchronized using the AICC2012 timescale, some uncertainty is
associated with the relative age scales of the ice cores and marine sediment cores.

bound on the possible effects of marine soft-tissue pump effects. The amplitude of these changes are roughly
in line with corresponding estimates for the decline in [CO2] of 10–20 ppm (SST) and≈20 ppm (Fe fertilization)
modeled by Köhler et al. [2010] for similar changes in proxy records at Termination I and are also in agreement
with observations during selected AIM events during MIS 3 [Schüpbach et al., 2013; Röthlisberger et al., 2004].

II: In this interval, both the 𝛿
13C and [CO2] records show relatively small changes, suggesting that the global

carbon system had reached a temporary equilibrium. It is important to note that the proposed increase in the
soft-tissue pump efficiency in the surface SO during Interval I would have led to an increase in respired car-
bon at depths and thus an increase in deep ocean alkalinity. Over the course of the following millennia [e.g.,
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Marchitto et al., 2005], carbonate compensation would have played an important role in redistributing the
excess alkalinity, ultimately leading to further small and delayed changes in [CO2] [Sigman and Boyle, 2000;
Hain et al., 2010]. This mechanism has only a very small impact on 𝛿

13C(atm) [Köhler et al., 2010; Galbraith
et al., 2015]. Please note that throughout the text we refer only to the direct immediate effect of synchronous
environmental changes when discussing changes in the soft-tissue pump, while the delayed long-term
readjustment of alkalinity connected to such a change is hard to discern in our data.

We regard it as likely that throughout Interval II, the input of aeolian dust to the SO surface ocean exceeded a
threshold for Fe limitation of the marine biological soft-tissue pump in the SO. This hypothesis is corroborated
by Fe and alkenone flux data from two neighboring marine sediment cores, TN057-6 and ODP 1090, in the
eastern South Atlantic: these records show a simultaneous peak at the beginning of this interval and a subse-
quent decline from 68–61 kyr B.P. [Sachs and Anderson, 2003; Martínez-Garcia et al., 2014]. Additionally, water
isotopes from Antarctic ice cores indicate that temperatures in the SO region were fairly constant, indicating
that no significant change in solubility or fractionation at the air-sea interface is expected to have influenced
[CO2] or 𝛿13C(atm) during this interval.

North Atlantic marine sediment core 𝜖Nd and 231Pa/230Th data indicate that this interval saw a weakening of
the AMOC which lasted over the entire duration of MIS 4. This is evidenced by the relatively high values of
𝜖Nd at site ODP 1063 in the northwestern Atlantic on the Bermuda Rise (representative of the local presence
of AABW) coupled to low 231Pa/230Th (indicating a combination of AABW and NADW in the water column
above the core) [Böhm et al., 2014]. Although the AMOC was certainly not in an “off” state at this time, as was
the case during Heinrich events 2 and 1 [Böhm et al., 2014], it is likely that the circulation pattern was in a
“cold” state, in which deep water was formed in the North Atlantic but was not dense enough to sink to the
bottom of the ocean basin and was underlain by AABW over larger parts of the Atlantic. The cooling that had
occurred during Interval I in the Southern Hemisphere led to an expansion of sea ice around Antarctica; sea
salt derived Na+ flux data from ice cores suggest that the maximal extent of sea ice during the glacial may have
been reached during the onset of MIS 4, persisting until the glacial termination [Wolff et al., 2006; Fischer et al.,
2007], with substantial impacts on the carbon turnover in the deep ocean as well. Thus, the circulation pattern
in the Atlantic may have more closely resembled two disconnected branches of deep water rather than the
modern pattern, in which there is partial mixing of NADW and AABW [Ferrari et al., 2014]. This would in turn
have inhibited the release of isotopically light carbon from the deep SO that had already been sequestered
during Interval I. These lines of evidence and the observation of constantly low [CO2] and constant 𝛿13C(atm)
in Interval II together imply that most of the net carbon transfer to the deep ocean was already completed
during Interval I.

III: This period witnessed a major decrease in Fe flux and therefore probably also a reduction of the marine
biological soft-tissue pump efficiency in the SO. As the Fe flux signal is roughly symmetrical at the beginning
and end of MIS 4, we surmise that if Fe fertilization caused a 0.25‰ increase in 𝛿

13C(atm) and approximately
20 ppm drop in [CO2], at the beginning of MIS 4, the change due to the reduction in Fe flux at the end of MIS
4 would have caused changes of approximately the same magnitude but in the opposite direction. Thus, the
effect of reduction of Fe flux to the SO largely occurred during Interval III, where the observed changes in
both 𝛿

13C(atm) and [CO2] are in line with the respective estimates of changes in these parameters. Moreover,
other proxy records show no significant changes during this interval (e.g., 𝜖Nd, 𝛿13C(ben), [CH4], and opal flux).
The rise in SST in the SO paired with cold conditions in the North Atlantic would have had opposite effects
on changes in 𝛿

13C(atm) and [CO2], conceivably with a very small net global effect. This is also supported by
small changes in SST and deep ocean temperature during and after MIS 4 as derived from marine sediment
records [Shakun et al., 2015].

IV: As evidenced by a peak in opal flux in the SO, the residual drop in 𝛿
13C and rise in [CO2] were likely due

to an increase in SO upwelling that occurred after the major decline in Fe fertilization, releasing carbon from
the deep ocean where it had been stored in the less well-ventilated ocean during MIS 4. This upwelling event
appears to have occurred synchronously within the error limits with Heinrich event 6 in the North Atlantic. It is
likely, however, that mixing did not fully increase to interglacial levels and that a southern sourced deep water
mass with high concentrations of relatively 𝛿

13C-depleted carbon remained present, as 𝛿13C(ben) begins to
increase in this interval both in the deep Atlantic and Pacific but does not reach the interglacial level until
after the glacial termination [Oliver et al., 2010]. This reconfiguration of the deep water masses is in line with
𝜖Nd data from the northwestern Atlantic [Böhm et al., 2014] as well as the hypothesis for delayed [CO2] peaks
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during AIM events in MIS 3 put forth by Bereiter et al. [2012]. An exchange of carbon from the ocean to the
atmosphere is also supported considering the 𝛿

13C(ben) increase during this interval, which is opposite to
the decreasing trend in 𝛿

13C(atm). This is similar to the upwelling event that occurred during Heinrich event 1
during the last glacial termination, which has independently been supported by oversaturation of dissolved
CO2 relative to the atmosphere both in the eastern equatorial Pacific and SO surface waters as expected from
a net outgassing from the ocean rather than release from land [Martínez-Botí et al., 2015].

The occurrence of Heinrich event 6 did not only have an influence on ocean circulation, but the effects of such
events are recorded in chemical signals worldwide, including the Cariaco Basin [Peterson et al., 2000], Hulu
Cave in China [Wang, 2001], Arabian Sea [Schulz et al., 1998], Santa Barbara Basin [Behl and Kennett, 1996], and
the western Pacific Warm Pool [Shiau et al., 2011], due to the global impact of the AMOC and related changes
in the position of the intertropical convergence zone. Although some model results indicate that a weakening
of the AMOC may have resulted in an increase in carbon storage in terrestrial vegetation [e.g., Schmittner and
Galbraith, 2008; Bouttes et al., 2012], others indicate that a decrease in these stocks is possible [e.g., Menviel
et al., 2008; Bozbiyik et al., 2011].

V: The warming of the Northern Hemisphere that marked the beginning of MIS 3—as seen in the stable water
isotope record from Greenland and associated with DO events 17 and 16—was likely associated with a slow
regrowth of the terrestrial biosphere starting in this interval. This is evidenced by the stagnation in 𝛿

13C(atm)
and a small overall increase in deep sea 𝛿

13C(ben) [Oliver et al., 2010] along with a decrease in [CO2]. The
observed signals in atmospheric [CO2] and 𝛿

13C could also be explained by the decrease in SO upwelling dur-
ing this interval, as evidenced by the drop in opal flux. Note that while SO upwelling enhances the transport
of water containing relatively high concentrations of isotopically light carbon to the surface ocean, thus lead-
ing to an increase in [CO2] and a decrease in 𝛿

13C(atm) through air-sea gas exchange, this effect could be
partly compensated by an increase in marine export production in the surface ocean due to an increase in the
upwelling of nutrients; however, models show that the former effect dominates in magnitude [e.g., Watson
and Naveira Garabato, 2006; Hain et al., 2010].

The DO interstadials may have also been associated with a strengthening of the AMOC, but this would likely
have led to an increase in [CO2] and a decrease in 𝛿

13C(atm) [Köhler et al., 2010], not supported by our data.
Also of note in this interval is a slight decrease in the SO SST (approximately 0.4∘C) [Köhler and Fischer, 2006],
which may have contributed to the reduction in [CO2], simultaneously, however, causing a slight decrease in
𝛿

13C(atm), providing a possible explanation for the stagnation in the signal of the latter. The effects of this
cooling would have been partly compensated by a potential expanse of sea ice in the high southern latitudes,
limiting gas exchange in the regions of deepwater formation.

VI: This interval is defined by a rise in both [CO2] and 𝛿
13C(atm). The lack of a similar upwelling signal in the SO

(indicated by increasing [CO2] and decreasing 𝛿
13C(atm)) compared to Interval IV despite the occurrence of

Heinrich event 5a at that time [Rashid et al., 2003] suggests that the upwelling and release of old respired car-
bon into the atmosphere at this point was overcompensated by other processes. The increase in temperature
in the Southern Hemisphere in this interval could help to explain the measurements, as an increase in SO SST
would have led to an increase in both [CO2] and 𝛿

13C(atm) due to the decreased solubility and fractionation
of CO2 at higher temperatures. Interval VI may have also been associated with continued regrowth of vege-
tation on land, as suggested by a co-occurring shift in 𝛿

13C(ben) and 𝛿
13C(atm), while drawing down [CO2]

from the atmosphere. The cold temperatures recorded in Greenland as well as relatively enriched 𝜖Nd values
in the northwestern Atlantic [Böhm et al., 2014] indicate a weakened state of the AMOC, which is predicted
to have had a similar effect on both parameters. The magnitudes of these processes must have been limited,
however, as SST and deep ocean temperature changed little during MIS 3 [Shakun et al., 2015], and the warm-
ing in the SO was not extraordinarily pronounced (≈0.3∘C increase in SO SST predicted by Köhler and Fischer
[2006], which would only produce a change in 𝛿

13C(atm) within the uncertainty of the measurement).

VII: The last interval of this period, approximately concurrent with DO 14, is defined by the final stage of the
clear increase in 𝛿

13C(atm) coupled with a steep decline in [CO2] but very little change in 𝛿
13C(ben). Similar

to what has been observed in the second half of Termination I [Schmitt et al., 2012], a continued growth of
the terrestrial biosphere could be expected, which would readily explain the 𝛿

13C(atm) and [CO2] changes in
this interval. The lack of a clear 𝛿13C(ben) signal in the same direction in the global compilation by Oliver et al.
[2010], which would be expected from terrestrial biosphere storage changes, questions this interpretation;
however, individual 𝛿13C(ben) records [e.g., Charles et al., 2010] show a much clearer increase in 𝛿

13C(ben) at
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that time. Köhler and Fischer [2006] also predict a small drop in SO SST, which would further have reduced
[CO2] while leading to a depletion in 𝛿

13C(atm), contrary to what is observed.

4.3. [CO2] and 𝜹
13C(atm) Variability During MIS 3

Due in part to technical difficulties presented by samples in Interval D (49.4–18.7 kyr B.P.) (see “Data quality:
Outliers” above), the data quality renders the discussion of millennial-scale variations in 𝛿

13C(atm) over this
interval more difficult. However, certain features are still visible in the record. Overall 𝛿13C(atm) is on a rela-
tively stable level throughout MIS 3 which is close to value at the LGM; however, several longer-term negative
fluctuations in 𝛿

13C(atm) appear to be supported by our data. Most importantly the data suggest two negative
anomalies in 𝛿

13C(atm) which appear to be synchronous to the pronounced local [CO2] maxima in parallel to
AIM 8 and 12, coupled as well with the dust flux to the SO (Figure 1). The latter is at a minimum at those times
[e.g., Martínez-Garcia et al., 2014], suggesting a re-emerging iron limitation of the marine soft-tissue pump
for those intervals. In contrast, during the second half of MIS 3 the dust flux always exceeds the threshold for
iron limitation and consequently the increased soft-tissue pump leads to rather high 𝛿

13C(atm) and low [CO2]
while at the same time 𝛿

13C(ben) is at its lower limit. Note, however, that a concurrent increased stratifica-
tion of the SO surface waters would also lead to an increase in the soft-tissue pump efficiency and cannot be
discerned based on our records.

While the concurrent changes in dust flux provide a straightforward mechanistic understanding for a
decreased soft-tissue pump during AIM 8 and 12, the ultimate reason for the climate changes in the SO and in
their wake of carbon cycle changes comes about by the bipolar seesaw coupling with the North Atlantic. As
shown in previous publications the AIM events are coupled to the DO events recorded in the Greenland record
[EPICA Community Members, 2006; Blunier and Brook, 2001] via changes in the AMOC. Thereby the strongest
increases in Antarctic temperature and [CO2] are not only observed during Heinrich events 4, 5, 5a, and 6 but
also during Heinrich event 1 at the onset of the termination. Note that while Heinrich event 2 may also have
left a small imprint in our 𝛿13C(atm) record, an unambiguous signal of the weaker Heinrich event 3 cannot be
discerned. However, the low resolution in the 𝛿

13C(atm) record at that time precludes a final conclusion.

Only recently, Gottschalk et al. [2015] showed that each MIS 3 stadial leaves a geochemical fingerprint in the
Atlantic Ocean, although direct overturning proxies show only a clear signal for Heinrich events [Böhm et al.,
2014]. Changes in the AMOC are also connected to increased upwelling of nutrient-enriched and 13C-depleted
waters in the SO [Anderson et al., 2009; Sachs and Anderson, 2005] most likely traceable to changes in the
buoyancy flux due to accumulation of heat as a result of the bipolar seesaw [Watson and Naveira Garabato,
2006] or potentially also to a southward shift in the Southern Hemisphere westerlies [Toggweiler et al., 2006].
In combination with increased iron limitation in the SO, this upwelling leads to outgassing of CO2 from the
SO surface ocean and, thus, the pronounced local [CO2] maxima and 𝛿

13C(atm) minima during those times.
Future highly resolved records of 𝛿13C(atm) during MIS 3, for example, from the West Antarctic Ice Sheet (WAIS)
Divide ice core [WAIS Divide Project Members, 2015] will be able to further elucidate these millennial-scale
events, thus adding significantly to our understanding of the role of ocean circulation and the global carbon
cycle during MIS 3.

4.4. Comparison of the MIS 4-3 Transition and Termination I
Several climatic proxies show similarities in the records during MIS 4 and MIS 2, such as summer insolation
in the Northern Hemisphere, the pronounced peaks in aeolian iron flux [EPICA Community Members, 2004;
Martínez-Garcia et al., 2009; Lambert et al., 2012] and the extent of glaciers in New Zealand [Schaefer et al.,
2015]. Atmospheric [CO2] was reduced to≈200 ppm during MIS 4, similar to that at the PGM and only approx-
imately 10 ppm higher than [CO2] during the LGM. The transition into MIS 3 is similar in the [CO2] slope to the
initial rise in [CO2] at Termination I (see Figures 5 and 6). However, at the MIS 4-3 transition, this increase was
limited to approximately 30 ppm and [CO2] started to decrease again at around 59 kyr B.P.; the trend of rising
temperatures in the Southern Hemisphere also reversed at this point, thus circumventing a transition to full
interglacial conditions at this point. Perhaps unsurprisingly, the signal in our new 𝛿

13C(atm) data is also very
similar at these two transitions; indeed, MIS 4-3 and Termination I mark the periods of the largest excursion in
𝛿

13C(atm) in the entire record of 0.4–0.5‰.

It is not yet clear what caused the end of the warming that began at MIS 4-3, which could be regarded as a
“terminated termination,” though theories have been proposed. Wolff et al. [2009] suggested that the timing
of warming in the Northern Hemisphere (i.e., DO events) is the most important factor. Through the bipolar
seesaw, the onset of a DO event leads to cooling in the Southern Hemisphere, thus preventing a complete
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Figure 6. As in Figure 5 but for the late glacial maximum, Termination I, and the early Holocene. The amplitude of the
𝛿

13C(atm) signal is similar to that at the MIS 4-3 transition, as is the slope in the initial [CO2] rise. DO 1, seen as the
abrupt increase in 𝛿

18O in NGRIP, caused intermittent cooling in the Southern Hemisphere similar to event 17 at
63 kyr B.P. (Figure 5). However, DO 1 occurred only after [CO2] had already risen by 60 ppm during Termination I, while
the [CO2] increase was only 30 ppm when DO 17 occurred.

glacial termination. Schaefer et al. [2015] proposed that the size of the Northern Hemisphere ice sheets is the
determining factor for the initiation of a DO event, as these only reached 80% of their LGM volume in MIS 4
and were reduced to 50% of their maximum volume after the transition to MIS 3. The maximum size of the
Northern Hemisphere ice sheets at the LGM may have suppressed the initiation of DO events [Zhang et al.,
2014] for an extended period and, thus, a bipolar seesaw response in the Southern Hemisphere in the first
half of Termination I. The smaller ice sheet size during the MIS 4-3 transition, however, may have been below
the threshold hypothesized by Parrenin and Paillard [2003] and others, thus allowing for occurrence of early
DO events, which led to an uptake of CO2 in the SO through the bipolar seesaw mechanism and halted the
planetary warming, ultimately leading to a failed glacial/interglacial transition at that time [Wolff et al., 2009].

While we cannot prove or disprove either of these theories with our new data alone, we can confirm that the
lack of a glacial termination at 60 kyr B.P. was most likely not the result of significant differences between these
periods in either the carbon stocks in the major reservoirs or the processes responsible for the major transfers
of carbon among these reservoirs. As discussed above, the same mechanisms can be used to explain the
signal observed in the 𝛿

13C(atm) record at the MIS 4-3 transition as at Termination I, where the latter has been
discussed in more detail by Schmitt et al. [2012]. To some extent, we can also confirm that the magnitudes of
the changes in [CO2] due to these processes were similar, for example, in the case of aeolian iron flux.
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5. Conclusions

We have presented the first complete record of 𝛿13C(atm) over the last glacial/interglacial cycle. Small offsets
exist between data from Talos Dome and EDML in 𝛿

13C(atm) 47–43 kyr B.P. and in [CO2] 62–42 kyr B.P., which
are difficult to explain by in situ production of CO2 originating from organic or inorganic material in Talos
Dome. The brittle zone in the ice core presents special technical difficulties due to the higher probability of
sample contamination with drilling fluid; thus, measurements from a separate ice core from a region with a
higher accumulation rate, such as the WAIS Divide ice core, could be instrumental in resolving these offsets as
well as in filling the low-resolution “gap” in the current data set (35–22 kyr B.P.). The difference in accumulation
rate would place the troublesome BCTZ at an earlier age in this record, and the period in question would be
comprised solely of clathrate ice, which is less problematic with respect to drilling fluid intrusions.

Despite these technical issues, a large signal in 𝛿
13C(atm) has been resolved in the interval 65–49 kyr B.P. The

amplitude of this initial drop and the subsequent equally steep rise (approximately 0.5‰) is comparable to
that seen at Termination I, indicating that similar processes were involved at the MIS 2-1 and MIS 4-3 tran-
sitions. Similar to Termination I, the large change in 𝛿

13C(atm) is not synchronous with the carbon changes
recorded by 𝛿13C(ben) in the deep ocean. As discussed in previous studies [e.g., Köhler et al., 2010; Schmitt et al.,
2012; Schneider et al., 2013], these processes most likely included a combination of changes in SST, the terres-
trial biosphere, AMOC strength, SO stratification and upwelling, and the efficiency of the marine biological
soft-tissue pump.

Of note is the fact that iron fertilization (10–20 ppm in [CO2]) cannot be the only process to explain our obser-
vations at the MIS 5-4 transition deduced from the timing and amplitude of the 𝛿

13C(atm) signal. While [CO2]
drops significantly at this transition, the stable carbon isotope responds only minimally, indicating that the
increased efficiency of marine export, transferring 13C-depleted carbon from the surface ocean to depths and
consequently raising 𝛿

13C in the surface ocean and atmosphere, must have been approximately balanced by
the effect of decreasing SST, thus constraining the total effect of Fe fertilization on Δ[CO2] and Δ𝛿13C(atm).
By arguing that the impact of Fe fertilization on these two parameters must have been similar in magnitude
but opposite in direction at the MIS 5-4 and MIS 4-3 transitions, we further assert that the [CO2] rise during
the latter was only in part caused by a reduction of marine biological export to depths; it is likely that approx-
imately half the signal should be ascribed to an increase in SO upwelling. This in turn indicates that the ocean
must have been more stratified during MIS 4, allowing for the storage of light inorganic carbon at depths,
some of which was released at the MIS 4-3 transition. Thus, we concur with previous studies [Bereiter et al.,
2012; Adkins, 2013; Jaccard et al., 2016], which have suggested it to be it is likely that a transfer of light carbon
to ocean depths intensified at the MIS 5-4 transition.
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