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Abstract The current understanding of preindustrial stratospheric age of air (AoA), its variability, and
the potential natural forcing imprint on AoA is very limited. Here we assess the influence of natural and
anthropogenic forcings on AoA using ensemble simulations for the period 1600 to 2100 and sensitivity
simulations for different forcings. The results show that from 1900 to 2100, CO2 and ozone-depleting
substances are the dominant drivers of AoA variability. With respect to natural forcings, volcanic eruptions
cause the largest AoA variations on time scales of several years, reducing the age in the middle and upper
stratosphere and increasing the age below. The effect of the solar forcing on AoA is small and dominated
by multidecadal total solar irradiance variations, which correlate negatively with AoA. Additionally, a very
weak positive relationship driven by ultraviolett variations is found, which is dominant for the 11 year cycle
of solar variability.

1. Introduction

The mean Age of Air (AoA) describes the transport time along the Brewer-Dobson circulation (BDC) [Hall and
Plumb, 1994; Waugh and Hall, 2002], and changes in AoA are therefore a proxy for changes in the strength of
the BDC [Austin and Li, 2006]. This meridional circulation in the stratosphere shows rising motion in the tropics
and downward transport in the middle and high latitudes [Holton et al., 1995; Butchart, 2014] and is driven
by atmospheric waves [e.g., Plumb, 2002]. Besides the transport through the residual circulation, AoA is also
a function of eddy mixing [Ploeger et al., 2014, 2015]. Horizontal mixing between the tropics and extratropics,
for instance, can increase the overall age of the stratospheric air by recirculating aged air from the midlati-
tudes into the tropical pipe—a process which is called aging by mixing [Garny et al., 2014]. A stratospheric air
parcel therefore consists of different ages—expressed by an age distribution—where the mean AoA is the
first moment of this distribution. This value cannot be measured directly but is calculated from measurements
of (long-lived) atmospheric gases, like sulfur hexafluoride (SF6) or carbon dioxide (CO2) [e.g., Stiller et al., 2008;
Engel et al., 2009]. Under the assumption that tropospheric trace gas concentrations increase or decrease
continuously, the age of a certain stratospheric air parcel is given by the time lag between concentrations in
this parcel and the troposphere.

In atmospheric general circulation models (GCMs) or chemistry-climate models (CCMs), AoA variations can be
quantified by implementing a passive tracer. Previous modeling studies found a reduction of the AoA and an
intensification of the tropical upward mass flux since the preindustrial era in particular since 1970 [Butchart
et al., 2006; Austin et al., 2007, 2013; Li et al., 2008]. An increase in the tropical upward mass flux is commonly
interpreted as an intensification of the BDC. This change is associated with the tropospheric warming and
stratospheric cooling caused by rising concentrations of greenhouse gases (GHGs) and stratospheric ozone
depletion. The relative contributions of these different forcing factors, however, depend on altitude. In
particular, ozone-depleting substances (ODS) can lead to a local increase in AoA [Oberländer-Hayn et al., 2015].
For the future, model simulations project a further intensification of the BDC and reduction of AoA under
rising GHG concentrations [Butchart and Scaife, 2001; Butchart et al., 2010; Garcia and Randel, 2008; Li et al.,
2008; Bunzel and Schmidt, 2013]. The projected recovery of stratospheric ozone slightly counteracts theses
trends, but future changes of AoA are dominated by the CO2 effect [Shepherd and Jonsson, 2008; Oberländer
et al., 2013].

While the simulated results for the last decades of the twentieth century draw a very consistent picture of AoA
and BDC changes, no agreement is found in observation-based studies. The results of these studies range
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from a slight increase [e.g., Engel et al., 2009] (based on SF6 and CO2 measurements from high-altitude balloon
flights for the period 1975–2005) to a clear reduction of AoA [e.g., Remsberg, 2015] (using CH4 records for the
period 1995–2005). These AoA observations, however, are based on spatially and temporally sparse observa-
tions and are therefore associated with large uncertainties [Waugh, 2009; Garcia et al., 2011]. Engel et al. [2009]
for instance used the data of 27 balloon flights from the midlatitudes of the Northern Hemisphere (NH) for
their trend analysis over a 30 year period. Furthermore, using nonuniformly increasing trace gases for AoA
estimates is suggested to underestimate AoA trends [Garcia et al., 2011]. AoA and BDC changes estimated
from reanalysis data sets agree fairly well with CCM results [Abalos et al., 2015; Fu et al., 2015].

Strong volcanic eruptions inject large amounts of sulfur compounds into the atmosphere, which are trans-
formed to sulfate aerosols in the stratosphere. These aerosols absorb infrared radiation and have a strong
effect on the stratospheric dynamics and therefore on AoA and the BDC. In climate models, an intensifica-
tion of the BDC after volcanic eruptions has been reported in many studies [Pitari, 1993; Pitari and Mancini,
2002; Garcia et al., 2011; Aquila et al., 2013; Toohey et al., 2014]. These results are supported by observations.
Using reanalysis products, Graf et al. [2007] found enhanced wave activity in the northern winter stratosphere
after the eruptions of Agung, El Chichon, and Pinatubo. Furthermore, Schnadt Poberaj et al. [2011] identified
anomalous stratospheric wave activity and a strengthened BDC to be the reason for the relatively high ozone
concentrations in the Southern Hemisphere after Pinatubo. Abalos et al. [2015] confirmed a strengthening
of the circulation when the BDC is derived from the momentum balance equation in all modern reanalyses
(i.e., Modern Era Retrospective-Analysis for Research and Applications (MERRA), ECMWF Interim Reanalysis
(ERA-Interim), and Japanese 55-year Reanalysis (JRA-55)). However, Diallo et al. [2012] estimated an increase
of AoA after Pinatubo using Lagrangian transport models with ERA-Interim reanalysis data.

Variations in the stratospheric circulation are of particular importance for the distribution of ozone in the
stratosphere and the removal of ODS [Butchart and Scaife, 2001]. Furthermore, the distribution of different
GHGs in the stratosphere depends on the stratospheric transport. Improving the current understanding of
how this circulation is influenced by different forcings is crucial to predict the evolution of the stratospheric
ozone concentrations in the future. Additionally, a better knowledge of possible long-term changes in AoA is
of interest for the interpretation of changes in the concentration or isotopic composition of trace gas species
that are predominantly destroyed in the stratosphere. Substantial changes in the stratospheric transport and
thus in the residence time (lifetime) of climatic proxies may bias their interpretation. One example is the study
of N2O and its isotopic composition. N2O is an important GHG and ozone-depleting substance. Natural emis-
sions of N2O are dominated by microbial activity in soils and the ocean, and changes in N2O or its isotopic
composition can be interpreted as changes in the biological activity of these sources, under the assump-
tion of a constant atmospheric lifetime. The most important sink of N2O is the stratospheric UV photolysis,
which affects also the isotopic composition, leading to an enrichment in heavier isotopes in stratospheric
N2O and due to the stratosphere-troposphere return flux also in the troposphere [e.g., Röckmann et al., 2001].
Consequently, changes in the BDC and the stratosphere-troposphere exchange rates influence the sink
strength of N2O and the associated isotope fractionation in the stratosphere and thus atmospheric lifetime
and isotopic composition in the troposphere.

Up to now, AoA or BDC variations in the preindustrial era and the influence of natural forcing (e.g., solar
variations or volcanic eruptions) during this period have received little attention in chemistry-climate
modeling studies. Austin et al. [2013] simulated the period from 1860 onward using a coupled
atmosphere-ocean-chemistry-climate model (AOCCM) and found little variations in AoA before 1975. How-
ever, no study has focused yet on the period before 1860, including grand solar minima such as the Dalton
Minimum (1790–1830). Here we aim at assessing the influence of natural and anthropogenic forcing factors
on AoA for the period 1600–2100. We rely on an ensemble of simulations using a fully coupled AOCCM and
different solar forcing reconstructions and projections. The model and the experiments used in this study are
described in section 2. Section 3 presents the results, in a first step (section 3.1) for the volcanic signals in AoA
and in a second step (section 3.2) for the influence of the remaining forcings, i.e., solar variability, CO2, and
ODS. A discussion and summary of the results is given in section 4.

2. Model and Experimental Design

All experiments used in this study are performed with the AOCCM SOCOL-MPIOM [Muthers et al., 2014].
SOCOL-MPIOM consists of SOCOL version 3 (SOlar Climate Ozone Links [Stenke et al., 2013]) coupled to the
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ocean-sea ice model MPIOM (Max-Plank-Institute Ocean Model [Marsland, 2003]). The physical modules of
SOCOL are based on the middle atmospheric version of MA-ECHAM5 [Roeckner et al., 2003] coupled to the
chemical module MEZON (Model for Evaluation of oZONe trends [Rozanov et al., 1999; Egorova et al., 2003]).
MA-ECHAM5 transfers temperature and tracer fields to MEZON, which calculates chemical transformations of
41 gas species participating in 200 gas phase, 16 heterogeneous, and 35 photolytic reactions. The experiments
are performed with a spectral truncation of T31, corresponding to approximately 3.75∘ × 3.75∘ resolution in
the horizontal dimension. In the vertical, the atmosphere is divided into 39 sigma pressure layers, from the
surface up to the mesosphere at 0.01 hPa (80 km).

With the given vertical resolution SOCOL-MPIOM is not able to simulate the Quasi-Biennial Oscillation (QBO).
Thus, a QBO nudging is applied [Giorgetta et al., 1999] using a historical QBO reconstruction [Brönnimann et al.,
2007]. Note that this approach is unable to simulate any interactions between external forcings and the QBO.

In the model, AoA is implemented as a passive tracer with constant growth, injected at the surface. For each
grid cell, the mean AoA is then a function of the difference between the tracer value in the grid cell and the
value of the stratospheric entry region, which is set to 100 hPa at the equator. Note that AoA estimates in
SOCOL are at the lower end of the range inferred from other models or observations [SPARC, 2010].

We use two scenarios for the period 1600–2000 forced by two different reconstructions of past solar activ-
ity using the spectral solar irradiance (SSI) reconstruction of Shapiro et al. [2011]. The STRONG reconstruction
assumes variations corresponding to a total solar irradiance (TSI) difference of about 6 W m−2 between
the Maunder Minimum and present day. In the MEDIUM reconstruction, the amplitude is reduced by 50%
(Figure 1a). For each scenario two simulations are performed. Besides differences in solar forcing, all other
forcings are the same in the four experiments (details in Muthers et al. [2014]). For the volcanic aerosol forcing,
the reconstruction of Arfeuille et al. [2014] is applied.

For the future period (2000–2100) three different solar forcing scenarios have been considered, again with
two model simulations for each scenario. In these experiments, GHGs follow the Representative Concentration
Pathway (RCP) 4.5 scenario. In two simulations (CONST), no long-term variations of the solar forcing are con-
sidered but these simulations are forced by an artificial 11 year solar cycle. In the remaining four simulations,
a future grand solar minimum is assumed, with TSI reductions of 4.2 and 6.5 W m−2 (MEDIUM and STRONG)
averaged over the last three decades of the 21st century. Within the future period, four volcanic eruptions
are prescribed (a Fuego-like eruption in 2024, a smaller eruption in 2033, an Agung-like volcanic eruption in
2060, and another smaller volcanic event in 2073). The future simulations were branched from the transient
simulations in the year 2000 and are described in detail in Anet et al. [2013a]. Time series of the major forcings
applied in the transient and future simulations are shown in Figure 1a.

Finally, an ensemble of sensitivity simulations is performed for the period 1780–1840 to assess the influence
of different solar spectral intervals on the AoA during the Dalton Minimum. The short-wave radiation scheme
of SOCOL includes six radiation bands, with the first interval (180–250 nm) covering the UV range. In one
sensitivity experiment, the UV ensemble (DM-UV), only the radiation in these wavelengths is allowed to
change in time while the remaining five intervals are kept constant using the values of the year 1780. In
another experiment, the non-UV ensemble (DM-non-UV), the UV band is fixed at the year 1780 and the five
non-UV bands are allowed to change in time. For comparison, a third ensemble of simulations is performed
with all spectral intervals kept constant at conditions of the year 1780 (DM-REF). Each ensemble experiment
consists of three simulations. The STRONG SSI reconstruction is applied in all experiments, and besides the
solar forcing all other forcings (e.g., stratospheric aerosols) represent the conditions of the year 1780. Further
details on the experiments can be found in Anet et al. [2013b]. An overview of the experiments considered in
this study is given in Table S1 in the supporting information.

The aim of this study is to assess the influence of different external forcings on AoA. Therefore, we reduce the
possible influence of internal variability on AoA (e.g., ENSO) by analyzing the ensemble average. The influence
of volcanic aerosols on the stratosphere is limited to a few years up to a decade. On these time scales the
differences between the two solar forcings applied in this study are small. For the analysis of the volcanic
eruptions we therefore calculate the ensemble mean response using all experiments. To assess the influence
of the solar forcing on AoA, the ensemble mean is calculated over all simulations sharing a common solar
forcing (e.g., STRONG). In the following, we focus on long-term variations of AoA only and omit variations on
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Figure 1. (a) External forcings applied in the transient simulations. For ODS (CFC-11 + CFC-12) and CO2 the radiative
forcing is given (calculated following Ramaswamy et al. [2001]) and TSI variations are scaled to the surface of the Earth
assuming a reduction of 78% through absorption and stratospheric adjustment [Gray et al., 2009]. CO2, CFC-11, and TSI
are displayed with respect to the year 1990. (b) Annual mean age of air (top) in the middle stratosphere (16 hPa) of the
Northern Hemisphere high latitudes (60∘N–90∘N) and (bottom) in the tropical lower stratosphere (20∘S to 20∘N, 63 hPa).
Thick black line shows the ensemble mean value of the four simulations. Thin gray lines represent the individual
simulations.

the seasonal scale. Therefore, the annual mean value of AoA is used. Furthermore, to remove any influence of
the spin-up phase of the model on AoA, the first 20 years from the simulations are excluded from the analysis.

3. Results

To assess the temporal changes in AoA, we focus on two specific regions. The tropical upwelling region of the
BDC is represented by the mean AoA in the lower stratosphere (63 hPa) between 20∘S and 20∘N. The down-
welling branch of the BDC in the NH high latitudes is represented by the mean AoA in the middle stratosphere
(16 hPa) northward of 60∘N. Note that the results below are insensitive to the definition of the regions as tests
with the global average over the lower or middle stratosphere show.

Time series for both regions reveal rather stable conditions in the preindustrial period (Figure 1b). Long-term
trends and year-to-year variations are very similar between the two regions. While during the first 100 years

MUTHERS ET AL. AGE OF AIR BETWEEN 1600 AND 2100 4



Geophysical Research Letters 10.1002/2016GL068734

Figure 2. AoA composite for (a) the middle stratosphere of the NH high latitudes and (b) the tropical lower stratosphere
averaged over the 10 strongest volcanic eruptions of the period 1620 to 2100 (see text and supporting information for
details). The average overall eruptions and experiments is shown by the green dots with the bars indicating the
ensemble standard deviation. Thin gray circles represent the individual simulations and eruptions.

of the simulations, until around 1700, a slight AoA increase is found, no pronounced long-term changes are
visible until the beginning of the twentieth century. Nevertheless, year-to-year variations and a clear imprint
of strong volcanic eruptions on AoA are simulated in the preindustrial era.

In the twentieth century, a negative AoA trend develops and continues until the middle of the 21st century
(Figure 1b) with the largest changes occurring during the last three decades of the twentieth century. Several
previous studies have attributed these changes to rising concentrations of GHGs, with increasing tempera-
tures in the troposphere and cooling in the stratosphere, and the stratospheric temperature changes related
to the ozone-depleting effect caused by different ODS [Austin et al., 2007; Li et al., 2008; Oberländer-Hayn et al.,
2015]. Future changes consequently depend on the emission scenario applied. The RCP 4.5, with a stabiliza-
tion of the GHG emission toward the middle of the 21st century and a continuous reduction of ODS, leads
to a slowdown of the global mean surface temperature rise from 2060 onward and an ongoing recovery of
stratospheric ozone [Anet et al., 2013a]. This climatic change is reflected in the stabilization of AoA trends in
the second half of the 21st century.

3.1. Short-Term Variations: Volcanic Signals
In the preindustrial period, strong volcanic eruptions cause the largest changes in AoA on a time scale of
several years. A superposed epoch analysis over the 10 strongest volcanic eruptions of the period 1620 to
2100 in the four simulations is performed to detect the characteristics of the AoA response (detailed method
description in the supporting information). With the start of the eruption, positive AoA anomalies are found
in the lower stratosphere and reduced values in the middle and upper stratosphere without any pronounced
differences between the hemispheres (Figure S1a). The strongest negative anomalies during the first year
of the eruption occur in the tropics. In the second year, AoA anomalies are almost equally distributed along
the latitudes, while the recovery to background conditions starts in the third year in the tropical latitudes
(Figures S1b and S1c). The analysis for the two AoA regions defined above reveals a consistent response for
almost all eruptions with reduced ages in the tropical lower stratosphere and increased ages in the middle
stratosphere of the NH high latitudes (Figure 2). The reduction in the NH high latitudes is significant, and the
anomaly reaches its largest reduction of −8.4% in the second year. This AoA reduction is related to enhanced
wave activity after the eruption (Figure S2). Especially the stratosphere of the northern midlatitudes to high
latitudes shows an increase in vertical wave propagation connected with a convergence of the Eliasen-Palm
flux and enhanced wave drag. This wave drag strengthens the poleward transport of air with rising motion
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Figure 3. Regression coefficients of a multiple linear regression analysis between the radiative forcings of CO2, ODS,
TSI and AoA. (a) Stepwise regression between the AoA in the middle stratosphere of the NH high latitudes and the
tropical lower stratosphere against different combinations of external radiative forcings. (b–d) Multiple linear
regression coefficients over the period 1620–2100 for CO2 (Figure 3b), ODS (Figure 3c), and TSI (Figure 3d). To allow for
a comparison, we calculated the radiative forcing for each forcing factor (following Ramaswamy et al. [2001] for CO2
and CFC-11. The TSI was scaled to the surface of the Earth assuming a reduction of 78% through absorption and
stratospheric adjustment [Gray et al., 2009]). (e) TSI coefficient for the two future simulations with 11year cycle solar
variability only (CONST). Stippling indicates significant regression coefficients (thick stippling: p≤0.05, smaller stippling
p≤0.1). Gray contours denote the climatological annual mean AoA during the preindustrial period.
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in the tropics and downward motion in the high latitudes [Andrews et al., 1987]. In the tropical lower strato-
sphere, AoA increases, but the anomalies are larger and the spread among the eruptions and simulations is
larger (Figure 2). The largest response of AoA (+16.9%) is found in the first year after the eruption. Furthermore,
the positive anomaly lasts only for about 2 years after the eruption. The opposing response in AoA between
the lower and the middle stratosphere is found in the tropical upward mass flux as well. At 100 hPa, nega-
tive anomalies of −7% are found in the first and second years after the eruption, while at 25 hPa the mass
flux increases by 17% (Figure S3). Additionally, the different responses of the lower and middle stratosphere
can be seen in the transformed Eulerian mean (TEM) mass stream function (Figure S4). Here the weaken-
ing of the circulation in the lower stratosphere is directly connected to a weakening in the troposphere. At
higher levels the TEM mass stream function is enhanced in both hemispheres. The reduction in the lower
stratosphere can be related to a reduced exchange between troposphere and stratosphere, for instance,
due to a weakening of strong tropical convection as a consequence of surface cooling after the eruption.
Furthermore, the increased stability in the lower tropical stratosphere due to the aerosol warming reduces the
penetration of deep convection into the stratosphere. After 2 years, the aerosol concentration decreases and
the stratospheric and tropospheric temperatures return to unperturbed states. The downwelling and mixing
of air masses with reduced ages at higher latitudes then leads to negative AoA anomalies also in the lower
stratosphere (Figure S1c).

3.2. Long-Term Variations: Contributions From CO2, ODS, and Solar Forcing
The relative contributions of CO2, ODS (with the combined forcing of CFC-11 and CFC-12), and TSI on AoA
variations are quantified by a multilinear regression analysis. In a first step, the influence of volcanic aerosols
on AoA is removed based on the results from the superposed epoch analysis (supporting information). The
regression analysis is limited to the two simulations driven by the STRONG solar forcing. Using the ensemble
mean of all four simulations leads to very similar results.

A stepwise regression was performed for both AoA regions (Figure 3a). To compare the contributions of the
different forcing factors, we use the radiative forcing of CO2, ODS (calculated following Ramaswamy et al.
[2001]), and TSI (taking albedo and stratospheric adjustment into account [Gray et al., 2009]) in the regres-
sion analysis. To a large extent, the continuous reduction of AoA starting about 1900 is dominated by the CO2

changes (explained variance R2= 0.84 for the NH high latitudes and 0.82 for the tropical region). Including
the effect of the ODS improves the regression (R2 = 0.94 and 0.89 for the NH high latitudes and the tropics,
respectively). In particular, the pronounced AoA trend in the late twentieth century can only be explained
with the effect of the ODS. Furthermore, the model reveals that stratospheric ozone recovery due to a decline
in ODS is the main driver for the weakening of the negative AoA trends in the middle of the 21st century sup-
ported by the reduced CO2 increase in the RCP 4.5. Considering the solar forcing does not lead to a further
improvement of the regression model in the middle stratosphere of the NH high latitudes (R2 = 0.94). In the
tropical lower stratosphere, a weak solar signal is detected (R2 =0.90).

The spatial patterns of the multiple linear regression for the different forcing factors are shown in
Figures 3b–3d. CO2 and ODS (Figures 3b and 3c) cause a clear reduction in AoA, which is present over the
entire stratosphere and mesosphere. With a mean (strongest) response of −1.1 yr/(W m−2) (−1.6 yr/(W m−2))
the influence of ODS is much larger than the CO2 influence of −0.2 yr/(W m−2) (−0.3 yr/(W m−2)). The concen-
trations of CFC-11 and CFC-12 in the atmosphere, however, are very small, and consequently their radiative
forcing is much smaller than the radiative forcing of CO2 (compare Figure 1). The net AoA change for CO2 is
therefore much larger than the change related to ODS. The correlation coefficients between CO2 and AoA are
close to−1 for all levels and latitudes above 70 hPa, while the ODS reach correlation coefficients between−0.5
and −0.7 (not shown).

TSI changes in the long-term experiments induce a significant reduction in AoA throughout the stratosphere
with mean regression coefficients of −0.05 yr/(W m−2) and the strongest response reaching −0.11 yr/(W m−2)
(Figure 3d). This response is dominated by pronounced multidecadal variations in the solar forcing recon-
struction of Shapiro et al. [2011]. Without multidecadal solar variability the response to the solar forcing is
different: Applying the regression analysis to the two future simulations, with 11 year cycle variations only
(i.e., CONST), a positive relationship is detected, although the significance is low and limited mainly to the
higher stratosphere (Figure 3e). The imprint of CO2 and ODS on AoA is comparable between the future
simulations and the long-term experiments (not shown).
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Table 1. Change in AoA During the Middle of the Dalton Minimum (1805–1815) in the Ensemble Experiment Forced by
UV Variations Only (UV) or by Variations in the Visible and Near-Infrared (non-UV) for the Middle Stratosphere of the NH
High Latitudes (16 hPa, 60∘N–90∘N) and the Tropical Lower Stratosphere (63 hPa, 20∘S–20∘N)a

Region Forcing ΔAoA (Year) ΔAoA (%) p Value

NH high latitudes, middle stratosphere non-UV 0.06 1.58 <0.01

NH high latitudes, middle stratosphere UV 0.00 −0.07 0.89

Tropics, lower stratosphere non-UV 0.02 3.59 0.05

Tropics, lower stratosphere UV −0.01 −2.30 0.15
aSignificant differences to the ensemble of control simulations were tested by a Student’s t test (p value).

Additionally, we assess how variations in different solar spectral intervals (UV versus non-UV) affect AoA
for one grand solar minimum. The Dalton Minimum in the early nineteenth century is characterized by a
TSI reduction of −4.9 W m−2 (non-UV: −4.7 W m−2; UV: −0.2 W m−2), when the difference is calculated for the
middle of the Dalton Minimum (1805–1815) to the reference year 1780. In these simulations, a significant
AoA increase is found in the middle of the Dalton Minimum in response to the reduced incoming non-UV
short-wave radiation (Table 1). Note that this response is in agreement with the relationship found in the
long-term experiments, where an increase in the solar forcing leads to a reduction in AoA. In the middle strato-
sphere of the NH high latitudes, the global mean AoA increases significantly by 1.6% and in the lower tropical
stratosphere by 3.6%. Driving the model with UV variations only leads to a small reduction in AoA in both
regions (−0.1 and −2.3%). These anomalies are found to be significant only in a few regions of the strato-
sphere in the Southern Hemisphere (Figure S6) but nevertheless suggest that the weak positive relationship
between solar variation and AoA found for the 11 year cycle may be dominated by the UV effect. Non-UV
changes, however, anticorrelate with AoA. This spectral interval may be dominant for the solar influence on
AoA found on longer time scales and can be described as bottom-up effect since non-UV variations are most
effective at the surface and affect the stratosphere from below. Their influence is significant at all latitudes
and levels (Figure S6).

The results of the solar forcing therefore depend on the spectral interval considered. The response to the
11 year cycle is similar to the effect of the UV changes, while the response found for the long-term experiments,
where multidecadal TSI variations dominate, is comparable to the response found for non-UV variations. Sepa-
rating the analysis into a preindustrial and a modern period leads to very similar results for all forcings, besides
the fact that ODS were not present during preindustrial times (Figure S7).

4. Discussion and Conclusions

The response of stratospheric AoA to both natural and anthropogenic forcings is detected in different ensem-
bles of simulations for the period 1600 to 2100. With a series of continuous model simulations for 500 years,
covering three grand solar minima and several strong volcanic eruptions, this study considerably extends the
understanding of AoA variations on longer time scales.

The largest simulated changes during the twentieth century, driven by the anthropogenic emission of CO2

and ODS, cause a reduction in AoA, which is in agreement with previous model studies [Austin et al., 2007; Li
et al., 2008; Oberländer-Hayn et al., 2015].

The stratospheric AoA change in the future depends on the emission scenario. With the RCP 4.5 applied in this
study, a stabilization of AoA is expected in the middle of the 21st century but at substantially lower values than
during the preindustrial period. The recovery of the stratospheric ozone concentrations strongly contribute
to this stabilization.

In the preindustrial period, AoA variability is much smaller and no long-term changes are found. Volcanic
eruptions are the main driver of variability on time scales of several years, reducing AoA in the middle and
upper stratosphere and increasing AoA in the lower stratosphere. These results are consistent with previous
modeling studies [Pitari, 1993; Pitari and Mancini, 2002; Garcia et al., 2011; Aquila et al., 2013; Toohey et al., 2014]
and studies based on observations of recent eruptions [Graf et al., 2007; Schnadt Poberaj et al., 2011; Abalos
et al., 2015]. Diallo et al. [2012] reported an AoA increase after Pinatubo, which they interpreted as a reduction
of the tropopause crossings and a slowdown of the BDC. In our study, this AoA increase is limited to the lower
stratosphere, while at higher levels the intensification of the BDC dominates.
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In this study, a spectral solar forcing reconstruction with pronounced multidecadal variations has been
applied. Still, the solar influence on AoA is weak and characterized by a negative correlation between the solar
forcing and AoA, which is dominated by variations in the non-UV spectral interval. This negative relationship
between solar variations and AoA is in disagreement with the proposed weakening of the BDC (increase in
AoA) during phases with high solar activity [Kodera and Kuroda, 2002]. Kodera and Kuroda [2002], however,
focused on the 11 year cycle variability, which is too small (∼1 W m−2) and too short to have a direct effect on
tropospheric temperatures [Beer et al., 2000; Frame and Gray, 2010] but strong enough to change stratospheric
temperatures through changes in the UV radiation. A response in agreement with Kodera and Kuroda [2002]
is found, when sensitivity simulations forced only by UV variations or experiments without long-term TSI
changes (but an 11 year solar cycle) are considered. This response, however, is very weak and hardly significant.
On multidecadal time scales the pronounced TSI variations have the potential to cause substantial changes
in tropospheric temperatures [Beer et al., 2000; Ammann et al., 2007; Anet et al., 2014]. These tropospheric
changes counteract the stratospheric changes in AoA (implied by UV).

On millenial and orbital time scales, the cumulative effect of a change in the incoming solar radiation may
lead to a stronger response of the AoA. Similarly, CO2 or tropospheric temperature changes on millennial time
scales may also affect the stratospheric circulation and the residence time of air in the stratosphere. Time slice
experiments with CCMs would be one possible way to address this issue in follow-up studies.

References
Abalos, M., B. Legras, F. Ploeger, and W. J. Randel (2015), Evaluating the advective Brewer-Dobson circulation in three reanalyses for the

period 1979–2012, J. Geophys. Res. Atmos., 120, 7534–7554, doi:10.1002/2015JD023182.
Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas (2007), Solar influence on climate during the past millennium:

Results from transient simulations with the NCAR Climate System Model, Proc. Natl. Acad. Sci., 104, 3713–3718.
Andrews, D. G., J. R. Holton, and C. B. Leovy (1987), Middle Atmosphere Dynamics, 489 pp., Academic Press, Orlando, Fla.
Anet, J. G., et al. (2013a), Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone,

Geophys. Res. Lett., 40, 4420–4425, doi:10.1002/grl.50806.
Anet, J. G., et al. (2013b), Forcing of stratospheric chemistry and dynamics during the Dalton Minimum, Atmos. Chem. Phys., 13,

10,951–10,967, doi:10.5194/acp-13-10951-2013.
Anet, J. G., et al. (2014), Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton

Minimum, Clim. Past, 10, 921–938.
Aquila, V., L. D. Oman, R. Stolarski, A. R. Douglass, and P. A. Newman (2013), The response of ozone and nitrogen dioxide to the eruption of

Mt. Pinatubo at southern and northern midlatitudes, J. Atmos. Sci., 70, 894–900, doi:10.1175/JAS-D-12-0143.1.
Arfeuille, F., D. Weisenstein, H. Mack, E. Rozanov, T. Peter, and S. Brönnimann (2014), Volcanic forcing for climate modeling: A new

microphysics-based data set covering years 1600–present, Clim. Past, 10, 359–375, doi:10.5194/cp-10-359-2014.
Austin, J., and F. Li (2006), On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air,

Geophys. Res. Lett., 33, L17807, doi:10.1029/2006GL026867.
Austin, J., J. Wilson, F. Li, and H. Vömel (2007), Evolution of water vapor concentrations and stratospheric age of air in coupled

chemistry-climate model simulations, J. Atmos. Sci., 64, 905–921, doi:10.1175/JAS3866.1.
Austin, J., L. W. Horowitz, M. D. Schwarzkopf, R. J. Wilson, and H. Levy (2013), Stratospheric ozone and temperature simulated from the

preindustrial era to the present day, J. Clim., 26, 3528–3543, doi:10.1175/JCLI-D-12-00162.1.
Beer, J., W. Mende, and R. Stellmacher (2000), The role of the Sun in climate forcing, Quat. Sci. Rev., 19, 403–415,

doi:10.1016/S0277-3791(99)00072-4.
Brönnimann, S., J. L. Annis, C. Vogler, and P. D. Jones (2007), Reconstructing the Quasi-Biennial Oscillation back to the early 1900s,

Geophys. Res. Lett., 34, L22805, doi:10.1029/2007GL031354.
Bunzel, F., and H. Schmidt (2013), The Brewer-Dobson circulation in a changing climate: Impact of the model configuration, J. Atmos. Sci.,

70, 1437–1455, doi:10.1175/JAS-D-12-0215.1.
Butchart, N. (2014), The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184, doi:10.1002/2013RG000448.
Butchart, N., and A. A. Scaife (2001), Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and

troposphere, Nature, 410, 799–802.
Butchart, N., et al. (2006), Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation, Clim. Dyn., 27, 727–741,

doi:10.1007/s00382-006-0162-4.
Butchart, N., et al. (2010), Chemistry-climate model simulations of twenty-first century stratospheric climate and circulation changes,

J. Clim., 23, 5349–5374, doi:10.1175/2010JCLI3404.1.
Diallo, M., B. Legras, and A. Chédin (2012), Age of stratospheric air in the ERA-Interim, Atmos. Chem. Phys., 12, 12,133–12,154,

doi:10.5194/acp-12-12133-2012.
Egorova, T., E. Rozanov, V. Zubov, and I. L. Karol (2003), Model for Investigating Ozone Trends (MEZON), Izv. Atmos. Oceanic Phys., 39,

277–292.
Engel, A., et al. (2009), Age of stratospheric air unchanged within uncertainties over the past 30 years, Nat. Geosci., 2, 28–31,

doi:10.1038/ngeo388.
Frame, T. H. A., and L. J. Gray (2010), The 11-yr solar cycle in ERA-40 data: An update to 2008, J. Clim., 23, 2213–2222,

doi:10.1175/2009JCLI3150.1.
Fu, Q., P. Lin, S. Solomon, and D. L. Hartmann (2015), Observational evidence of strengthening of the Brewer-Dobson circulation since 1980,

J. Geophys. Res. Atmos., 120, 10,214–10,228, doi:10.1002/2015JD023657.
Garcia, R. R., and W. J. Randel (2008), Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases, J. Atmos. Sci., 65,

2731–2739, doi:10.1175/2008JAS2712.1.

Acknowledgments
We acknowledge constructive and
detailed comments by two anonymous
reviewers. This work has been
supported by the Swiss National
Science Foundation under grant
CRSII2-147659 (FUPSOL II) and by the
Competence Center Environment and
Sustainability (CCES) under the project
MAIOLICA-2. All simulations described
in this study are archived at the
University of Bern and are available
on request.

MUTHERS ET AL. AGE OF AIR BETWEEN 1600 AND 2100 9

http://dx.doi.org/10.1002/2015JD023182
http://dx.doi.org/10.1002/grl.50806
http://dx.doi.org/10.5194/acp-13-10951-2013
http://dx.doi.org/10.1175/JAS-D-12-0143.1
http://dx.doi.org/10.5194/cp-10-359-2014
http://dx.doi.org/10.1029/2006GL026867
http://dx.doi.org/10.1175/JAS3866.1
http://dx.doi.org/10.1175/JCLI-D-12-00162.1
http://dx.doi.org/10.1016/S0277-3791(99)00072-4
http://dx.doi.org/10.1029/2007GL031354
http://dx.doi.org/10.1175/JAS-D-12-0215.1
http://dx.doi.org/10.1002/2013RG000448
http://dx.doi.org/10.1007/s00382-006-0162-4
http://dx.doi.org/10.1175/2010JCLI3404.1
http://dx.doi.org/10.5194/acp-12-12133-2012
http://dx.doi.org/10.1038/ngeo388
http://dx.doi.org/10.1175/2009JCLI3150.1
http://dx.doi.org/10.1002/2015JD023657
http://dx.doi.org/10.1175/2008JAS2712.1


Geophysical Research Letters 10.1002/2016GL068734

Garcia, R. R., W. J. Randel, and D. E. Kinnison (2011), On the determination of age of air trends from atmospheric trace species, J. Atmos. Sci.,
68, 139–154, doi:10.1175/2010JAS3527.1.

Garny, H., T. Birner, H. Bönisch, and F. Bunzel (2014), The effects of mixing on age of air, J. Geophys. Res. Atmos., 119, 7015–7034,
doi:10.1002/2013JD021417.

Giorgetta, M. A., L. Bengtsson, and K. Arpe (1999), An investigation of QBO signals in the east Asian and Indian monsoon in GCM
experiments, Clim. Dyn., 15, 435–450, doi:10.1007/s003820050292.

Graf, H.-F., Q. Li, and M. A. Giorgetta (2007), Volcanic effects on climate: Revisiting the mechanisms, Atmos. Chem. Phys., 7, 4503–4511,
doi:10.5194/acp-7-4503-2007.

Gray, L. J., S. T. Rumbold, and K. P. Shine (2009), Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in
irradiance and ozone, J. Atmos. Sci., 66, 2402–2417, doi:10.1175/2009JAS2866.1.

Hall, T. M., and R. A. Plumb (1994), Age as a diagnostic of stratospheric transport, J. Geophys. Res., 99, 1059–1070, doi:10.1029/93JD03192.
Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister (1995), Stratosphere-troposphere exchange, Rev. Geophys.,

33, 403–439.
Kodera, K., and Y. Kuroda (2002), Dynamical response to the solar cycle, J. Geophys. Res., 107, 4749, doi:10.1029/2002JD002224.
Li, F., J. Austin, and J. Wilson (2008), The strength of the Brewer-Dobson circulation in a changing climate: Coupled chemistry-climate model

simulations, J. Clim., 21, 40–57, doi:10.1175/2007JCLI1663.1.
Marsland, S. (2003), The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates, Ocean Model., 5, 91–127,

doi:10.1016/S1463-5003(02)00015-X.
Muthers, S., et al. (2014), The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM, Geosci. Model Dev., 7, 2157–2179,

doi:10.5194/gmd-7-2157-2014.
Oberländer, S., U. Langematz, and S. Meul (2013), Unraveling impact factors for future changes in the Brewer-Dobson circulation, J. Geophys.

Res. Atmos., 118, 10,296–10,312, doi:10.1002/jgrd.50775.
Oberländer-Hayn, S., S. Meul, U. Langematz, J. Abalichin, and F. Haenel (2015), A chemistry-climate model study of past changes in the

Brewer-Dobson circulation, J. Geophys. Res. Atmos., 120, 6742–6757, doi:10.1002/2014JD022843.
Pitari, G. (1993), A numerical study of the possible perturbation of stratospheric dynamics due to Pinatubo aerosols: Implications for tracer

transport, J. Atmos. Sci., 50, 2443–2461, doi:10.1175/1520-0469(1993)050<2443:ANSOTP>2.0.CO;2.
Pitari, G., and E. Mancini (2002), Short-term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric

tracers, Nat. Hazards Earth Syst. Sci., 2, 91–108, doi:10.5194/nhess-2-91-2002.
Ploeger, F., M. Riese, F. Haenel, P. Konopka, R. Müller, and G. Stiller (2014), Variability of stratospheric mean age of air and of the local effects

of residual circulation and eddy mixing, J. Geophys. Res. Atmos., 120, 716–733, doi:10.1002/2014JD022468.
Ploeger, F., M. Abalos, T. Birner, P. Konopka, B. Legras, R. Müller, and M. Riese (2015), Quantifying the effects of mixing and residual

circulation on trends of stratospheric mean age of air, Geophys. Res. Lett., 42, 2047–2054, doi:10.1002/2014GL062927.
Plumb, R. A. (2002), Stratospheric transport, J. Meteorol. Soc. Jpn., 80, 793–809, doi:10.2151/jmsj.80.793.
Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustine, J. Haywood, G. Myhre, T. Nakajima, G. Y. Shi, and S. | Solomon (2001), Radiative forcing

of climate change, in IPCC Third Assessment Report: Climate Change 2001, edited by J. Houghton et al., chap. 6, pp. 350–416, Cambridge
Univ. Press, Cambridge, U. K., and New York.

Remsberg, E. E. (2015), Methane as a diagnostic tracer of changes in the Brewer-Dobson circulation of the stratosphere, Atmos. Chem. Phys.,
15, 3739–3754, doi:10.5194/acp-15-3739-2015.

Röckmann, T., J. Kaiser, C. A. M. Brenninkmeijer, J. N. Crowley, R. Borchers, W. A. Brand, and P. J. Crutzen (2001), Isotopic enrichment
of nitrous oxide (15N14NO, 14N15NO, 14N14N18O) in the stratosphere and in the laboratory, J. Geophys. Res., 106, 10,403–10,410,
doi:10.1029/2000JD900822.

Roeckner, E., et al. (2003), The atmospheric general circulation model ECHAM5—Model description, MPI Rep., Max-Planck Institute for
Meteorology, Hamburg, Germany.

Rozanov, E., M. E. Schlesinger, V. Zubov, F. Yang, and N. G. Andronova (1999), The UIUC three-dimensional stratospheric chemical
transport model: Description and evaluation of the simulated source gases and ozone, J. Geophys. Res., 104, 11,755–11,781,
doi:10.1029/1999JD900138.

Schnadt Poberaj, C., J. Staehelin, and D. Brunner (2011), Missing stratospheric ozone decrease at Southern Hemisphere middle latitudes
after Mt. Pinatubo: A dynamical perspective, J. Atmos. Sci., 68, 1922–1945, doi:10.1175/JAS-D-10-05004.1.

Shapiro, A. I., W. Schmutz, E. Rozanov, M. Schoell, M. Haberreiter, A. V. Shapiro, and S. Nyeki (2011), A new approach to the
long-term reconstruction of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 529, A67,
doi:10.1051/0004-6361/201016173.

Shepherd, T. G., and A. I. Jonsson (2008), On the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting
substances and well-mixed greenhouse gases, Atmos. Chem. Phys., 8, 1435–1444, doi:10.5194/acp-8-1435-2008.

SPARC (2010), SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, edited by V. Eyring, T. Shepherd and D. Waugh,
SPARC Rep., 5, WCRP-30/2010, WMO/TD-40. [Available at www.sparc-climate.org/publications/sparc-reports/.]

Stenke, A., M. Schraner, E. Rozanov, T. Egorova, B. Luo, and T. Peter (2013), The SOCOL version 3.0 chemistry-climate model: Description,
evaluation, and implications from an advanced transport algorithm, Geosci. Model Dev., 6, 1407–1427, doi:10.5194/gmd-6-1407-2013.

Stiller, G. P., et al. (2008), Global distribution of mean age of stratospheric air from MIPAS SF6 measurements, Atmos. Chem. Phys., 8, 677–695,
doi:10.5194/acp-8-677-2008.

Toohey, M., K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt (2014), The impact of volcanic aerosol on the Northern Hemisphere
stratospheric polar vortex: Mechanisms and sensitivity to forcing structure, Atmos. Chem. Phys., 14, 13,063–13,079,
doi:10.5194/acp-14-13063-2014.

Waugh, D. (2009), The age of stratospheric air, Nat. Geosci., 2, 14–16.
Waugh, D. W., and T. M. Hall (2002), Age of stratospheric air: Theory, observations, and models, Rev. Geophys., 40(4), 1010,

doi:10.1029/2000RG000101.

MUTHERS ET AL. AGE OF AIR BETWEEN 1600 AND 2100 10

http://dx.doi.org/10.1175/2010JAS3527.1
http://dx.doi.org/10.1002/2013JD021417
http://dx.doi.org/10.1007/s003820050292
http://dx.doi.org/10.5194/acp-7-4503-2007
http://dx.doi.org/10.1175/2009JAS2866.1
http://dx.doi.org/10.1029/93JD03192
http://dx.doi.org/10.1029/2002JD002224
http://dx.doi.org/10.1175/2007JCLI1663.1
http://dx.doi.org/10.1016/S1463-5003(02)00015-X
http://dx.doi.org/10.5194/gmd-7-2157-2014
http://dx.doi.org/10.1002/jgrd.50775
http://dx.doi.org/10.1002/2014JD022843
http://dx.doi.org/10.1175/1520-0469(1993)050<2443:ANSOTP>2.0.CO;2
http://dx.doi.org/10.5194/nhess-2-91-2002
http://dx.doi.org/10.1002/2014JD022468
http://dx.doi.org/10.1002/2014GL062927
http://dx.doi.org/10.2151/jmsj.80.793
http://dx.doi.org/10.5194/acp-15-3739-2015
http://dx.doi.org/10.1029/2000JD900822
http://dx.doi.org/10.1029/1999JD900138
http://dx.doi.org/10.1175/JAS-D-10-05004.1
http://dx.doi.org/10.1051/0004-6361/201016173
http://dx.doi.org/10.5194/acp-8-1435-2008
http://www.sparc-climate.org/publications/sparc-reports/
http://dx.doi.org/10.5194/gmd-6-1407-2013
http://dx.doi.org/10.5194/acp-8-677-2008
http://dx.doi.org/10.5194/acp-14-13063-2014
http://dx.doi.org/10.1029/2000RG000101

	1
	References

