Moderately High Temperatures Inhibit Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-Mediated Activation of Rubisco

Feller, Urs; Crafts-Brandner, Steven J.; Salvucci, Michael E. (1998). Moderately High Temperatures Inhibit Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-Mediated Activation of Rubisco. Plant Physiology, 116(2), pp. 539-546. American Society of Plant Physiologists 10.1104/pp.116.2.539

[img] Text
PlantPhys_116_539.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (276kB) | Request a copy

We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Plant nutrition [discontinued]
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS)

UniBE Contributor:

Feller-Kaiser, Urs

Subjects:

500 Science > 580 Plants (Botany)

ISSN:

0032-0889

Publisher:

American Society of Plant Physiologists

Language:

English

Submitter:

Peter Alfred von Ballmoos-Haas

Date Deposited:

13 Jul 2016 10:14

Last Modified:

05 Dec 2022 14:56

Publisher DOI:

10.1104/pp.116.2.539

BORIS DOI:

10.7892/boris.83864

URI:

https://boris.unibe.ch/id/eprint/83864

Actions (login required)

Edit item Edit item
Provide Feedback