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Abstract

Background: Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI),
which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and
diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and
effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal
single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM).

Methods: The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single
tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass
spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e.,
area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart.

Results: USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns
measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear
regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was
11.8%.

Conclusion: The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and
reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which
provides valid information on SF6 and He washout patterns during tidal breathing.
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Introduction

Small airway disease frequently occurs in chronic obstructive

pulmonary disease, asthma, and cystic fibrosis (CF) [1]. Despite

lack of respiratory symptoms in e.g. adult smokers [2], children

with asthma [3] or CF [4;5], small airway malfunction may be

present and is regarded as important sign of early lung disease.

Conventional lung function techniques such as spirometry are

considered to be not sensitive enough to detect small airway

malfunction [3;6–8]. Inert tracer gas washout tests over single or

multiple breaths (SBW or MBW) provide a more sensitive alternative

to spirometry in tracking small airway malfunction, e.g. altered

ventilation inhomogeneity (VI), and they are more accurate in

reflecting structural changes in lung periphery [7;9–11]. However,

these tests are not commonly used in clinical routine as they rely on

custom made, expensive, and bulky setups, e.g. mass spectrometer

(MS), and require coordination of vital capacity manoeuvres for SBW

or cooperation during 20 minutes of tidal breathing for MBW [12].

Recently, the ultrasonic flowmeter (USFM) technique was

applied in MBW studies [13–16]. The USFM measures total

molar mass (MM), a sum signal derived from measured gas density

[15–18]. Tracer gas mixtures had different MM compared to air

and contained a single tracer gas, either sulfur hexafluoride (SF6)

or helium (He) [13–16]. MM of SF6 (146 g/mol) is much higher

than MM of He (4 g/mol), thus SF6 and He distribute unequally

in lung periphery where diffusion predominates. The diffusion

front for He is thought to arise in the zone of the entrance to the

acinus. In contrast, the diffusion front for SF6 is predicted to occur

more distally within the acinus [19]. Different structural asymme-

tries within the lung zones where the diffusion fronts of He and

SF6 arise thus lead to unequal washout patterns of He and SF6.

Using both gases for a SBW may provide more specific

information about ventilation in these peripheral lung zones

[20–22]. A tracer gas mixture containing SF6 and He and

exhibiting similar MM as air could be measured by an USFM to

assess washout patterns of SF6 and He. Using the USFM for a
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modified SBW procedure would eliminate some shortcomings of

current tracer gas washout tests in clinical routine.

The aim of this study was to develop and validate a simple

technique for a new tidal SBW of SF6 and He using an USFM.

Materials and Methods

Ethics statement
The study was approved by both the Ethics Committee of the

Canton of Bern, Switzerland (Kantonale Ethikkommission Bern)

and the Research Ethics Committee of University Hospital Bern

(Inselspital). All participants provided written informed consent for

this study.

Study design
In this feasibility study, a SBW of a double tracer gas mixture

(DTG-SBW) using an USFM was applied in 13 healthy adults

during tidal breathing. The subjects’ mean (SD) age was 35.2 (9.4)

years. Accuracy of the USFM compared to mass spectrometry

(MS), and repeatability and reproducibility of this DTG-SBW test

were assessed.

Double tracer gas
SF6 and He, two inert tracer gases, were employed in a SF6/He

ratio of 1/5.26 to establish similar MM of DTG compared to dry

medical-grade air (28.9 g/mol). DTG contained 5% SF6, 26.3%

He, 21% oxygen (O2), and balance nitrogen (N2) (Carbagas,

Domdidier, Switzerland) and was applied in all DTG-SBW tests

(n = 60).

Tidal single breath washout
Subjects were measured in an upright sitting position, wearing a

nose clip, and breathing through a disposable bacterial filter (airTM

Vickers Industrial Estate, Lancashire, UK) attached to the flow-

head (figure 1). Prior to the DTG-SBW, subjects tidally breathed

air for 20 seconds until steady shapes of flow-volume-loops were

established. At the beginning of an expiration, DTG was switched

on manually to flush the system. A tidal volume of DTG was

inhaled from functional residual capacity (FRC) prior to exhaling

back to FRC. DTG-SBW was technically accepted if the test

breath had a similar flow-volume-loop as pre-test breaths. A

minimum of ten subsequent breaths of air were required prior to

the next DTG-SBW, and three DTG-SBW tests were done per

test occasion.

Washout analysis
The wave form of naturally exhaled MM is attributed to the

increasing carbon dioxide (CO2) fraction [23]. During DTG-

SBW, CO2, SF6, and He fractions were expected to give rise to the

USFM derived MM (MMUSFM) signal. Therefore, we transformed

the CO2 signal into MM and subtracted this signal from

MMUSFM. We then obtained a single MM signal potentially

reflecting SF6 and He washout (SF6-HeUSFM). The main outcome

of the DTG-SBW analysis was the shape of the SF6-HeUSFM signal

plotted as expirogram, i.e. MM against expired volume.

Despite some limitations, MS is still regarded as current gold

standard for quantification of respiratory gases [16;17]. During

DTG-SBW we compared MMUSFM and SF6-HeUSFM signals with

the two corresponding MS signals (MMMS, SF6-HeMS) which were

derived as follows. The MM signal (MMMS) was calculated by

summing fractional MM of respective gas concentrations. The SF6

and He signals were normalized by dividing them by their starting

concentrations [24]. The normalized He signal was then

subtracted from the normalized SF6 signal to obtain a single

tracer gas signal (SF6-HeMS).

Accuracy and reproducibility of the single breath
washout method

Three DTG-SBW were applied in six healthy adults on a single

test occasion to compare USFM signals with MS signals. MMUSFM

and SF6-HeUSFM were compared graphically with MMMS and

SF6-HeMS. Signal-to-noise ratio of MMUSFM (MMUSFM mean/

MMUSFM standard deviation (SD)) was assessed for air and DTG

at 1 L/s flow during ten seconds.

To assess repeatability and reproducibility of the DTG-SBW

test, three DTG-SBW tests were applied in seven healthy adults on

two test occasions 24 hours apart. We calculated area under the

washout curve (AUC) by integrating a best-fit double exponential

Figure 1. Ultrasonic flowmeter setup. Molar mass was measured in a sidestream ultrasonic flowmeter (USFM) and flow was measured in a
mainstream USFM. Oxygen (O2), and carbon dioxide (CO2) were measured in sidestream sensors.
doi:10.1371/journal.pone.0017588.g001

Tidal Single Breath Washout of Two Tracer Gases
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curve (Matlab; The Mathworks Inc., Natick, MA, USA) to

mathematically describe the shape of the SF6-HeUSFM expiro-

gram. We constrained AUC calculation to phases II and III of the

CO2 expirogram (figure 2) to assess washout patterns from

bronchial and alveolar gases. While during the first phase CO2-

free gas is exhaled from airway dead space, the rapidly increasing

CO2 fraction forms a sigmoidal curve of the bronchial phase II

ending up in the plateau of the alveolar phase III [25].

Hardware
We used a commercially available USFM setup (Exhalyzer DH,

Eco Medics AG, Duernten, Switzerland) described previously

(figure 1) [14;16]. The USFM measured MM in sidestream

sampling mode with a sample flow of 200 mL/min via a NafionH
tube to allow equilibration of ambient temperature and humidity

[17;18]. Measurement precision was 0.01 g/mol at a sampling

frequency of 200 Hz [14;18]. Tidal flows and derived volumes

were measured in mainstream gas using the flow-head USFM.

Into this flow-head, a dead-space reducer (DSR size 3) and a

disposable hygienic insert (Spirette), both provided by the

manufacturer (Eco Medics AG), were inserted. Total dead space

of the flow-head plus the bacterial filter attached was 40 mL. A

three-way valve system operated manually administered air or

DTG via by-pass flow at 1 L/s effecting a resistance of 0.01 kPa s

L-1. Prior to measurements, the USFM was calibrated for

inspiratory and expiratory volumes using a precision syringe.

Gas concentrations (SF6, He, N2, O2, and CO2) using a

respiratory mass spectrometer (AMIS 2000, Innovision A/S,

Odense, Denmark) and respiratory flows using a heated

pneumotachograph were measured near airway opening as

previously described [26]. An additional sidestream sampling

NafionH tube was introduced between the mouthpiece and the

flow-head. The sample flow of the MS was 20 mL/min and the

gas signals were updated at a rate of 33.3 Hz. The PC based data

acquisition setup recorded flow and dry gas concentrations at

100 Hz.

Software
A software package (WBreathH 3.28; ndd Medical Technolo-

gies, Switzerland) was used for collection of USFM and MS

signals. Signals were aligned in time as previously described

[16;26]. Tidal flows and derived volumes were converted to body

temperature and ambient pressure, and saturated with water

vapour (BTPS) conditions.

Statistical analysis
The association of MMUSFM and SF6-HeUSFM with MMMS and

SF6-HeMS signals were assessed graphically and using a linear

regression model accounting for clustered data within individuals.

Means of MMUSFM and MMMS were compared using two-tailed

paired t-tests. Accuracy of MMUSFM compared to MMMS was

determined using the Bland and Altman method [27] by plotting

differences of paired measurements against means of paired

measurements.

Intra-test repeatability of DTG-SBW was calculated as intra-

subject mean coefficient of variation (CV% = SD/mean*100) of

AUC. DTG-SBW curves and AUC from test occasions 24 hours

apart were compared graphically, and using the two-tailed paired

t-test. Between-test reproducibility of DTG-SBW was assessed

graphically, and by the coefficient of repeatability of AUC

representing the 95% range of differences between two repeated

measurements and was calculated as twice the square root of the

mean of squared differences of paired measurements [27;28].

Means, SD, and 95% confidence intervals (95% CI) were

reported, p-values ,0.05 were considered significant, and all

analysis were done using StataTM (StataCorp. 2009. Stata

Statistical Software: Release 11. College Station, TX: StataCorp

LP).

Figure 2. Area under the single breath washout curve. The ultrasonic flowmeter (USFM) derived sulfur hexafluoride (SF6) and helium (He)
molar mass signal (SF6-HeUSFM) was plotted as expirogram. The carbon dioxide (CO2) expirogram (dashed line) was plotted to determine area under
the washout curve (AUC, grey area) during washout of bronchial and alveolar gas fronts [25]. As SF6-HeUSFM had been calculated by subtracting CO2

from molar mass (MMUSFM), a ‘‘negative’’ SF6-HeUSFM signal resulted from a low MMUSFM signal reflecting relatively more He than SF6 contribution to
MMUSFM. In phase I, relatively more He than SF6, but during phases II and III, relatively more SF6 than He sequentially arrived at the mouth.
doi:10.1371/journal.pone.0017588.g002

Tidal Single Breath Washout of Two Tracer Gases
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Results

DTG-SBW was feasible and technically acceptable in all

subjects (n = 13; 7 males) during all tests (n = 60). Mean (SD)

duration of one DTG-SBW test was 76 [27] seconds. The

MMUSFM signal of the DTG-SBW was significantly different to

the naturally exhaled MMUSFM signal due to CO2 as shown in one

male subject (figure 3). Different patterns of SF6 and He washout

was observed throughout all DTG-SBW tests reflecting a non-

linear washout relationship of these tracer gases. An increase in

MMUSFM indicated an increase in SF6 washout relative to He

washout. This pattern was mainly observed in phase II of the CO2

expirogram (figures 2 and 3).

Accuracy of the single breath washout method
MMUSFM and MMMS signals were compared using paired data

from 18 tests. The association of MMUSFM and MMMS signals was

high, the adjusted linear regression coefficient r2 was 0.98

(figure 4a). Strong agreement of MMUSFM and MMMS was found

in the Bland and Altman plot (figure 4b) without graphical evidence

of systematic bias or significant outliers. Mean (95% CI) difference

in MM was 20.0004 (20.0021 to 0.0013) g/mol. The range of

95% of all differences was 0.13 g/mol (0.45% of mean MM of

both methods). The MMUSFM signal-to-noise ratio for air and

DTG was 3490 and 3140, respectively.

Calculation of SF6-HeUSFM and SF6-HeMS signals was feasible

in all DTG-SBW tests. SF6-HeUSFM washout curves were strongly

associated with SF6-HeMS washout curves (figure 5a). Paired data

of SF6-HeUSFM and SF6-HeMS from 18 tests were plotted against

each other, the adjusted linear regression coefficient r2 was 0.96

(figure 5b). A relative increase in either tracer gas was reliably

reflected in the SF6-HeUSFM signal.

To investigate if the shape of the SF6-HeUSFM expirogram was

robust against technical factors, we assessed the impact of possible

VI caused by the measurement setup and variable dead space,

respectively, on the shape of SF6-HeUSFM. First, three DTG-SBW

were performed using a 500 mL precision syringe at 40 tidal

strokes per minute, and a 1000 mL precision syringe at 20 tidal

strokes per minute, respectively. DTG-SBW tests (n = 6) in these

precision syringes resulted in flat SF6-HeUSFM signals similar to

signals of pre-test strokes using air. Second, pre- and post-capillary

dead spaces were increased step-wise using 3.5 mL tubes resulting

in 17.5 mL additional dead space on either side of the sidestream

MMUSFM sampling inlet. During each step, one DTG-SBW test

was applied in one healthy adult. For each step (n = 10), SF6-

HeUSFM expirograms were similar to those recorded using the

original setup.

Reproducibility of the single breath washout method
The shape of SF6-HeUSFM expirograms was repeatable and

reproducible (figure 6a). Calculation of AUC was feasible in all

tests (n = 42). On day one, mean (SD) AUC was 24.5 (6.7) g/

mol*%volume, and on day two, mean (SD) AUC was 24.6 (6.7) g/

mol*%volume (figure 6b). Within-test repeatability given as mean

(SD) intra-subject CV was 6.8% (3.2%). Between-test reproduc-

ibility assessed graphically was good without evidence of systematic

bias or significant outliers. The coefficient of repeatability was

2.9 g/mol*%volume corresponding to 11.8% of mean AUC of

both visits. Mean (95% CI) difference of AUC between the two test

occasions was 20.15 (20.82 to 0.50) g/mol*%volume.

Discussion

The USFM accurately measures relative changes in SF6 and

He washout. DTG-SBW tests are repeatable and reproducible in

healthy adults. A tracer gas mixture of similar MM as air is

suitable to explore SF6 and He washout using an USFM. The

shape of the MM expirogram reflects the sequential arrival of SF6

Figure 3. Comparison of single breath washout signals. Typical ultrasonic flowmeter (USFM) and mass spectrometer (MS) signals from a single
breath washout (SBW) using sulfur hexafluoride (SF6) and helium (He) in a healthy male adult. USFM derived molar mass (MMUSFM black solid line) and
MS derived molar mass (MMMS grey dashed line) reflected changes in SF6 washout relative to He washout measured using MS: SF6MS (black dashed
line), and HeMS (black dotted line). The MM signal derived from CO2 (MMCO2 grey solid line) reflected naturally exhaled MM similar to MM signals from
pre-test breaths.
doi:10.1371/journal.pone.0017588.g003

Tidal Single Breath Washout of Two Tracer Gases
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and He at airway opening. During a single tidal breath, SF6 and

He washout patterns are different as hypothesized due to their

different physical characteristics and their interaction with

normal airway structure. The AUC of DTG-SBW showed high

intra-test repeatability and between-test reproducibility in healthy

adults.

Strengths of the single breath washout method
This DTG-SBW method has several strengths with regards to

practicability, informative value, and hardware. DTG-SBW tests

are easy and quick to perform, requiring only 30 to 40 seconds for

a few tidal breaths, and minimal cooperation. Compared to tracer

gas SBW tests based on vital capacity maneuvers, classical

outcomes, e.g. closing volume, are not assessed. However, indices

derived from SBW tests near FRC may be even more sensitive for

small airway disease [9].

We used low tracer gas concentrations minimizing respective

physical interaction and consumption per test [29]. Compared to

MBW tests, consumption of SF6, a known greenhouse gas, is

considerably smaller in SBW tests.

USFM setups are economic and handy, thus probably more

suited for clinical routine compared to MS [12;16;17;30]. While

the USFM does not allow measurements of single gas concentra-

tions, it accurately measures relative changes of SF6 and He at a

single spot. Using MS, a delay correction for each gas signal is

needed [8;22]. With regards to higher signal-to-noise ratio, signal

Figure 4. Accuracy of the ultrasonic flowmeter signal. Six healthy adults performed three tidal single breath washout tests of sulfur
hexafluoride (SF6) and helium (He) during tidal breathing. Molar mass was measured using an ultrasonic flowmeter (MMUSFM) and mass spectrometer
(MMMS). Figure 4a: Paired MMUSFM and MMMS data from 18 tidal single breath washout tests in six subjects were plotted against each other.
Accounting for clustered data, adjusted linear regression coefficient r2 = 0.98 (p,0.001). Figure 4b: Bland and Altman plot of MMUSFM - MMMS

differences against mean MM of both methods [27]. Dashed lines indicated the mean difference of MM (20.0004 g/mol), and upper and lower limits
of agreement (mean of difference 6 2 SD of differences): 0.131 to 20.132 g/mol).
doi:10.1371/journal.pone.0017588.g004

Tidal Single Breath Washout of Two Tracer Gases
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resolution, and lower technical dead space, the USFM technique is

probably better qualified than MS to assess gas signals with high

fluctuation in e.g. infants [15;31].

Accuracy of the single breath washout method
Our findings are in good agreement with previous studies

investigating the accuracy of an USFM for MBW using SF6

[16;17]. Fuchs et al. [17] compared the USFM with MS for MBW,

and 95% of differences between USFM and MS signals were

within a range of ,1% of mean SF6 concentration. Even not

focusing exclusively on end-expiratory tracer gas levels [17],

which probably reveals more stable signals, we were able to

demonstrate excellent MMUSFM signal accuracy (figure 4b). In

general it has to be acknowledged that the observed signal

differences were well below 1% of the mean MM (figure 4b) and

are probably due to inaccuracies of both methods, as no

systematic bias was evident.

Reproducibility of the single breath washout method
The DTG-SBW was highly repeatable and reproducible with

low inherent variation in measurements over time. The CV of

AUC compares favourably to CV of other tidal breathing or vital

capacity techniques. CV of slope of phase III derived from vital

capacity N2 SBW in children and adults was 13% and 15%,

respectively [32;33]. In healthy adults, intra-individual change

between days in forced expiratory volume in one second (FEV1) of

Figure 5. Comparison of sulfur hexafluoride and helium washout curves. Sulfur hexafluoride (SF6) and helium (He) washout signals
measured using an ultrasonic flowmeter (SF6-HeUSFM) and mass spectrometer (SF6-HeMS) derived from a tidal single breath washout (SBW). Figure 5a:
Typical SBW signals from one healthy male adult. SF6-HeUSFM (circles) and SF6-HeMS (triangles) were plotted as expirogram against expired volume.
Figure 5b: SF6-HeUSFM was plotted against SF6-HeMS derived from 18 tidal SBW tests in six subjects. Accounting for clustered data, adjusted linear
regression coefficient r2 was 0.96 (p,0.001).
doi:10.1371/journal.pone.0017588.g005

Tidal Single Breath Washout of Two Tracer Gases
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11% is attributed to true clinical change [34]. For DTG-SBW, an

intra-individual change in AUC of more than 12% would be

unlikely due to measurement noise and thus reflect a true

physiological impact with 95% probability [28]. Certainly, more

data from DTG-SBW tests in a population of interest are required

to estimate significant change.

Possible mechanisms and physiological relevance
Single tracer gas SBW tests are not specific for small airway

disease as these tests do not allow separation between VI due to

convective gas transport in large airways and VI due to interaction

between diffusion and convection resulting in small airways

[20–22]. Based on the Paiva and Engel lung model [19], the

Figure 6. Reproducibility of the single breath washout. Seven healthy adults performed three double tracer gas single breath washout tests
(DTG-SBW) 24 hours apart. Ultrasonic flowmeter (USFM) derived sulfur hexafluoride (SF6) and helium (He) washout (SF6-HeUSFM) signals were plotted
as expirogram against percentage of total expired volume. Figure 6a: All SF6-HeUSFM signals of DTG-SBW tests (n = 42) of visit one (black lines) and
two (dashed lines) were plotted per subject. Figure 6b: AUC of the SF6-HeUSFM from three DTG-SBW tests were plotted per test occasion and subject
with a single symbol for each subject. Intra-individual changes of AUC between visit one and two were tracked via connecting lines.
doi:10.1371/journal.pone.0017588.g006

Tidal Single Breath Washout of Two Tracer Gases
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diffusion front for SF6 arises more distal than for He. Greater

structural asymmetries in lung periphery and the Peclet number

describing the ratio of convection and diffusion transport of gases

contribute to the differing distributions of SF6 and He. In healthy

subjects these gas transport mechanisms result in a non-linear

washout relationship of SF6 and He which may be altered in small

airway disease most likely due to structural alterations in lung

periphery [8;9;19;22;35–37]. We assume that these mechanisms

determined the shape of the DTG-SBW curve in our study.

During expiratory phase I representing absolute dead space, a

‘‘negative’’ MM signal reflecting relatively more He than SF6

washout was observed (figure 2). Subsequently the ‘‘positive’’ MM

signal reflected relatively more SF6 than He washout during the

bronchial and alveolar phases (figures 2 and 3). These findings are

consistent with MS based SBW studies using SF6 and He in

healthy adults [9;21].

Limitations and open questions
We did not apply DTG-SBW tests in children or diseased

subjects. Thus further studies supporting its feasibility are needed.

However, tidal breathing lung function tests have been already

successfully applied in healthy and diseased young children

[6;15;23;30].

As MMUSFM depends on humidity and temperature, sidestream

sampling was applied to address this issue [17;18;38]. Compared

to mainstream techniques, sidestream sampling introduces signal

delay and slightly increases dead space [23]. In our study, system

inherent VI and up to 44% increase of technical dead space on

either side of the MM sampling tube did not affect the shape of the

DTG-SBW curve. This suggests that within these volume limits

SF6 and He transport mechanisms are not significantly altered by

increased dead space, i.e. gas bulks of SF6 and He may rather flow

by convection than diffusion [19]. Further data are necessary to

identify potential confounders of the DTG-SBW curve such as

breathing pattern, lung volume, and flow [39;40]. These issues,

however, apply to MBW tests or MS and other USFM setups as

well [17].

We propose AUC as first and straightforward index to quantify

the shape of the SF6 and He washout curve, but suggest that this

complex washout relationship would be best explained by

appropriate modelling allowing more information on lung

physiology to be obtained. Complementary data on airway disease

may be gathered comparing DTG-SBW indices with diffusion

indices derived from upcoming sophisticated lung imaging

techniques, e.g. hyperpolarized helium magnetic resonance

imaging [41], or additional lung function tests, such as MBW,

vital capacity SBW or electrical impedance tomography [42].

Conclusion
Relative change in SF6 and He washout may be viewed as a

marker of functional changes in lung periphery, making it

potentially sensitive to pathological processes affecting the

structure of this ventilation zone. We have developed a fast,

reliable, and straightforward USFM based SBW method, which

provides valid information on SF6 and He washout patterns during

tidal breathing in healthy adults. This easy SBW test has potential

for widespread use in clinical and research settings.
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