Henne, Paul Daniel; HU, FENG SHENG; CLELAND, DAVID T. (2007). Lake-effect snow as the dominant control of mesic-forest distribution in Michigan, USA. Journal of Ecology, 95(3), pp. 517-529. Blackwell 10.1111/j.1365-2745.2007.01220.x
Text
JEcol_95_517.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (499kB) |
1Recent studies demonstrated the sensitivity of northern forest ecosystems to changes in the amount and duration of snow cover at annual to decadal time scales. However, the consequences of snowfall variability remain uncertain for ecological variables operating at longer time scales, especially the distributions of forest communities.
2The Great Lakes region of North America offers a unique setting to examine the long-term effects of variable snowfall on forest communities. Lake-effect snow produces a three-fold gradient in annual snowfall over tens of kilometres, and dramatic edaphic variations occur among landform types resulting from Quaternary glaciations. We tested the hypothesis that these factors interact to control the distributions of mesic (dominated by Acer saccharum, Tsuga canadensis and Fagus grandifolia) and xeric forests (dominated by Pinus and Quercus spp.) in northern Lower Michigan.
3We compiled pre-European-settlement vegetation data and overlaid these data with records of climate, water balance and soil, onto Landtype Association polygons in a geographical information system. We then used multivariate adaptive regression splines to model the abundance of mesic vegetation in relation to environmental controls.
4Snowfall is the most predictive among five variables retained by our model, and it affects model performance 29% more than soil texture, the second most important variable. The abundance of mesic trees is high on fine-textured soils regardless of snowfall, but it increases with snowfall on coarse-textured substrates. Lake-effect snowfall also determines the species composition within mesic forests. The weighted importance of A. saccharum is significantly greater than of T. canadensis or F. grandifolia within the lake-effect snowbelt, whereas T. canadensis is more plentiful outside the snowbelt. These patterns are probably driven by the influence of snowfall on soil moisture, nutrient availability and fire return intervals.
5Our results imply that a key factor dictating the spatio-temporal patterns of forest communities in the vast region around the Great Lakes is how the lake-effect snowfall regime responds to global change. Snowfall reductions will probably cause a major decrease in the abundance of ecologically and economically important species, such as A. saccharum.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Palaeoecology 08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) |
UniBE Contributor: |
Henne, Paul Daniel |
Subjects: |
500 Science > 580 Plants (Botany) |
ISSN: |
0022-0477 |
Publisher: |
Blackwell |
Language: |
English |
Submitter: |
Peter Alfred von Ballmoos-Haas |
Date Deposited: |
13 Jul 2016 13:14 |
Last Modified: |
05 Dec 2022 14:57 |
Publisher DOI: |
10.1111/j.1365-2745.2007.01220.x |
BORIS DOI: |
10.7892/boris.83985 |
URI: |
https://boris.unibe.ch/id/eprint/83985 |