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Abstract

During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion
of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its
clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded
parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a
blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight
regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is
known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally
analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage
of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully
established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the
transcription start site was mapped by rapid amplification of cDNA ends (59-RACE). Using promoter truncation experiments
and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter
contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The
identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene
expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium
liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative
mutant proteins and overexpression of proteins normally active in other life cycle stages will help to understand the
function of the proteins investigated.
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Introduction

Malaria remains one of the main health burdens in developing

countries, especially in sub-Saharan Africa. Much recent work on

developing vaccines against the Plasmodium parasite, the causative

agent of the disease, has concentrated on the liver stage of the

parasite [1]. The liver stage is particularly attractive for vaccine

development as it presents a chokepoint in parasite development

where low numbers of parasites are present [2]. However, there is

a great discrepancy between the Plasmodium liver stage being the

main target of vaccine development against malaria and our

knowledge of the biology of the parasite at this particular stage. To

facilitate studies on the liver stage of development, we sought to

generate a highly specific liver stage reporter.

Transcriptomic and proteomic analyses of the parasite at

various life cycle stages suggest stage-specific regulation of gene

expression but nothing is known about the regulation of

transcription during the liver stage. Recently, the ApiAP2

transcription factor family has been suggested to regulate stage-

specific gene expression in the human parasite Plasmodium

falciparum [3,4]. However, these in vitro investigations thus far have

only been conducted on the blood stage of the parasite. Recently,

ApiAP2 regulators for sporozoite and ookinete development in P.

berghei have been characterized, showing for the first time that

there are stage-specific transcription factors governing parasite

development [5,6]. However, no liver stage-specific promoters

have thus far been described. There may indeed be a relatively

small number of tight promoters specific for this stage, due to the

similarities between the liver stage and other stages and

particularly as the ultimate end of both liver and asexual blood

stage development is the production of merozoites. The aim of this

study was to identify in the rodent model parasite P. berghei a liver

stage-specific promoter and to verify its stage-specific expression

using GFP and luciferase reporter assays.
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Results

In search of a truly liver stage-specific promoter, we analyzed

mRNA expression of a number of genes predicted to be liver

stage-specifically expressed in Plasmodium yoelii [7] and concentrat-

ed on PY05129. This gene has been identified in a recent DNA

microarray study as expressed solely during the liver stage [8]. We

chose to analyze the P. berghei ortholog of PY05129,

PB103464.00.0 (PBANKA_100300 in GeneDB), which we find

to also be exclusively expressed during the mid to late P. berghei

liver stage (Figure 1). PB103464.00.0 and PY05129 have a close

homology on an amino acid level and their upstream putative

promoter regions also show a close similarity. The most recent

release of PlasmoDB (version 7.0, September 2010) shows

PBANKA_100300 to have syntenic homologs in all sequenced

Plasmodium genomes, with the P. falciparum homolog being

PFD0260c. Between the start codon of the PB103464.00.0 gene

and the next gene upstream, a region of 989bp is present.

(Supplementary Figure S1). We concluded that the minimal

promoter of PB103464.00.0 is located within this region and

cloned the 2989/+1 gDNA fragment into a P. berghei transfection

plasmid upstream of gfp (Figure 2A, upper panel) to confirm its

stage-specific activity. The generated plasmid pGFP103464 was

transfected into P. berghei and a parasite strain, PbGFP103464, was

established. A parasite line in which GFP is constitutively

expressed under the control of the pbeef1aa promoter (abbreviated

in plasmid and parasite names as ef1a) was chosen as a control for

promoter activity (Figure 2A, lower panel). Live imaging of blood

stages, oocysts and of in vitro liver stages was performed. GFP

expression driven by the PB103464.00.0 59 upstream region was

restricted to the liver stage (Figure 2B, upper panel), confirming

that the chosen 59 upstream region indeed contains a liver stage-

specific promoter. As expected, GFP expression under the control

of the constitutive pbeef1aa promoter was detectable in all stages

analyzed (Figure 2B, lower panel). During parasite development

in hepatocytes, GFP expression under the PB103464.00.0

promoter was strongly upregulated at 48 hpi and continued until

merosome formation, the end-point of liver stage development.

Although the GFP expression findings supported our mRNA

transcription studies, the analysis of GFP expression has its

limitations as it does not allow an accurate quantitative analysis of

promoter activity. We therefore decided to clone the promoter

region in front of the firefly luciferase (FL) gene [9] and to

normalize the measurement of firefly luciferase activity by

including in the same plasmid a Renilla luciferase (RL) gene [10]

under the control of a constitutive promoter (Figure 3A). This

plasmid was named pFL103464RLef1a. As a control, a further

plasmid was constructed in which both luciferase genes were under

the control of the constitutive promoter (pFLef1aRLef1a)

(Figure 3A). Both plasmids were transfected separately into P.

berghei and the parasite strains PbFL103464RLef1a and PbFLef1aR-

Lef1a, were established. The plasmids used allow integration into

the P. berghei d/c ssu rRNA locus, but are also able to persist in the

parasite population as episomes. As both luciferases are encoded

on each plasmid and therefore the genes are always present in

equal numbers, it was not necessary to analyze genetically whether

the parasite populations contained integrated or episomal gene

copies or (as is most likely) a mixture of both. Transfection of a

single plasmid carrying both luciferase genes has great advantages

over traditional co-transfection of two plasmids each containing a

single luciferase gene, which results in a mixture of single- and

double-transfectants, meaning that cloning must be performed to

produce a population where each plasmid is integrated only once.

In P. berghei, such limiting dilution cloning requires the use of

numerous mice. As transfection with the single plasmids described

above results in parasites that contain equal copy numbers of each

gene, this strategy greatly simplifies later analysis and also

potentially saves large numbers of mice.

Using the above parasite strains, we determined the relative

expression level of FL compared to RL in the blood stage, in

oocyst and salivary gland sporozoites and in the liver stage (in

infected hepatoma cells) at 48 hpi using a dual-luciferase assay

(Figure 3B). FL expression of the parasites PbFL103464RLef1a was

absent during the blood and mosquito stage and was seen to only

be high during the liver stage, confirming the GFP expression

results and also the transcription profile of the PB103464.00.0

gene determined by RT-PCR (Figures 1, 2). Most importantly,

the luciferase assays clearly show that the PB103464.00.0

promoter region is very tightly silenced during blood and insect

stages. During the liver stage in vitro, the PB103464.00.0 promoter

region is significantly more active at 48 hpi than the constitutive

pbeef1aa promoter (P#0.001 by two-tailed unpaired t-test). The

PbFLef1aRLef1a parasites, in which both luciferase genes are

independently expressed under the pbeef1aa promoter showed

constitutive expression of both luciferase genes. Unexpectedly,

however, the ratios of FL/RL expression varied at different life

cycle stages. The reason for this variation is not clear but since

both luciferase genes are transcribed under the control of the

same constitutive promoter, it is likely that differing protein

stability of the two luciferases at different life cycle stages is

responsible.

As an additional control, we decided to compare the liver stage-

specific promoter to a promoter that is mainly active in

another parasite stage. To this end, we first performed database

searches and RT-PCR assays and identified PB000869.01.0

(PBANKA_040200, abbreviated in plasmid and parasite names

as 869), as being expressed at a low level in the liver relative to

other stages (data not shown). We cloned the 59 upstream region of

this gene in front of the FL resulting in the plasmid pFL869RLef1a

(Figure 4A). Transfection of this plasmid into P. berghei resulted in

the generation of the parasite strain PbFL869RLef1a. The

PbFL869RLef1a parasites showed a high firefly luciferase

expression in sporozoites but nearly no FL activity in the blood

and oocyst stage as well as in vitro in early liver stages (Figure 4B).

FL/RL expression in these parasites was compared to

that of PbFL103464RLef1a parasites (Figure 4C). Whereas

PbFL103464RLef1a parasites exhibited an increasing FL activity in

the liver stage from 24 hpi onwards, FL activity for PbFL869RLef1a

parasites was only found at 48 hpi and later stages, which roughly

correlates with the onset of merozoite formation. At very late stages

(detached cells/merosomes), FL activity of the PbFL103464RLef1a

Figure 1. Liver stage-specific gene expression. (A) Results of RT-
PCR analysis of PB103464.00.0 mRNA expression, comparing blood
stage (BS), oocysts (Oo) and in vitro liver stage (LS) 48 hpi. Total RNA
was extracted, and RT-PCR reactions were performed with (+) or
without (2) reverse transcriptase (negative control). RT-PCR analysis of
tubulin mRNA expression served as a control.
doi:10.1371/journal.pone.0013653.g001

Plasmodium Promoter Region
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parasites appeared to again decrease, probably reflecting the

development of blood cell-infective merozoites.

Having confirmed a strict liver stage-specific activity of the

promoter region of the gene PB103464.00.0 (2989/+1) we sought

to determine possible transcription factor binding sites in this

region. Since Plasmodium mRNAs often contain long 59 untrans-

lated regions (UTRs), which are unlikely to provide potential

binding sites for transcription factors we first identified the

transcription start site (TSS) for PB103464.00.0. Using 59 RACE

technology to amplify the 59 untranslated region (Figure 5A) the

RACE products were sequenced, revealing a TSS at position

2318 (Figure 5B, C) restricting the DNA region interacting with

transcription factors to between position 2989 to 2318. By

bioinformatic analysis, we searched this region for sequence motifs

known in P. falciparum to allow binding of different ApiAP2

transcription factors [4] and identified four potential binding sites

for PB000252.02.0 (PBANKA_090960 in GeneDB, homolog of

PF11_0404), although additional non-ApiAP2 binding sites might

also exist (Supplementary Figure S2). To analyze the effect

of the individual binding sites it is important to determine the basal

transcription in the absence of these sites. To this end the 2318/

+1 region was cloned in front of the FL gene in the dual luciferase

plasmid (pFL103464(-318)RLef1a). Transfection of this plasmid into

P. berghei resulted in the generation of the parasite strain

PbFL103464(-318)RLef1a. This parasite strain did not show a

significant FL activity in liver stage parasites (Figure 6) or

any other parasite stage investigated, confirming that the actual

promoter region must be localized between position 2989

and 2318. We next generated the parasite strain

PbFL103464(2775)RLef1a to analyze whether the promoter region is

positioned between 2775 and +1. In this region two of the four

predicted PB000252.02.0 ApiAP2 binding sites were found. Two

additional sites were found between the excluded region 2989

and 2775 (Supplementary Figure S2). We detected a

significant but not complete reduction in FL activity in

the PbFL103464(2775)RLef1a parasites compared to the

PbFL103464RLef1a parasites, suggesting that both the excluded

sequence 2989/2775 and the 2775/+1 region contain functional

portions of the promoter. Deletion experiments do not allow the

exact identification of transcription factor binding sites and

therefore we mutated one predicted ApiAP2 binding site (at

position 2825/2818), with the sequence TAGAACA [4]. To our

surprise, the mutation resulted in an increased luciferase activity,

suggesting that the transcription factor binding to this particular

ApiAP2 site acts as a repressor (Figure 6). Interestingly, the

mutation did not result in increased luciferase levels in other parasite

stages and so the liver stage-specific transcription profile was

maintained.

Our data have identified a promoter region derived from

PB103464.00.0 that is able to direct exclusively liver-stage

expression of genes of interest. In future experiments we will

investigate the role of the predicted transcription factor binding

Figure 2. Promoter-dependent GFP expression. (A) The vector pGFP103464 with GFP under the control of the promoter region 103464 and the
vector pGFPef1a with GFP under control of the ef1a promoter were generated and their transfection resulted in the parasite lines PbGFP103464 and
PbGFPef1a. (B) Live imaging of PbGFPef1a and PbGFP103464 parasites at different life cycle stages. HepG2 cells were infected with transgenic P. berghei
sporozoites and analyzed at different time points after infection (hpi, hours post-infection). GFP expresion was monitored by fluorescent microscopy.
DNA was stained with Hoechst 33342. Arrows indicate young liver stage parasites. (iRBC: infected red blood cell; LS: liver stage) Scale bars: 10 mm.
doi:10.1371/journal.pone.0013653.g002
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sites in more detail as well as seeking to identify additional sites by

bioinformatic and experimental approaches.

Discussion

Several liver stage-specifically expressed genes have been

described in the literature [11,12,13,14] but previous studies have

not analyzed the promoters of these genes. We describe here for

the first time a promoter region that is only active during the liver

stage. In vitro it is only possible to achieve relatively low rates of

hepatoma cell infection by Plasmodium sporozoites, which makes

biochemical analysis of the liver stage very difficult. Luciferase

reporter assays have proved to be extremely useful for the

detection of minute numbers of parasites in the blood of infected

mice [15] and therefore we decided to employ a dual-luciferase

assay to quantitatively analyze promoter activity in vitro. Using this

very sensitive technique, it is possible to analyze promoter activity

of any given gene in all life cycle stages.

The results of this study verified that the 2989/2318 promoter

region of PB103464.00.0 is sufficient for gene expression to be

restricted to the liver stage. This is perhaps surprising since

Plasmodium parasites have been seen to use other cis-regulatory

elements around the TSS, in introns and in the 39 region of genes

to control mRNA expression [16,17,18,19]. Epigenetic alterations,

which might differ substantially in the transfected versus the

endogenous promoter region, due to their differing positions

within the genome, seem not to play an important role in the case

of the PB103464.00.0 promoter region.

We further showed that the deletion of the 2989/2775 region

caused a significant reduction in but not complete abolishment of

luciferase expression, suggesting that the minimal promoter

includes distantly situated motifs. Interestingly, the deletion did

not result in an altered expression profile in other parasite stages

indicating that the remaining 2775/+1 region is sufficient to

guarantee liver stage-specific expression, albeit at a reduced level.

Bioinformatic analysis of the entire 2989/2318 region

revealed the existence of four putative binding sites that could

be recognized by the ApiAP2 protein PB000252.02.0, based on

homology with the P. falciparum protein PF11_0404. Two were

found in the 2989/2775 region and the two others in the 2775/

2318 region. It has been suggested that ApiAP2 transcription

factors are involved in stage-specific gene regulation since several

Figure 3. Generation of plasmids and transgenic P. berghei parasites for use in dual-luciferase assays. (A) The vector pFL103464RLef1a with
FL under the control of the promoter region 103464 and RL under the control of the ef1a promoter was generated and its transfection resulted in the
parasite line PbFL103464RLef1a. The plasmid pFLef1aRLef1a with FL and RL under the control of the ef1a promoter was used to obtain control parasites
PbFLef1aRLef1a. Diamonds represent 39UTRs, which in all cases were from the pbdhfr/ts gene. In the upper plasmid, the selection marker (tgdhfr/ts) is
displayed but for simplicity in all other plasmid diagrams only those genes and features directly related to the experiments described are displayed.
(B) Comparison of the luciferase activity (FL expression relative to RL expression) of transgenic parasites during the blood stage (BS), in oocysts (Oo),
in salivary gland sporozoites (Sp) and in vitro in the liver stage (LS), 48 hours post-infection (hpi) of hepatoma cells. Standard deviation values (shown
as error bars) were determined from three different measurements. Statistical analysis was performed using two-tailed unpaired t-tests (*P,0.05;
***P,0.001).
doi:10.1371/journal.pone.0013653.g003

Plasmodium Promoter Region
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P. falciparum ApiAP2 proteins show no detectable gene expression

during the blood stage [4]. It is tempting to speculate therefore,

that these ApiAP2 proteins would play important roles during

either the mosquito or liver stages. Two reports have already

documented that the elimination of a single ApiAP2 gene is

sufficient to prevent the development of either ookinetes or

sporozoites [5,6]. Interestingly, homologs of these genes in P.

falciparum are expressed additionally in the asexual stages, implying

that they have roles across diverse stages. Of course, it is possible

that other transcription factors might also be involved in regulating

expression via the 2989/+1 region, including the canonical

TATA-box-binding protein that has been identified in the P.

falciparum genome [19,20]. The finding that a mutation of one

predicted ApiAP2 binding site in our promoter of interest lead to

an increase in luciferase activity suggests that ApiAP2 proteins

could have not only an activator but also a repressor function in

the control of PB103464.00.0 expression.

A systematic dissection of the PB103464.00.0 promoter region is

a major undertaking since it includes the generation of numerous

parasite strains, which must all be generated by transfection of

blood stage schizonts, requiring many mice. Additionally, the

parasites need passage through mosquitoes before they can finally

be used to infect hepatic cell lines. Sequential deletion of promoter

regions will provide useful information about the possible

transcription factor binding sites. However, since our results

suggest that several regions are likely involved in regulating

expression and because deletions affecting the distance of putative

elements could disturb the functionality of putative control

elements, other techniques such as linker scanning approaches

may also have to be applied [21]. Bioinformatic approaches to

search for motifs common to exclusively liver stage promoters will

allow for focused mutation-based strategies, limiting the number of

parasite strains to be generated and hence the usage of mice. A

prerequisite for this approach is the identification of other liver

stage-specific promoters and their comparison with the

PB103464.00.0 promoter region. In a first attempt, we compared

this promoter with the 59 upstream region of the liver stage specific

protein LISP1 [22] and found that the LISP1 promoter, like that

of PB103464.00.0, contained putative binding sites for the ApiAP2

protein PB000252.02.0 (the homolog of PF11_0404). However, no

Figure 4. Comparison of the activities of promoter regions of the genes PB000869.01.0 and PB103464.00.0 during different life
cycle stages. (A) Plasmid map of pFL869RLef1a, used to generate the parasites PbFL869RLef1a, which express Renilla (RL) and firefly (FL) luciferases
under the control of the pbeef1aa and the PB000869.01.0 promoter region, respectively. The diamond represents the 39UTR of the pbdhfr/ts gene. (B)
PB000869.01.0 promoter activity in respect to the constitutive promoter pbeef1aa, which was set to 100%. PbFL869RLef1a and PbFLef1aRLef1a parasites
were harvested at different life cycle stages (BS; blood stage, Oo; oocysts, Sp; salivary gland sporozoites, LS 24 hpi; liver stage 24 hours post-infection
in vitro), the ratio of FL to RL expression was determined and the percentage of luciferase activity of PbFL869RLef1a parasites was calculated relative to
that of PbFLef1aRLef1a parasites. (C) Comparison of luciferase activity in the parasites PbFL103464RLef1a and PbFL869RLef1a during the liver stage, as
determined by the ratio of FL to RL expression. Standard deviation values (shown as error bars) were determined from three different measurements.
doi:10.1371/journal.pone.0013653.g004
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other homologous regions were found by simple comparison of the

promoters and it might be necessary to employ other methods to

identify additional transcription factor binding sites.

Proteins expressed solely at the liver stage are themselves

interesting for study and might be useful candidates for subunit

vaccine approaches. These proteins are likely to reveal novel liver

stage-specific pathways or metabolic processes that could be

targeted to eliminate or attenuate the parasite during this stage.

For example, it has recently been demonstrated that fatty acid

metabolism is essential only for liver stage parasites but not for

other stages [23]. Given the current focus on the possibility of

vaccines targeted against liver stage parasite development, using

either radiation or genetically attenuated parasites, such studies

are likely to provide new leads for vaccine development.

To better understand the biology of the Plasmodium liver stage, it

is essential to analyze the functions of proteins expressed at this

stage. To this end reverse genetics stands out as an excellent tool,

although its utility is frequently complicated in Plasmodium.

Transfection must be performed during the blood stage and any

genes with an essential function here cannot be targeted by

traditional knockout approaches [24]. For study in the liver stage,

the protein of interest must also be dispensable during develop-

ment within the mosquito. Recently a very elegant system has

been developed that allows the control of the expression levels of a

protein of interest by its fusion with a destabilization domain. This

system has been used successfully in Plasmodium falciparum blood

stage parasites [25]. However, the system relies on the constant

application of the ligand Shld1, which binds to the fused

Figure 5. Identification of the transcription start site (TSS) of the promoter region of PB103464.00.0. (A) Schematic representation of
the promoter region. A flag at position 2318 shows the TSS. The primers used for the 59-RACE are indicated. (B) The RACE product, obtained from the
second PCR amplification, was analyzed by gel electrophoresis. (C) The 59 UTR of PB103464.00.0 with the start codon, shown in bold. The arrow
indicates the TSS of the promoter region.
doi:10.1371/journal.pone.0013653.g005

Figure 6. Promoter deletion affects expression of FL. Parasites transfected with the plasmid pFL103464RLef1a carrying the complete promoter
region (2989/+1), promoter deletions (PbFL103464(2775)RLef1a (2775/+1) and PbFL103464(2318)RLef1a (2318/+1)) or a promoter mutation
(PbFL103464(*825)RLef1amut-825/2818)were passed through mosquitoes and used for HepG2 cell infections. 48 hpi cells were harvested and dual-
luciferase assays of the cell extracts were performed. The FL/RL ratio obtained from extracts of parasites transfected with the plasmid pFL103464RLef1a

was set to 100% and the FL/RL ratio obtained from the parasite strains transfected the other constructs was calculated.
doi:10.1371/journal.pone.0013653.g006
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destabilization domain, until protein degradation is required and

as this is unlikely to be possible during mosquito stages, the

method cannot yet be used for studying the consequences of

protein depletion during either the mosquito or liver stages.

Conditional or inducible knockouts are useful methods to study

essential genes [24,26] but these systems rely either on the stage-

specific expression of a recombinase or other regulatory proteins.

The liver stage-specific promoter described in this study might be

useful for the expression of such proteins. A liver stage-specific

promoter could also be used for the expression of dominant-

negative mutant proteins to study protein function specifically in

the liver stage or for the expression of proteins that cause adverse

effects on the parasite when expressed constitutively. In summary,

the identification and the use of a liver stage-specific promoter of

P. berghei will have a great impact in the analysis of the parasite

liver stage, an area fundamentally lacking in understanding.

Materials and Methods

Experimental animals and parasites
Mice used in experiments were of the NMRI strain, between 6

and 10 weeks of age and were bred in-house at the Bernhard

Nocht Institute for Tropical Medicine (Hamburg, Germany) or

supplied by Charles River Laboratories. All animal work was

conducted in compliance with regulations created and approved

by the ethical committee of Hamburg state authorities (Nr. FI

28/06).

RT-PCR
Total RNA was isolated from 0.05% saponin-treated (Sigma)

blood stage parasites, 20 infected mosquito midguts day 14 after

infection and infected HepG2 cells 48 hours after infection using

the NucleoSpinH RNA Extract Kit II (Macherey-Nagel). First

strand cDNA was synthesized using random primers (Invitrogen)

and SuperscriptTMII reverse transcriptase (Invitrogen) according

to the manufacturer’s instructions. Target cDNAs were amplified

using GoTaqH DNA polymerase (Promega) and the following

primer sets: 59-AACAGCAATATATCGTCACCAAG-39 and 59-

GCACACGGAAATCATTTTGTT-39. As in internal control, P.

berghei tubulin cDNA was amplified using the primer 59-

TGGAGCAGGAAATAACTGGG-39 and 59- ACCTGACA-

TAGCGGCTGAAA-39.

Mapping of the transcription start site (59-RACE)
The transcription start site (TSS) of the promoter region 103464

was determined by 59 rapid amplification of cDNA ends (59-

RACE) based on the CapFinder method by Schramm et al., 2000

[27]. 1 mg RNA of P. berghei infected HepG2 cells isolated 48 hpi

(NucleoSpinH RNA II Kit, Macherey-Nagel) was reversed

transcribed by SuperscriptTMII (Invitrogen) using a gene-specific

primer R197 59-ACATCCGTATTTTTCCTATTGACA-39 and

the CapFinderB [27]. cDNA was then amplified by PCR using

a gene-specific nested reverse oligonucleotide R130 59-

TGCTGTTGTATTTTTGTTTTTCATC-39 and the 59-Primer

[27]. The amplification products were cloned into the pGEMH-T

easy vector (Promega), DNA was extracted from 10 individual

transformants and sequenced.

Cell culture and in vitro infection of HepG2 cells
Human hepatoma cells (HepG2) were obtained from the

European cell culture collection and were maintained in complete

MEM (cMEM) with Earle’s Salts Medium supplemented with 10%

heat-inactivated FCS (foetal calf serum), 1% L-Glutamine, 1%

penicillin/streptomycin (all purchased from PAA Laboratories,

Austria). Cells were kept at 37uC in a 5% CO2 cell incubator and

split every 3–4 days by trypsinization.

16105 HepG2 cells were seeded into glass bottom dishes

(WillCo Wells BV, Netherlands) for live cell imaging or 56104

HepG2 cells into each well of a 24 well plate. Sporozoites were

prepared from dissected salivary glands of P. berghei-infected

Anopheles stephensi mosquitoes and incubated in media with HepG2

cells for 1–2 hours. After washing, the cells were incubated with

cMEM, as described above, containing Amphotericin B at

2.5 mg/ml (PAA Laboratories, Austria) at 37uC and 5% CO2

for indicated times.

Live cell imaging and live staining
Live imaging was performed with a Zeiss Axiovert 200 inverted

microscope and images taken and processed with the Improvision

software Openlab 5.0.1. Cell and parasite DNA staining was

carried out by incubation with 1 mg/ml Hoechst 33342 (Sigma) for

20 min at 37uC and 5% CO2.

For live imaging of P. berghei blood stages, tail blood was taken

from an infected mouse, mixed with room temperature cMEM

(see above) containing 1 mg/ml Hoechst 33342 (Sigma) and

microscopically analyzed. Midguts of infected A. stephensi mosqui-

toes were dissected for live imaging and microscopically

investigated.

Dual-luciferase assays
To determine the blood stage luciferase expression in the

transgenic P. berghei lines, 10 ml of tail blood of an infected mouse

was lysed for 15 min at 30uC with 100 ml 1x Passive Lysis Buffer

(PLB) obtained from the Dual-LuciferaseH Reporter (DLRTM)

Assay System (Promega). For measuring luminescence in the

mosquito stage of the parasite, 5 midguts (day 14 after infection) or

salivary glands of three infected A. stephensi mosquitoes were

removed and lysed with 100 ml 1x PLB as above. For analyzing

the liver stages of the transgenic P. berghei lines, HepG2 cells were

infected with sporozoites (see above). At different time points after

infection the culture medium was removed and the cells washed

once with PBS, before lysis in 100 ml 1x PLB for 15 min at 30uC.

Samples were processed according to the protocol of the kit.

Briefly, after centrifuging the samples for 30 s at 12,000 g, 20 ml of

the supernatant was added to 100 ml of Luciferase Assay Reagent

II. Luminescence was measured in a single tube Junior LB 9509

luminometer (Berthold Technologies). After a 10 second mea-

surement period 100 ml 1x Stop & GloH Reagent was added to the

tube to stop the firefly and activate the Renilla luminescence. The

output of the luciferase assays was in relative light units (RLU). All

assays were performed in triplicate. Either uninfected mosquitoes

or HepG2 cells were used as negative controls, as appropriate.

Samples can be collected and stored at 220uC to perform one

combined dual luciferase assay.

For calculation of the promoter activity, the mean RLU value of

control samples was subtracted from the mean RLU value of

experimental samples. The ratio of the firefly and the Renilla

luciferase RLUs indicated the activity of the promoter of interest.

Promoter activity curves were generated and statistical analysis of

the data performed using MS Office Excel and the GraphPad

Prism software (GraphPad Prism software Inc., US). Significance

levels were calculated with two-tailed unpaired t-tests.

Generation of transgenic P. berghei parasites
For analyzing the promoter region of PB103464.00.0,

the forward oligonucleotide 59-CGGATATCGTTGCAT-

TATCGTCAAAAGTG-39 and the reverse oligonucleotide 59-

CGGGATCCTTTTTATGTGTAAAAAAGTAAAATGATT-39
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were used to amplify a fragment of 989 bp by PCR using PhusionH
Taq High-Fidelity DNA polymerase (Finnzyme) from P. berghei

gDNA (underlined nucleotides represent EcoRV and BamHI

restrictions sites, respectively). The promoter region of

PB103464.00.0 was used to replace the pbeef1aa promoter in

EcoRV-BamHI-digested pL0017 vector (obtained through the MR4

(MRA-786), deposited by C. Janse) to create the plasmid pGFP103464.

For the dual-luciferase assay, plasmids with the firefly (FL) and

the Renilla (RL) luciferase were generated. The firefly luciferase

gene was amplified by PCR from pBI-GL (Clontech) and was used

to replace the GFP in the pL0017 vector to generate pFLef1a. The

same procedure was performed to generate the plasmid pRLef1a,

amplifying the Renilla luciferase (RL) gene by PCR from phRL-

CMV (Promega). The pbeef1aa promoter of the pFLef1a plasmid

was replaced with the promoter region of PB103464.00.0 to create

plasmid pFL103464. For the generation of the double-luciferase

plasmid, the entire cassette for RL expression under the control of

the pbeef1aa promoter (including the 39 UTR of Pbdhfr) was

amplified by PCR and ligated into pFL103464 and pFLef1a plasmids

to generate pFL103464RLef1a and pFLef1aRLef1a, respectively.

The plasmid pFL869RLef1a was generated similarly having first

amplified fragment 869, a 1 kb fragment upstream of PB000869.01.0,

by PCR using the primers 59-GGCCGCGGCCGCGTCTAAAG-

CATACAATAACTCTTAC-39 and 59-CTAGCCTAGGTTTG-

TATATTTCTGAGATTCCAAAAAAA-39.

For further analysis of the 103464 promoter region, the 59-

truncation fragments of the promoter were obtained by PCR

using the reverse primer 59-CGGGATCCTTTTTATGTG-

TAAAAAAGTAAAATGATT-39 and either the forward primer

59-GCGCGGCCGCAAAATAAAACGAATAACGATGTGA-39

(truncation -775/+1) or 59-GCGCGGCCGCATATAAAAAACA-

CACTAAAAATATATAATTAAAT-39 (truncation 2318/+1)

(underlined nucleotides represent NotI restriction site). Mutagenesis

PCR was performed to mutate the putative ApiAP2 binding site at

2825/2818 of the 103464 promoter from TAGAACAA to

TTATTATT. The truncated and mutated promoter

fragments were used the replace the original promoter region

of PB103464.00.0 in the plasmid pFL103464RLef1a and

transfection resulted in the parasites PbFL103464(2775)RLef1a,

PbFL103464(2318)RLef1a and PbFL103464(*825)RLef1a.

P. berghei schizont stages (ANKA strain) were transfected with

ApaI-SacII-linearized plasmid DNA (5–10 ng). Transgenic para-

sites were selected by pyrimethamine treatment [28].

Supporting Information

Figure S1 Detailed cloning strategy for testing activity of the

PB103464.00.0. promoter region. The entire region between gene

PB103463.00.0. and PB103464.00.0. was cloned in the plasmid

pL0017 in front of the gfp cDNA.

Found at: doi:10.1371/journal.pone.0013653.s001 (0.08 MB TIF)

Figure S2 DNA sequence of the PB103464.00.0. promoter

region. The transcription start site at position -318 and potential

ApiAP2 binding sites are labeled in colours. Since no data are

available on P. berghei ApiAP2 transcription factors, the P. falciparum

ApiAP2s, which would bind the indicated sequences are depicted.

Found at: doi:10.1371/journal.pone.0013653.s002 (1.30 MB TIF)
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