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We perform density functional calculations to investigate the structure of the inter-metallic alloy
FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature
antiferromagnetic (AFM) phase to a ferromagnetic (FM) phase at 350K, and its strain dependence
is of interest for tuning the transition temperature to the room-temperature operating conditions
of typical memory devices. We find an unusually strong dependence of the structural energetics
on the choice of exchange-correlation functional, with the usual local density approximation (LDA)
yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in
better agreement with the bulk experimental structure. Using the GGA we show the existence of
a metastable face-centered-cubic (fcc)-like AFM structure that is reached from the ground state
body-centered-cubic (bcc)-like AFM structure by following the epitaxial Bain path. We show that
the behavior is well described using non-linear elasticity theory, which captures the softening and
eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with
this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice
instability, which should be observable at low temperature.

I. INTRODUCTION

The inter-metallic compound FeRh exhibits an un-
usual first-order phase transition from an antiferromag-
netic (AFM) structure at low temperature to a ferromag-
netic (FM) structure above roughly 350 K1,2. The phase
transition is isostructural, with both phases having the
CsCl structure (Fig. 1). Due to its structural similar-
ity (ignoring the different atom types) with the bcc Fe
structure, we will refer to the CsCl structure as “bcc-like”
throughout this manuscript, while the metastable CuAu
structure is referred to as “fcc-like” for the same reason.
The AFM state (Fig. 1a) is characterised by magnetic
moments at the Fe sites of around 3µB and negligible
moments at the Rh sites, while the FM state (Fig. 1b)
shows slightly larger moments (around 3.3µB) on the Fe
sites and Rh also acquires a moment of about 1µB

3. The
phase transition is accompanied by an increase in volume
of about 1% and a large drop in resistivity2.

In recent years interest in FeRh has been rejuvenated
following its growth in thin-film form, and the associ-
ated potential for integration into device architectures.
A number of technologically promising behaviors exploit-
ing the coupling between magnetism, resistivity and vol-
ume / strain have been demonstrated. These include
magnetic-field writing with resistive reading in FeRh
films grown on MgO4, small voltage switching between
AFM and FM states for FeRh on ferroelectric BaTiO3
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and electric-field phase and resistivity control for FeRh
on piezoelectric PMN-PT6.

A number of density functional theory (DFT) calcu-
lations have already been performed to investigate the
properties of FeRh. Early work based on the local den-
sity approximation (LDA) studied the relative energet-
ics of different magnetic phases and found the ground
state to be of type AFM-II (we will refer to this as AFM

FIG. 1. Magnetic phases of FeRh: a) antiferromagnetic
(AFM-II) and b) ferromagnetic order.

in the following)7. At larger than equilibrium volumes
the FM state is energetically preferred within the LDA,
which is consistent with the volume increase associated
with the AFM to FM phase transition. Subsequent work
argued that in analogy to Fe, gradient corrected func-
tionals (GGA) are required for the correct description of
FeRh8. It was shown that while LDA and GGA func-
tionals predict similar structures, the magnetic moments
on Fe in the AFM phase are significantly larger and in
better agreement with experiment using GGA9. Later
work showed that close to the transition volume, the
Fe moments are unstable with respect to canting when
treated at the LDA level whereas a semi-local GGA func-
tional stabilises the collinear FM phase10. Using non-
collinear LDA calculations it was argued that the Rh
moment cannot be described within the Stoner picture
as the spin density shows spatial variations around the
Rh atom11. This study also established the importance
of strong Fe-Rh hybridisation and showed that the Fe-
Fe antiferromagnetic interaction is strongly volume de-
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pendent, whereas the ferromagnetic Fe-Rh interaction re-
mains fairly constant with volume.

Following the recent interest in coherent epitaxial
strained FeRh films, some density functional studies have
been carried out for strained systems. In terms of electri-
cal properties, DFT calculations suggested that injecting
holes does not significantly affect the relative stability of
the AFM and the FM phases, whereas injecting about
0.4 electrons per formula unit makes the FM phase ener-
getically favourable compared to the AFM phase5. This
was confirmed by calculations of the actual interface be-
tween ferroelectric BaTiO3 and FeRh, in which polarised
BaTiO3 injects electrons and leads to a favouring of the
FM state. The FM magnetic ordering was predicted to
have a significantly higher density of states at the Fermi
energy, and hence a higher electrical conductivity, than
the AFM ordering5,6,10–12. No significant change of the
density of states at the Fermi energy was found, however,
for small (±0.1 %) strain ranges6. It was also shown that
for very thin films (9 layers) the FM state is energetically
favoured over the AFM state9. Intriguingly, and rele-
vant for the work that we present here, Ref. 5 showed an
unusual energy lowering for the AFM phase under com-
pressive strain at the LDA level, although they did not
comment on its existence or its origin.

Here we report results of detailed DFT calculations of
the structure of FeRh under strain. We are motivated
in part by a lesser known experimental fact about FeRh,
namely that FeRh converts to a face-centered cubic (fcc-
like) structure when subjected to high velocity impact de-
formation or other strong deformation such as filing13,14.
Experimentally this phase transformation was shown to
be accompanied by disorder, which might also play a
role in the transformation, but which we neglect in the
present work as it is not well characterised at this point.
The fcc-like structure reverts to the body-centered cubic
(bcc-like) FM CsCl structure on heating above 500K and
finally to the AFM structure when cooling to room tem-
perature, suggesting a Bain path transformation between
the bcc-like and fcc-like structures. Indeed, it has been
shown using LDA TB-LMTO calculations that the AFM
fcc-like state has a lower energy than the FM bcc-like
state15, but a complete investigation of the Bain path
in the low temperature AFM phase is lacking. Under-
standing the structure and properties of FeRh under both
tensile and compressive biaxial strain at 0K is an impor-
tant first step towards modeling the finite-temperature
dynamics and hence the metamagnetic transition in co-
herent epitaxial thin films of FeRh.

Our main finding is that epitaxial strain can convert
FeRh from the ground-state AFM bcc-like phase to a
metastable AFM fcc-like phase by following the epitaxial
Bain path. The behavior manifests in the non-linear elas-
tic constants as a softening of the orthorhombic shear dis-
tortion in the AFM phase under for compressive strain.
We show that the detailed energetics of the conversion is
strongly dependent on the choice of exchange-correlation
functional. Using the GGA, which yields better agree-

ment with experiment, the transition from bcc-like to
fcc-like structure has a very small energy barrier and the
two phases have very similar energies. We predict that
the conductivities of the two phases will be very differ-
ent, based on their different densities of states but similar
Fermi velocities at the Fermi energy. Finally, our calcu-
lations reveal a phonon instability for the AFM bcc-like
structure, which we predict will lead to a dimerisation of
both Fe and Rh at low temperature.

II. COMPUTATIONAL DETAILS

Our density functional theory calculations were per-
formed using the VASP code16–19 with both the LDA
and PBE20 density functionals. The influence of corre-
lations was studied using the DFT+U method21 by ap-
plying a rotationally invariant U on the Fe d states22.
Wave functions were expanded in plane waves up to a
kinetic energy cutoff of 550 eV. PAW potentials23,24 with
Fe(4s, 3d, 3p) and Rh(5s, 4d, 4p) treated as valence elec-
trons were used. Reciprocal space was sampled using a
19x19x19 gamma-centred mesh for the 2 atom unit cell
and a 11x11x11 gamma-centred mesh for the 2x2x2 16
atom supercell. These values yield well-converged results
for forces, stress and phonon frequencies. Phonon calcu-
lations were performed using the frozen phonon method
in the phonopy code25. Biaxial strain was applied by con-
straining the length of two of the axes and varying the
length of the third axis to find its lowest energy value.

III. RESULTS & DISCUSSION

A. Dependence of properties on the
exchange-correlation functional

Before proceeding to calculate the strain-dependent
structure of FeRh, we make an extensive comparison of
the properties obtained for the bulk system using differ-
ent exchange-correlation functionals, both with literature
data from other DFT calculations, as well as with exper-
iment.

1. Structure and magetism

In figure 2 we show the energy vs. cubic lattice pa-
rameter for the non-magnetic (NM), antiferromagnetic
(AFM) and ferromagnetic (FM) phases in the cubic CsCl
structure computed using the LDA (panel a) and GGA
(panel b). (Note that the NM case is obtained by not
allowing spin-polarization in the calculation.) Table I
compares our optimised lattice parameters and relative
energies with results of previously published calculations.

According to experiment, the FM phase has a larger
lattice parameter (2.999 Å) than the AFM phase (2.984
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TABLE I. Lattice constants, energies per formula unit relative to the AFM phase and magnetic moments computed in this
work and from the literature.

Phase LDA GGA
Lattice Energy Magn. mom. Lattice Energy Magn. mom.
(Å) (meV) Fe, Rh (µB) (Å) (meV) Fe, Rh (µB)

AFM This work 2.918 − 2.85, 0.00 3.002 − 3.15, 0.00
Ref. 7 2.989 − 2.98, 0.00
Ref. 12 3.009 − 3.13, 0.00
Ref. 8 3.002 − 3.18, 0.00
Ref. 9 2.974 − 3.11, 0.00
Ref. 10 2.973 − 3.12, 0.00 2.996 − 3.28, 0.00
Ref. 5 2.922 − 3.21, 0.00

FM This work 2.935 136 2.98, 1.00 3.018 46 3.21, 1.05
Ref. 7 3.006 52 3.15, 1.02
Ref. 12 3.020 60 3.20, 1.02
Ref. 8 3.020 68 3.23, 1.00
Ref. 9 2.990 3.19, 1.05
Ref. 10 2.987 51 3.22, 1.04 3.018 6 3.31, 1.02
Ref. 5 2.935 93 3.29, 0.94

NM This work 2.868 619 2.938 1074
Ref. 7
Ref. 12 2.958 756
Ref. 8 2.959 1088

FIG. 2. Energy vs. cubic lattice parameter for the non-
magnetic (NM, blue), antiferromagnetic (AFM, black) and
ferromagnetic (FM, red) phases of FeRh.

Å)3,26. We see this also realised in our results - indepen-
dent of the density functional - as well as all previous
computational studies. Also independent of the func-
tional, the AFM phase is predicted to have a lower energy
than the FM phase, a fact that was also reported by all
previous DFT studies and is in agreement with the exper-
imental low temperature AFM ground state. In general
the values obtained from our calculations agree with pre-
vious reports, the agreement being better for GGA, while
our LDA calculations predict around 6% smaller lattice
parameters than previous calculations. We notice, how-
ever, that very similar lattice parameters to ours were
found by the most recent LDA study5.

In table I we also report the predicted magnetic mo-
ments. Our computed moments agree well with previ-
ously reported values at the LDA7,10 and GGA8–10 level,
where values of around 3 µB for the Fe and 1 µB for the

Rh moments where reported. These data show that the
computed LDA local Fe magnetic moments are about 0.2
to 0.3 µB smaller than the GGA values for both the AFM
and FM phase.

We make three observations at this point: 1) There
is a spread of -6.6% to +2.5% with respect to experi-
ment in the LDA lattice parameters and from -1.0% to
+2.1% in the GGA lattice parameters respectively. A
general rule of thumb is that LDA systematically under-
estimates lattice parameters, while GGA overestimates
them. This rule is not observed here, hinting at an ex-
treme sensitivity of the obtained lattice parameters to
the density functional and other details of the DFT cal-
culations. 2) The FM phase is predicted to be at least 46
meV per formula unit higher than the AFM phase, ex-
cept for the GGA calculations of Ref. 10 where an energy
difference of only 6 meV was found. Experimentally this
energy difference has been determined to be 5.34 meV
per formula unit27, which shows that in general DFT
calculations tend to overestimate this energy difference.
3) Under compression, both functionals tend towards a
cross-over to a non-magnetic state, indicating the pres-
ence of a magneto-volume effect.

2. Linear elastic constants

To further asses the performance of different den-
sity functionals, we report in table II the elastic con-
stants computed by fitting to isostatic as well as volume-
conserving orthorhombic and tetragonal strain in a range
of -5 to +5%28. We show values for the FM and AFM
phases, as well as NM for completeness. For the AFM
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TABLE II. Elastic constants (in GPa) for the different mag-
netic phases of FeRh computed using the LDA and GGA-PBE
functionals.

Phase LDA GGA-PBE
AFM B 246.802 195.978

C11 − C12 −12.850 44.206
C11 238.236 225.449
C12 251.086 181.243
C44 132.891 119.867

FM B 213.441 193.298
C11 − C12 66.626 87.397
C11 257.858 251.563
C12 191.232 164.166
C44 118.751 109.773

NM B 295.075 239.574
C11 − C12 −314.345 −262.455
C11 85.512 64.604
C12 399.857 327.059
C44 166.448 137.492

phase at the LDA level, the range had to be reduced
to -2.5% to +2.5% in order to obtain a good fit in
the orthorhombic strain case, hinting already that these
second-order elastic constants do not fully capture the
elastic behavior of FeRh and that we might anticipate
unusual strain-dependent behavior.

Experimentally, the AFM phase (ground state in a
Fe0.98Rh1.02 alloy) was measured to have a slightly higher
bulk modulus of 141 GPa than the FM phase (ground
state in Fe1.04Rh0.96) with 133 GPa29. Despite the
slightly different composition, we expect the elastic con-
stants in Fe1.00Rh1.00 to be comparable. Our predicted
bulk moduli are higher than these experimental values,
especially at the LDA level, where the values are over-
estimated by a factor of 1.60 and 1.74 respectively for
the AFM and FM phases. The GGA predictions are
closer to experiment but still overestimate by a factor
1.36 and 1.45 respectively. Despite this overestimation,
it is encouraging that the AFM phase is predicted to
have a higher bulk modulus than the FM phase. Our
results are also consistent with previous predictions at
the LDA level (AFM: 214.4 GPa7, 226.8 GPa12, 245.4
GPa10; FM: 201.6 GPa7, 244.0 GPa12, 236.4 GPa10) as
well as the GGA level (AFM: 197 GPa8, 219.4 GPa10;
FM: 193 GPa8, 218.1 GPa10).

The data in table II have two particularly interesting
implications, given that a material is elastically stable
only when C11 − C12 > 0. First, we see that, indepen-
dent of the functional, the NM phase does not satisfy this
criterion and is hence elastically unstable, implying that
the formation of local moments and their interaction is
required to structurally stabilize FeRh. It is somewhat
surprising, however, that the AFM phase is also elasti-
cally unstable when using the LDA functional whereas it
is stable using GGA. This incomplete stabilization could
be attributed to the smaller magnetic moments, which
yield reduced magnetic interactions at the LDA level.

The FM phase on the other hand is elastically stable in-
dependent of the functional.

We conclude at this point that based on structural pa-
rameters, elastic properties and size of the magnetic mo-
ments, the GGA yields a better description of bulk FeRh
than the LDA. In what follows, therefore we use PBE-
GGA exclusively for calculating the strain-dependent
structure. Since we focus on the ground-state AFM or-
dering, the overestimate of the energy difference to the
FM phase, which is one inherent problem of the PBE
functional, will not affect our conclusions, but we em-
phasize that care should be taken when considering the
relative stability of the different magnetic orderings using
DFT calculations.

B. Epitaxial strain dependence

In figure 3 a) we show the energy evolution of the AFM
phase as a function of epitaxial strain for the PBE func-
tional and for sake of completeness also for the LDA
functional. While under tensile strain both functionals
predict the expected approximately quadratic increase
in energy with increasing strain, the functionals behave
markedly differently under compressive strain.

Using LDA (Fig. 3b), the bcc-like CsCl structure of
the AFM phase is merely an inflection point in the energy
landscape and we observe a significant energy lowering
under compressive epitaxial strain, which is a manifes-
tation of the negative C11 − C12 value reported in table
II. A similar energy evolution was previously shown but
not commented upon5. Accompanying the reduction in
energy is an increase in the c/a ratio (Fig. 3b) towards√

2 = 1.414, indicating that a transition along the tetrag-
onal Bain path has taken FeRh from the bcc-like CsCl
structure to an fcc-like structure.

At the GGA level (Fig. 3a), which we concluded above
yields a better description of FeRh, the energy of the
AFM phase increases under compressive strain and the
bcc-like CsCl structure is predicted to be the ground
state. There exists however a metastable state at -7%
strain, only 3 meV/f.u. higher in energy than the bcc-
like CsCl structure and reached from the bcc-like phase
by overcoming a small energy barrier of 5 meV/f.u. This
is in agreement with the experimental finding that plastic
deformation can induce a transformation from bcc-like to
fcc-like, which is reversed upon heating13,14.

Another implication of this result is that FeRh should
exhibit a very non-standard behaviour under compressive
strain. At 0% strain and around 7% strain, one should
consider the material unstrained, but existing in two dis-
tinct phases (bcc-like and fcc-like respectively). If grown
at intermediate strains, the material could relax into ei-
ther of the two phases as the film grows thicker, which
could lead to phase coexistence in partially relaxed films,
reminiscent of the different phases occurring in BiFeO3

30.
Fig. 3c) reveals that the volume change is minimal for
the strain range encompassing the two energy minima,
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FIG. 3. Calculated strain dependence of the energy of the
AFM phase computed at a) the GGA-PBE and b) the LDA
level along with c) their respective c/a ratios (solid lines, left
axis) and volume (dashed lines, right axis).

further supporting a phase coexistence scenario.
In Fig. 4 we show the GGA computed electronic den-

sities of states (DOSs) for the bcc-like a) FM and b)
AFM phases respectively as well as c) the metastable
fcc-like AFM structure at 7% compressive strain. All
DOSs are reported per formula unit of FeRh so that the
DOS at the Fermi energy can be directly compared for
the different structures. The much larger DOS at the
Fermi energy for the bcc-like FM phase compared to
the bcc-like AFM phase is in agreement with previous
calculations8–10. Comparing the DOS for the metastable
fcc-like AFM structure (Fig. 4c) it is interesting to note
that this structure has almost as large a DOS at the Fermi
energy as the FM phase, when considering both up and
down spin electrons. An enhancement of the DOS at the
Fermi energy was previously predicted to occur in the FM
phase under compressive strain15. Under the assumption
that other conductivity-determining parameters such as
the Fermi velocity and the carrier lifetime do not change
significantly between the different phases, we thus predict
that a change from the AFM bcc-like to the AFM fcc-like
structure will result in a change in resistivity compara-
ble to that accompanying the AFM-FM phase transition.
During the review process a comprehensive study on the
conductivity in AFM and FM FeRh was posted, to which

FIG. 4. Electronic densities of states (DOS) for a) the bcc-
like FM, b) the bcc-like AFM and c) the metastable fcc-like
AFM phases.

we refer the reader31.
In addition to this elastic instability that manifests un-

der compressive strain, our calculations reveal a lattice
instability corresponding to dimerisations of Fe and Rh
atoms along perpendicular directions. In in Fig. 5a)
we show the evolution of the phonon spectrum in the
AFM phase, computed using GGA-PBE, as a function
of strain. It can be seen that at 0% strain a lattice in-
stability exists at the degenerate M and R points that
manifests as an imaginary phonon frequency. Compres-
sive strain lifts the degeneracy of the M and R point and
rapidly suppresses this instability at the M point (wave-
vector in the compressively strained plane, see Fig. 5c)
while it is enhanced at the R point (wave-vector with
a component along the elongated out-of-plane axis). In
Fig. 5b) we show the evolution of this R-point frequency
with strain. The instability is initially enhanced up to
compressive strains of 3 to 4% and is then rapidly sup-
pressed and vanishes for compressive strain slightly below
7%.

The amount of strain where the instability is maxi-
mal as well as where it vanishes are in surprisingly good
agreement with the position of the top of the energy
barrier and the metastable minimum respectively of the
energy curve in Fig. 3a). It is known that Bain path
transitions can be linked to unstable phonon modes32,
however in the present case, the instability appears only
in a small portion of q-space around the R-point. Such
zone-boundary instabilities cannot be invoked to explain
a Bain path transition, which relies on unstable long
wave-length phonons32. We have verified that no long
wave-length instability exists along the R-Γ line, which
could mean that the strain match might be a coincidence.
Nevertheless it is interesting to note that both the present
R-point instability as well as an elastic C ′ instability are
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represented by transverse [110] modes.
In Fig. 5d) we show the structural distortion associ-

ated with this instability condensed at its most energy-
lowering amplitude for the 5% compressively strained
structure. We see that it corresponds to a dimerisation
of the Rh atoms along the film normal and a dimerisa-
tion of the Fe atoms in the strain plane. The distortion
results in an energy lowering of 10.8 meV per FeRh for-
mula unit at this strain value. In the unstrained cubic
bcc-like structure the energy lowering is about two orders
of magnitude smaller at only 0.125 meV per formula unit.
This small energy scale suggests that the occurrence of
this phenomenon should be limited to very low tempera-
tures, consistent with this structure not yet having been
observed in experiment. We hope that our prediction
will motivate such studies in the future. Compressive
strain could however trigger the dimerisation at higher
temperatures. In terms of electrical properties, the un-
stable phonon has the effect of slightly lowering the DOS
at the Fermi energy, at 5% compressive strain going from
0.6 states/eV/f.u. in the unmodulated structure to 0.5
states/eV/f.u. in the modulated structure.

In Fig. 5e) we show the phonon dispersion curve for
the FM phase as a function of strain. Comparing it to
the AFM case shown in Fig. 5a), we can see that the FM
phase does not have a phonon instability at the M and R
points at 0% strain as opposed to the AFM phase. The
instability can however be triggered by applying com-
pressive strain larger than 2%. This difference between
the AFM and the FM phases is shown more clearly by
the evolution of the R-point frequencies depicted in Fig.
5b), where we see that the FM phase has real frequency at
0% strain before developing the instability for compres-
sive strain between 2% and 9%. The appearance of the
instability is most likely caused by the reduction of the
magnitude of the local moments with applied strain. The
observed lattice instability is consistent with the elastic
behaviour, where the FM phase was further from an in-
stability than the AFM phase, indicating that stronger
magnetic interactions driven by the larger local moments
in the FM phase play a crucial role in stabilizing the
FeRh structure.

Finally for this section, we present results of computer
experiments to test the role of the size of the magnetic
moments in determining the stability of the AFM phase
with respect to epitaxial tetragonal strain. In order to
check if a further increase of the moments would lead to a
complete stabilisation of the AFM phase, we apply an on-
site DFT+U correction to the Fe d orbitals. We strongly
emphasize that we do not propose this as a good physical
description of FeRh, but use it as a computational trick
to tune the magnitude of the magnetic moments by mod-
ifying the charge localisation on the Fe atoms. We also
note that by using this computational trick, we change
both the magnitude of the local moments and the local-
ization on the Fe d orbitals; in fact we directly control the
latter with the U parameter and this in turn affects the
former. Constrained-moment calculations as an alterna-

FIG. 5. a) Compressive strain dependence of the phonon
dispersion in AFM FeRh computed at the GGA level. In
b) we show the evolution of the frequency as a function of
strain at the unstable R point. In c) and d) we show the
high symmetry points in the tetragonal Brillouin zone and the
resulting structural distortion respectively. Panel e) shows the
evolution of the phonon dispersion in FM FeRh as a function
of compressive strain.

tive method would directly affect the magnitude of the
moment, which results in changes in charge localization,
thus also probing both effects simultaneously. In Fig.
6a), we show the evolution of the energy as a function
of strain for different values of U added to a GGA calcu-
lation. As shown above, without this artificial increase
of the moments (U=0.00 eV), the secondary minimum of
slightly higher energy exists for compressive strain. Upon
increasing U, the secondary minimum disappears around
U∼0.25 eV, but remains visible as a kink in the energy
curve. As is to be expected, increasing U increases the
magnitude of the magnetic moments as shown in Fig.
6b). Going from U=0 eV to 1 eV, increases the moments
by 0.2 µB and more. This confirms indeed that increas-
ing the magnetic moments will completely stabilise the
bcc-like CsCl structure with respect to tetragonal strain.
These results also imply, however, that the magnetic mo-
ment magnitudes obtained from a pure GGA calcula-
tion are required to achieve agreement with the exper-
imentally observed transformation to a metastable fcc-
like phase. Artificially increasing the magnetic moments,
for example with the DFT+U method, does not yield a
physically relevant description of FeRh.
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FIG. 6. a) GGA+U relative energy of the AFM phase with
U values of 0, 1, 2 and 3 eV and b) the corresponding Fe
magnetic moments.

Our findings also confirm our assertion that the addi-
tion of a Hubbard U correction is not a physically ap-
propriate description. As we mentioned in the introduc-
tion, experimental evidence supports the existence of an
fcc-like phase, which can be reached by high energetic
deformations of the material13,14. However, addition of
a U > 0.25 to the GGA functional suppresses this state
completely. This leads us to believe that semi-local func-
tionals without any on-site correction are the best choice
to describe the inter-metallic compound FeRh in a den-
sity functional theory calculation.

C. Non-linear elasticity

Finally we analyze the anomalous elastic behaviour of
the AFM state under compressive epitaxial strain seen
in Fig. 3a in the framework of non-linear elasticity. In
particular, we investigate how the linear elastic constant
C ′ = (C11 − C12)/2 varies with strain, and which or-
ders in the energy expansion we need to include in or-
der to give a good description of the equilibrium AFM
state and the surrounding saddle point region. Our main
findings are first an unusually strong dependence of the
linear elastic constants with strain, with C ′ undergoing
a strong softening under compression, and second that
elastic constants up to fifth order are required to describe
the elastic energy surface. These results confirm that the
ground state of FeRh is proximal to an elastic instability.

Using the GGA exchange-correlation functional that
we established above to give the best description of FeRh,
we performed two series of deformations to extract the
elastic constants: First an isotropic volume distortion
followed by either a volume-conserving monoclinic or or-
thorhombic distortion28. This allowed us to express the
tension/compression asymmetry, which is normally fit-
ted to a Murnaghan-Birch fit33,34, directly in terms of

TABLE III. AFM FeRh elastic constants obtained by fitting
to DFT calculations of both orthorhombic and monoclinic
distortions as a function of an initial isotropic distortion, and
epitaxial-strain distortions. Slight deviations of the linear co-
efficients with respect to the values in Table II stem from the
different formalism and fitting procedure.

Elastic constants AFM (GPa)
C11, C12, C44 224.57, 184.60, 128.05
C111, C112, C123 -2380.67, -561.34, -1461.22
C144, C166, C456 56424.12, -29201.20, -
C1111, C1112 27774.20, 646.69
C1122, C1123 1206.44, 6456.56
C1144, C1155 5875091.80, -2355521.45
C1255, C1266 647062.69, -1860996.55
C1456, C4444 -, -71474.99

C4455 -
C11111, C11112 -444308.22, -22012.63
C11122, C11123 39249.66, 60554.46
C11144, C11155 252799931.07, -189779777.14
C11223, C11244 -79195.94, -10605443.05
C11255, C11266 87944526.61, 61761708.62
C11456, C11244 -, -10605443.05
C12456, C14444 -, -501845412.25
C14455, C15555 -, 253346458.03
C15566, C44456 -, -

the higher order elastic constants:

E = η2
(

3C11

2
+ 3C12

)
+

η3
(
C111

2
+ 3C112 + C123

)
+

η4
(
C1111

8
+ C1112 +

3C1122

4
+

3C1123

2

)
+ (1)

η5
(
C11111

40
+
C11112

4
+
C11122

2
+
C11123

2
+

3C11223

4

)
,

where η is the diagonal term of the Lagrangian strain ma-
trix associated with isotropic expansion (for a review of
non-linear elasticity theory see the Appendix). Second,
we performed an isotropic in-plane distortion (ε1) plus
a perpendicular out-of-plane distortion (ε2), correspond-
ing to a biaxial strain state. We then fit the non-linear
elastic energy expression, Eqn. A5, to our DFT database
of energies versus distortions using a simulated annealing
algorithm35. The resulting optimal numerical values of
the non-linear elastic constants are listed in Tab. III. Note
that the chosen distortions do not directly probe all elas-
tic constants. For example C456, C1456, C4455, C11456,
C12456, C14455, C15566 and C44456 do not contribute to
the elastic energies and are therefore omitted from the
fitting process, and others enter only in linear combina-
tions (for example, see Eqns. 1 and 2). Thus caution
should be taken in interpreting the numerical values of
individual higher-order elastic constants. For conciseness
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FIG. 7. a) Change in elastic energy (per formula unit) at
a finite isotropic strain with respect to a volume conserving
orthorhombic strain for the AFM FeRh system. For each color
the points show the DFT data and the lines the eqn. A5 fit
for a specific value of isotropic strain. b) Dependence of the
AFM shear moduli C′ on isotropic strain according to eqn. 2.
Here different orders with respect to the isotropic strain are
shown. Convergence under compression is achieved at fourth
order.

we present results only for the AFM phase.
Fig. 7a shows the change in elastic energy as a func-

tion of the volume-conserving orthorhombic distortion for
different isotropic strains. Both the DFT data and the
non-linear elasticity fit are shown, where the zero energy
(at zero orthorhombic strain) is set to the AFM energy
per formula unit of the given isotropic strain. We see that
the C ′ shear modulus changes as a function of isotropic
strain (as does the C44 shear modulus — not shown).
In particular there is a strong softening of the C ′ modu-
lus at negative isotropic strains (corresponding to lattice
contraction). For the FM phase, no softening of the FM
C ′ modulus under isotropic compression was seen and for
the NM phase, the C ′ modulus was always negative indi-
cating a broad regime of elastic instability as suggested
by sec. III A 2.

Insight into the origin of this behavior can be gained

by writing down the isotropic strain dependence of the
C ′ elastic constant in terms of the higher order elastic
constants. Up to quadratic order with respect to the
isotropic strain, η, this is

C ′(η) =
1

2
(C11 − C12) +

1

2
(6C11 + C111 − C123) η + (2)

1

2

(
11C11 + 4C12 +

11C111

2
+ 6C112−

5C123

2
+
C1111

2
+ C1112 −

3C1123

2

)
η2 + . . .

A similar expression for the C44 constant can also be
obtained. Inspection of Eqn. 2 reveals that the higher
order elastic constants strongly affect each coefficient of
the η expansion. Not shown are the η3 and η4 terms,
which include respectively the fourth and fifth order or-
der elastic constants. In Fig. 7b we plot C ′ including
contributions up to fourth order in η using the obtained
numerical elastic constants for the AFM state for a range
of negative and positive isotropic strains. We see again
that, consistent with Fig. 7a, C ′ softens on lattice con-
traction, eventually becoming negative at an isotropic
strain of approximately -5%. Thus under a sufficiently
large isotropic compression the AFM state becomes un-
stable to an orthorhombic distortion. For the considered
range of isotropic compressions, this trend is not seen in
the FM phase.

Finally we note that the elastic constant behaviour of
FeRh is remarkably similar to that of pure bcc-like Fe,
which also exhibits a C ′ softening to zero under com-
pression, and has a negative C ′ for the NM phase. For
bcc-like Fe, this phenomenon is associated with the sup-
pression of itinerant magnetism under compression, and
it has been pointed out that this is a manifestation of
the magneto-volume effect36–38. As we pointed out ear-
lier, (Fig. 2) the energies of the AFM, FM and NM phases
tend to the same values for sufficiently high compressions,
and this is accompanied by a reduction in the size of the
magnetic moments. For example, at an isotropic com-
pression of 5%, the individual Fe moment values of the
AFM FeRh phase are lower than their equilibrium values
by approximately 10%.

IV. CONCLUSIONS

In conclusion, we have shown that the GGA exchange-
correlation functional provides a reasonable description
of the known properties of FeRh, in contrast to the LDA
which predicts incorrectly that a competing fcc-like phase
with smaller lattice constant is the ground state, and the
GGA+U method which incorrectly completely destabi-
lizes this competing phase. At the GGA level the fcc-
like state is metastable, consistent with reports of its ex-
istence under high-impact deformation, and we predict
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that it can be reached with compressive epitaxial strain.
Due to an enhanced density of states at the Fermi energy,
this fcc-like state shows a decreased electrical resistivity
compared to the bcc-like AFM phase. We rationalize the
behavior using non-linear elasticity theory, and predict
the existence of a lattice instability, which should mani-
fest at low temperatures as a dimerisation of both Fe and
Rh atoms along perpendicular directions.
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Appendix A: Non-linear elasticity: definitions and
fitting procedure

Non-linear elasticity expands the elastic energy to
supralinear order with respect to the deformation ma-
trix, and thus defines higher than linear order elastic
coefficients. Unlike linear elasticity, non-linear elastic-
ity involves finite distortions of a material and therefore
allows for the study of C ′ and C44 as a function of an ar-
bitrary distortion. Here we outline non-linear elasticity
theory to fifth order.

The higher order elastic constants depend on the pre-
cise definition of strain. Here the Lagrangian strain is
used, which gives a measure of the finite displacement of
a material point39–41. The Lagrangian strain is formally
defined as

η =
1

2

(
JJT − 1

)
, (A1)

where the Jacobian matrix, J, is obtained from the linear
strain tensor,

J = 1 + ε. (A2)

Thus the Lagrangian strain is

η = ε+
1

2
ε2. (A3)

In terms of Voigt notation, the most general elastic
energy density is written as

E =
1

2!

∑
ij

Cijηiηj +
1

3!

∑
ijk

Cijkηiηjηk + . . . . (A4)

Here η1 = η11, η2 = η22, η3 = η33, η4 = 2η23, η5 = 2η13
and η6 = 2η12. To fifth order, the elastic energy density
becomes

E = φ2 + φ3 + φ4 + φ5 + . . . , (A5)

where for a cubic system the linear elastic contribution
is given by

φ2 =
C11

2

(
η21 + η22 + η23

)
+

C44

2

(
η24 + η25 + η26

)
+

C12 (η1η2 + η3η2 + η1η3) . (A6)

The cubic higher order non-linear elastic energy terms
are

φ3 =
C111

6

(
η31 + η32 + η33

)
+
C112

2

(
η2η

2
1 + η3η

2
1 + η22η1 + η23η1 + η2η

2
3 + η22η3

)
+ C123η1η2η3 +

C144

2

(
η1η

2
4 + η2η

2
5 + η3η

2
6

)
+
C166

2

(
η2η

2
4 + η3η

2
4 + η1η

2
5 + η3η

2
5 + η1η

2
6 + η2η

2
6

)
+ C456η4η5η6 (A7)

φ4 =
C1111

24

(
η41 + η42 + η43

)
+
C1112

6

(
η31 (η2 + η3) + η32 (η3 + η1) + η33 (η1 + η2)

)
+

C1122

4

(
η21η

2
2 + η22η

2
3 + η23η

2
1

)
+
C1123

2

(
η21η2η3 + η22η3η1 + η23η1η2

)
+

C1144

4

(
η21η

2
4 + η22η

2
5 + η23η

2
6

)
+
C1155

4

(
η21
(
η25 + η26

)
+ η22

(
η24 + η26

)
+ η23

(
η24 + η25

))
+

C1255

2

(
η1η2

(
η24 + η25

)
+ η2η3

(
η25 + η26

)
+ η1η3

(
η24 + η26

))
+
C1266

2

(
η1η2η

2
6 + η2η3η

2
4 + η1η3η

2
5

)
+

C1456η4η5η6 (η1 + η2 + η3) +
C4444

24

(
η44 + η45 + η46

)
+
C4455

4

(
η24η

2
5 + η25η

2
6 + η26η

2
4

)
(A8)
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φ5 =
C11111

120

(
η51 + η52 + η53

)
+
C11112

24

(
η41 (η2 + η3) + η42 (η1 + η3) + η43 (η1 + η2)

)
+

C11122

12

(
η31
(
η22 + η23

)
+ η32

(
η21 + η23

)
+ η33

(
η21 + η22

))
+
C11123

6

(
η31η2η3 + η32η1η3 + η33η1η2

)
+

C11144

12

(
η31η

2
4 + η32η

2
5 + η33η

2
6

)
+
C11155

12

(
η31
(
η25 + η26

)
+ η32

(
η24 + η26

)
+ η33

(
η24 + η25

))
+

C11223

4

(
η21η

2
2η3 + η21η

2
3η2 + η23η

2
2η1
)

+
C11244

4

(
η21η

2
4 (η2 + η3) + η22η

2
5 (η1 + η3) + η23η

2
6 (η1 + η2)

)
+

C11255

4

(
η21
(
η2η

2
5 + η3η

2
6

)
+ η22

(
η1η

2
4 + η3η

2
6

)
+ η23

(
η1η

2
4 + η2η

2
5

))
+

C11266

2

(
η1η2η

2
6 (η1 + η2) + η1η3η

2
5 (η1 + η3) + η2η3η

2
4 (η2 + η3)

)
+

C11456

2
η4η5η6

(
η21 + η22 + η23

)
+
C12344

2
η1η2η3

(
η24 + η25 + η26

)
+

C12456η4η5η6 (η1η2 + η1η3 + η2η3) +
C14444

24

(
η1η

4
4 + η2η

4
5 + η3η

4
6

)
+

C14455

4

(
η24η

2
5 (η1 + η2) + η24η

2
6 (η1 + η3) + η25η

2
6 (η2 + η3)

)
+

C15555

24

(
η45 (η1 + η3) + η44 (η2 + η3) + η46 (η1 + η2)

)
+

C15566

2

(
η1η

2
5η

2
6 + η2η

2
4η

2
6 + η3η

2
4η

2
5

)
+
C44456

2
η4η5η6

(
η24 + η25 + η26

)
(A9)

Eqns. A7 to A9 give the resulting expressions for the elas-
tic energy density (Eqn. A5) for the third, fourth and fifth

order non-linear elastic contributions. Apart from a few
typographical errors in the earlier papers, the expressions
are similar to those found in Refs.42–44.
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