# P-T-t modelling, fluid circulation, and <sup>39</sup>Ar-<sup>40</sup>Ar and Rb-Sr mica ages in the Aar Massif shear zones (Swiss Alps)

NATHALIE CHALLANDES<sup>1</sup>, DIDIER MARQUER<sup>2,\*</sup> & IGOR M. VILLA<sup>3,4</sup>

Key words: granite, shear zone, <sup>39</sup>Ar-<sup>40</sup>Ar and Rb-Sr ages, fluid circulation, Aar massif, Central Alps

#### ABSTRACT

Two different 1D forward numerical models of P-T-t paths for the Grimsel granodiorite are evaluated, in order to estimate its retrograde path independently of isotopic ages. The tectonostratigraphic evolution of the External Crystalline Massifs, metamorphic conditions and fluid inclusion data are the essential constraints used to construct these models. Modelled ages are compared with measured ages on micas from the Aar massif, which formed the basis for the controversial "closure temperature" hypothesis. We applied "classical" <sup>39</sup>Ar-<sup>40</sup>Ar and Rb-Sr techniques to two deformation transects in shear zones of the Aar granite and the Grimsel granodiorite. Biotites and white micas crystallised in these shear zones during Miocene deformation under greenschist-facies conditions.

Isotopic ages do not reflect the cooling trajectory calculated by the P-T-t models and cannot be considered as "cooling ages". Instead, K-Ar ages of micas are best viewed as dating local crystallization during ductile greenschist-facies deformation around 21–17 Ma. Whole-rock-mica Rb-Sr ages of ca. 12 Ma demonstrate a chemically open behaviour due to late fluid circulation. The age results indicate that the Rb-Sr record in these rocks, which were deformed under hydrated conditions, provides chronohygrometric information, i.e. on the timing of documented fluid circulation events.

#### Introduction

This study of mineral ages in shear zones of the External Crystalline Massifs (ECM), Central Swiss Alps, attempts to assess the influence of factors such as deformation, grain size reduction, and fluid circulation on <sup>39</sup>Ar-<sup>40</sup>Ar and Rb-Sr systematics in a regional metamorphic framework. The reported ages are also important in themselves because, as for the whole Alpine chain, there is an ongoing debate regarding the timing of tectonic events in this region (Steck 1984; Dempster 1986; Hunziker et al. 1986; Pfiffner 1986; Burkhard 1988; Kralik et al. 1992; Crespo-Blanc et al. 1995; Kirschner et al. 1995, 1996).

The Aar massif was chosen because there is exceptionally thorough published documentation of its geology, mineralogy, whole-rock and stable isotope geochemistry (Steck 1966, 1968, 1976, 1984; Steck & Burri 1971; Frey et al. 1980; von Raumer 1984; Fourcade et al. 1989; Steck et al. 1989; Marquer & Burkhard 1992; Marquer Peucat 1994; Schaltegger 1994; Frey & Ferreiro Mählmann 1999; von Raumer et al. 1999). Two ductile shear zones related to Alpine greenschist-facies deformation were selected for this study in two late Variscan granites: the Aar granite and the Grimsel granodiorite (Marquer et al. 1985; Marquer 1990). Neither of these shear zones shows evidence of superimposed structures or hydrothermal alteration associated with late stages of faulting (Kralik et al. 1992; Hofmann et al. 2004).

We have modelled the thermal history of the ECM using a stepwise application of discrete Fourier transform solutions, an alternative to 1-D finite-difference thermal modelling (Manck-telow 1998). The aim of this step is to determine the retrograde path of the ECM independently of any cooling history conventionally inferred from radiogenic dating methods. Then, in two increasingly deformed profiles, we investigated the <sup>39</sup>Ar-<sup>40</sup>Ar and Rb-Sr behaviour in three samples, which show a large grain-size reduction: a weakly deformed rock, an orthogneiss, and a mylonite.

The aim of this study is to compare the isotopic behaviour of these two radiogenic systems with the P-T-t modelling within high-strain deformation zones affecting metagranites. In our samples, grain size reduction is related to increasing strain

<sup>&</sup>lt;sup>1</sup>Institut de Géologie, 11 Rue Emile Argand, 2007 Neuchâtel, Switzerland.

<sup>&</sup>lt;sup>2</sup>UMR 6249 Chrono-Environment, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France.

<sup>&</sup>lt;sup>3</sup>Institut für Geologie, Baltzerstrasse 3, 3012 Bern, Switzerland.

<sup>&</sup>lt;sup>4</sup>Dipartimento di Scienze Geologiche e Geotecnologie, Università di Milano-Bicocca, 20126 Milano, Italy.

<sup>\*</sup>Corresponding author: Didier Marquer. E-mail: didier.marquer@univ-fcomte.fr

intensity. We focused our attention on biotite and white mica <sup>39</sup>Ar-<sup>40</sup>Ar and whole rock-mica Rb-Sr ages because they have been commonly used to constrain the regional "cooling history" of orogenic belts (e.g. Hunziker et al. 1992) or used as indicators of the time of crystallization under greenschist-facies conditions (e.g. Jaeger et al. 1967; Villa 1998; Müller et al. 2000, 2001). A major advantage in this study is that the studied rock types, which were sampled on a small scale (within 10 metres, Aar granite; within 60 metres, Grimsel granodiorite), all experienced the same temperature conditions during the main shearing event. Thus, we can separate the influence of temperature and grain size from other factors such as shear-induced recrystallisation and fluid circulation (Challandes et al. 2003).

Based on <sup>39</sup>Ar-<sup>40</sup>Ar and Rb-Sr mineral dating in these shear zones, we will show that the K-Ar and Rb-Sr systems give evidence for the influence of late fluid circulation. Apparent ages cannot be used to give a "cooling" history and the closure temperature concept does not yield accurate temperature predictions for retrograde metamorphic rocks subject to large fluid circulation, such as those investigated in the Aar massif. Furthermore, the ages provide further constraints on the Oligo-Miocene tectono-metamorphic evolution and the timing of late fluid circulations in the ECM.

#### **Tectono-metamorphic setting**

The Aar massif represents a polycyclic basement window exposed within the External Alps of Switzerland (Fig. 1). This ECM belongs to the European plate involved in the Alpine continent-continent collision (Pfiffner et al. 1990a, b) and was thrust towards the northwest under greenschist-facies



Fig. 1. Simplified geological map of the Swiss Alps. Asterisk in the Aar massif, External Crystalline Massif indicates the location of the studied shear zones (Swiss topographic co-ordinates of samples: Aar granite: 667.90-160.45; Grimsel granodiorite: 668.50-158.40). NW-SE line gives the location of the cross-section on Fig. 3.

metamorphic conditions during late Alpine tectonics (Steck 1966,1968, 1984; Choukroune & Gapais 1983; Marquer et al. 1985; Marquer 1987; Pfiffner & Heitzmann 1997). The Aar massif is mainly composed of pre-Variscan gneisses, and Palaeozoic migmatites and amphibolites that were intruded by granites during the late Variscan orogeny (Labhart 1977; Abrecht 1994; Schaltegger 1994).

The Aar granite and Grimsel granodiorite are part of these Variscan intrusives exposed in the central and southern part of the massif, a few kilometres north of the Grimsel Pass (Stalder 1964). Heterogeneous deformation, during Tertiary NW-SE shortening, formed anastomosing shear zones, which surround lenses of weakly deformed rocks at different scales (Choukroune & Gapais 1983; Marquer et al. 1985; Gapais et al. 1987). The metamorphic conditions associated with this main ductile deformation in the Aar massif show a progressive increase of pressure and temperature from north (300 MPa, 400 °C) to south (400-500 MPa, 450-500 °C) (Steck & Burri 1971; Frey et al. 1974; Steck 1976; Bernotat & Bambauer 1980; Frey et al. 1980; Bambauer & Bernotat 1982; Bernotat & Bambauer 1982; Fourcade et al. 1989). According to the Si-content in phengites, which ranges between 3.2 and 3.3 p.f.u., (Fig. 2a and Tab. 1), and  $\delta^{18}$ O analyses of biotite and quartz (Fourcade et al. 1989), the PT conditions of the main shearing event within the Grimsel granodiorite can be estimated at around  $450 \pm 30$  °C and  $600 \pm 100$  MPa (Fig. 2b).

#### Aar massif shear zones

Both grain size and mineralogy change progressively across the ductile shear zones of the Grimsel granodiorite and Aar granite, leading to syn-kinematic mineral assemblages typical of greenschist-facies conditions. The grain size reduced from an average of 1000 µm in the weakly deformed rocks to around 30 µm in the ultramylonites (Marguer 1987). The Grimsel granodiorite and the Aar granite (alkali felspar, oligoclase, biotite I, quartz) progressively change toward an albite-bearing mylonite (albite, phengite, biotite II, quartz) (see detailed mineralogical descriptions in Marguer 1987). Epidote is stable in the orthogneiss but disappears in the mylonite. The two localities differ in one aspect concerning the Variscan magmatic relics in coarse biotite grains. In the Grimsel granodiorite (Aar 31), biotite is abundant, and the larger grains preserve a magmatic composition (Marquer 1987). In the Aar granite (Aar 10), biotite is rare and more rehomogenized during Tertiary recrystallisation.

The chemical behaviour of radiogenic and stable isotopes, major oxides, and trace and rare earth elements in the Grimsel granodiorite and the Aar granite have been analysed within several metric to hectometric shear zones (Marquer et al. 1985; Marquer 1987; Fourcade et al. 1989; Marquer & Peucat 1994). The geometry of the structures and the geochemical variation profiles across the shear zones are independent of the shear zone size (Marquer 1989). These previous studies mainly documented the enrichment of K, Mg, and Rb and depletion of Na, Ca and Sr in mylonites, while the other element variations



Fig. 2. a) Si/Al-content in phengites in the Grimsel granodiorite shear zone (Table 1). Black squares: mylonites; white squares: orthogneisses. b) P-T conditions of the greenschist-facies deformation affecting the Grimsel granodiorite (oblique stripped area). Temperature conditions:  $450 \pm 30$  °C (Bt-Qtz oxygen isotopes recalculated after Fourcade et al. (1989). Dashed lines corresponding to Si-content in phengites (Fig. 2a) after Massonne and Schreyer (1987). Albite-Oligoclase equilibrium after Maruyama et al. (1983).

remained in the range of initial magmatic variations. The values of whole rock oxygen isotope analyses display an increase in high strain zones (9.65‰) with respect to weakly deformed rocks (7.5‰) (Fourcade et al. 1989). The grain size reduction enhanced the fluid circulation and increased the surface reaction of minerals, improving chemical mass transfer in ductile shear zones (Marquer et al. 1985; Dipple & Ferry 1992). Fur-

thermore, the systematic Rb-Sr variations in the granite and granodiorite shear zones lead to fictitious Early Cretaceous Rb-Sr whole rock ages controlled by partial chemical mass transfer (Marquer & Peucat 1994).

# Geological constraints on the age of the main ductile deformation of the ECM

The Alpine schistosity and shear zone patterns of the Aar and Gotthard Massifs were analysed by Choukroune and Gapais (1983) and Marquer (1990). They interpreted the sub-vertical internal structure and stretching in the core of both massifs to be due to a bulk coaxial NW-SE shortening during underthrusting of the ECM. Geometric relationships in the surrounding Helvetic nappes allow superimposed deformations to be distinguished (Milnes & Pfiffner 1980; Burkhard 1988). Burkhard (1988) described five deformation phases (Plaine Morte, Prabé, Trubelstock, Kiental, and Grindelwald phases; Fig. 3) and attributed the steeply dipping ductile schistosity of the internal Aar massif to the Kiental phase (Figs. 3, 4c, 4f). In the southern part of the ECM, this progressive NNW thrusting was followed by backthrusting and SSE-vergent backfolding of the internal units, located south of the Aar massif, contributing to a part of the exhumation of the ECM and to the current large scale structural geometry (Milnes 1976; Voll 1976; Probst 1980; Dolivo, 1982; Steck 1984, 1987; Escher et al. 1997; Steck et al. 1997, 2001). No penetrative deformation related to this younger Grindelwald phase was observed in the studied median part of the Aar massif. Localised slip reactivating the schistosity or discrete thrusting in the ECM could have accommodated late-stage large scale folding in the cover units during the Grindelwald phase.

Considering the non-isotopic age constraints, only the age of incorporation of the Helvetic margin into the accretionary prism is well constrained by biostratigraphy. The Taveyannaz volcano-clastic sandstones were the last sediments to be deposited on the Helvetic Nummulitic platform before burial under the advancing nappe pile (North Helvetic flysch, Fig. 3). The Taveyannaz sandstones are located vertically above the southern part of the Helvetic shelf (Fig.3). They are biostratigraphically correlated with calcareous nannofossils NP21 by Lateltin and Muller (1987) and contain andesitic clasts with Oligocene eruption ages of ca. 33 Ma (Fischer & Villa 1990; Ruffini et al. 1997). They have thus been interpreted to have been deposited between 34.2 and 32.8 Ma (Berggren et al. 1995).

#### **Predicted Pressure-Temperature-time path**

The P-T-t paths experienced by rocks involved in mountain building processes depend on many physical and tectonic factors, such as the number and thickness of nappes, erosion and/ or tectonic denudation rate. In the literature, P-T-t paths have been numerically derived from several simple tectonic models and, recently, calculated in different thermo-mechanical numerical simulations (England & Richardson 1977; England &

Tab. 1. Electron microprobe analyses of phengites from the Grimsel granodiorite mylonite and orthogneiss\*. Mineral formulae are calculated based on 11 oxygens and Fe is assumed divalent.

| Label             | AD23     | AD23     | AD23                 | AD23     | AD23     | AD23     | AD23     | AD23     | AD23a <sup>2</sup> | ACIIh_1 <sup>3</sup> | ACIIh_3 <sup>3</sup> | ACIIh_63 | ACIIh_63 | ACIIh_6 <sup>3</sup> |
|-------------------|----------|----------|----------------------|----------|----------|----------|----------|----------|--------------------|----------------------|----------------------|----------|----------|----------------------|
|                   | phgx-491 | phgx-501 | phgx-51 <sup>1</sup> | phgx-521 | phgx-531 | phgx-541 | phgx-551 | phgx-561 |                    |                      |                      |          |          |                      |
| SiO <sub>2</sub>  | 48,54    | 48,24    | 48,53                | 48,37    | 48,24    | 48,48    | 48,33    | 48,52    | 48,93              | 43,27                | 47,11                | 45,64    | 46,43    | 47,12                |
| TiO <sub>2</sub>  | 0,27     | 0,32     | 0,25                 | 0,29     | 0,26     | 0,29     | 0,28     | 0,29     | 0,31               | 0,44                 | 0,37                 | 0,36     | 0,36     | 0,26                 |
| $Al_2O_3$         | 27,80    | 27,64    | 27,81                | 28,20    | 28,07    | 27,97    | 28,20    | 28,04    | 29,15              | 26,05                | 28,48                | 28,73    | 28,24    | 28,99                |
| FeO*              | 3,79     | 3,65     | 3,84                 | 3,81     | 3,86     | 3,57     | 3,49     | 3,60     | 4,03               | 4,69                 | 3,83                 | 3,66     | 3,41     | 3,84                 |
| MnO               | 0,03     | 0,02     | 0,02                 | 0,07     | 0,04     | 0,03     | 0,03     | 0,02     | 0,02               | 0,08                 | 0,07                 | 0,10     | 0,05     | 0,06                 |
| MgO               | 3,10     | 2,90     | 3,01                 | 3,05     | 3,03     | 2,93     | 2,83     | 2,86     | 2,65               | 3,28                 | 2,73                 | 2,62     | 2,67     | 2,81                 |
| CaO               | 0,11     | 0,03     | 0,02                 | 0,02     | 0,01     | 0,00     | 0,03     | 0,02     | 0,00               | 0,01                 | 0,00                 | 0,06     | 0,01     | 0,02                 |
| Na <sub>2</sub> O | 0,12     | 0,14     | 0,15                 | 0,12     | 0,15     | 0,12     | 0,13     | 0,12     | 0,14               | 0,15                 | 0,15                 | 0,16     | 0,17     | 0,18                 |
| K <sub>2</sub> O  | 10,96    | 11,14    | 11,34                | 11,44    | 11,41    | 11,55    | 11,25    | 11,18    | 10,68              | 10,05                | 11,13                | 10,68    | 10,78    | 10,96                |
|                   | 94,72    | 94,08    | 94,97                | 95,37    | 95,09    | 94,94    | 94,56    | 94,65    | 95,91              | 88,02                | 93,87                | 92,01    | 92,12    | 94,24                |
| Si                | 3,30     | 3,31     | 3,30                 | 3,28     | 3,28     | 3,30     | 3,29     | 3,30     | 3,28               | 3,20                 | 3,24                 | 3,20     | 3,25     | 3,23                 |
| Ti                | 0,01     | 0,02     | 0,01                 | 0,01     | 0,01     | 0,01     | 0,01     | 0,01     | 0,02               | 0,02                 | 0,02                 | 0,02     | 0,02     | 0,01                 |
| Al (tot)          | 2,23     | 2,23     | 2,23                 | 2,25     | 2,25     | 2,24     | 2,26     | 2,25     | 2,30               | 2,27                 | 2,31                 | 2,38     | 2,33     | 2,34                 |
| Fe <sup>2+</sup>  | 0,22     | 0,21     | 0,22                 | 0,22     | 0,22     | 0,20     | 0,20     | 0,20     | 0,23               | 0,29                 | 0,22                 | 0,22     | 0,20     | 0,22                 |
| $Mn^{2+}$         | 0,00     | 0,00     | 0,00                 | 0,00     | 0,00     | 0,00     | 0,00     | 0,00     | 0,00               | 0,01                 | 0,00                 | 0,01     | 0,00     | 0,00                 |
| Mg                | 0,31     | 0,30     | 0,31                 | 0,31     | 0,31     | 0,30     | 0,29     | 0,29     | 0,27               | 0,36                 | 0,28                 | 0,27     | 0,28     | 0,29                 |
| Ca                | 0,01     | 0,00     | 0,00                 | 0,00     | 0,00     | 0,00     | 0,00     | 0,00     | 0,00               | 0,00                 | 0,00                 | 0,00     | 0,00     | 0,00                 |
| Na                | 0,02     | 0,02     | 0,02                 | 0,02     | 0,02     | 0,02     | 0,02     | 0,02     | 0,02               | 0,02                 | 0,02                 | 0,02     | 0,02     | 0,02                 |
| К                 | 0,95     | 0,97     | 0,98                 | 0,99     | 0,99     | 1,00     | 0,98     | 0,97     | 0,91               | 0,95                 | 0,98                 | 0,96     | 0,96     | 0,96                 |
|                   | 7,05     | 7,06     | 7,07                 | 7,08     | 7,08     | 7,08     | 7,06     | 7,05     | 7,02               | 7,12                 | 7,08                 | 7,08     | 7,06     | 7,08                 |
| Al <sup>IV</sup>  | 0,70     | 0,69     | 0,70                 | 0,72     | 0,72     | 0,70     | 0,71     | 0,70     | 0,72               | 0,80                 | 0,76                 | 0,80     | 0,75     | 0,77                 |
| $Al^{VI}$         | 1,53     | 1,54     | 1,53                 | 1,53     | 1,53     | 1,54     | 1,56     | 1,55     | 1,58               | 1,47                 | 1,56                 | 1,58     | 1,58     | 1,57                 |

<sup>1</sup>thin section, Lausanne 1998. <sup>2</sup>thin section, Marquer 1987. <sup>3</sup>mineral separation, Bern 1999. The AD23 sample is comparable to the ACIIh mylonite sample (Marquer 1987).

Thompson 1984; Davy & Gillet 1986; Karabinos & Ketcham 1988; Ruppel et al. 1988; Ruppel & Hodges 1994; Jamieson et al. 1998; Gerya et al. 2002; Stoeckhert & Gerya 2005). In this work, numerical calculations of P-T-t paths for the Grimsel granodiorite were carried out using a stepwise application of discrete Fourier transform solutions, as implemented in the Macintosh DialogExhume program developed by Mancktelow (1998). For rocks occurring in the Grimsel area, this 1D model was used to establish retrograde P-T-t, P-t and T-t paths for the Grimsel granodiorite (Fig.4). As mentioned in the introduction, it was thought desirable to establish an approximate P-T-t framework for retrograde conditions without resorting to model-dependent interpretations of isotopic behaviour and to circular selfvalidation of age results.

# Initial and boundary conditions

Numerical models for deriving P-T-t paths must start with the mechanisms of thickening: in our case, the under-thrusting of the ECM has led to metamorphic conditions around  $600 \pm 100$  MPa (Fig. 2), corresponding to a depth of about 23 km. Considering a stable continental lithosphere, which is duplicated by "instantaneous thrusting" of one section above another, the resulting geothermal gradient has a sawtooth shape (Figs. 4a, d, model 1 and 2, respectively; e.g. at 33 Ma). During subsequent thermal relaxation, the shape of the geothermal gradient can be calculated at any time following thrusting (Figs. 4a and d). Several models were tested with different boundary conditions. Here, we present two models where the initial and boundary conditions yield the best fit to the evolution of observed P-T metamorphic conditions in the Grimsel granodiorite (see physical parameters and initial geothermal gradient on Fig. 4).

In both models, the beginning of tectonic burial is placed at 33 Ma, based on the biostratigraphic age of the North Helvetic Taveyannaz sandstones. For simplicity and as assumed in several earlier thematic studies (e.g. England & Thompson, 1984), the prograde burial is formulated as an instantaneous burial to 23 km followed by thermal relaxation without any exhumation. The time following burial needed to reach a temperature of 450 °C is around 10 Ma. Regardless of the simplification in modelling the prograde phase, exhumation after the metamorphic peak conditions (450 °C and 600 MPa) can only begin 10 Ma after sedimentation for any model. From the beginning of exhumation at 23 Ma, the calculated P-T-t path reproduces the temperature increase to a maximum of 450 °C for both models, followed by a decrease in both pressure and temperature. In model 1, the constant exhumation rate is 1 mm/a during the 23 Ma following the P peak, considering mainly denudation by erosion (Figs. 4a, b, and c). In model 2 (Figs. 4d, e, and f), a variable exhumation rate was chosen in order to match zircon and especially apatite fission track data recorded in the Aar massif (Wagner et al. 1977; Michalski & Soom 1990). Model 2 has an exhumation rate of 1 mm/a between 23 and 19 Ma, when

| Label            | ACIIh_6 <sup>3</sup> | ACIIh_15 <sup>3</sup> | ACIIh_15 <sup>3</sup> | ACIIh_2 <sup>3</sup> | ACIIh_5 <sup>3</sup> | ACIIh_83 | ACIId <sup>2*</sup> | AD202* |
|------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|----------|---------------------|--------|
| SiO <sub>2</sub> | 47,81                | 47,53                | 47,26                | 46,28                | 46,68                | 44,05                 | 45,10                 | 46,00                | 44,67                | 45,48    | 47,65               | 47,67  |
| TiO <sub>2</sub> | 0,33                 | 0,31                 | 0,30                 | 0,31                 | 0,58                 | 0,39                  | 0,32                  | 0,30                 | 0,36                 | 0,33     | 0,17                | 0,22   |
| $Al_2O_3$        | 29,13                | 29,05                | 28,93                | 28,05                | 28,56                | 27,05                 | 27,80                 | 27,42                | 27,20                | 27,94    | 30,76               | 30,13  |
| FeO*             | 4,13                 | 3,88                 | 3,80                 | 3,54                 | 3,58                 | 4,14                  | 3,21                  | 5,34                 | 4,68                 | 4,61     | 3,73                | 3,23   |
| MnO              | 0,08                 | 0,11                 | 0,00                 | 0,09                 | 0,08                 | 0,04                  | 0,03                  | 0,08                 | 0,06                 | 0,07     | 0,06                | 0,05   |
| MgO              | 2,97                 | 2,82                 | 2,80                 | 2,64                 | 2,72                 | 2,58                  | 2,35                  | 3,24                 | 3,00                 | 2,69     | 2,15                | 2,25   |
| CaO              | 0,04                 | 0,01                 | 0,00                 | 0,00                 | 0,25                 | 0,01                  | 0,01                  | 0,06                 | 0,03                 | 0,04     | 0,00                | 0,00   |
| $Na_2O$          | 0,12                 | 0,14                 | 0,17                 | 0,16                 | 0,16                 | 0,16                  | 0,16                  | 0,18                 | 0,19                 | 0,16     | 0,19                | 0,21   |
| $K_2O$           | 11,05                | 11,16                | 10,99                | 10,95                | 10,88                | 9,98                  | 10,26                 | 10,70                | 10,40                | 10,54    | 10,57               | 10,69  |
|                  | 95,66                | 95,01                | 94,25                | 92,02                | 93,49                | 88,40                 | 89,24                 | 93,32                | 90,59                | 91,86    | 95,28               | 94,45  |
| Si               | 3,23                 | 3,23                 | 3,23                 | 3,25                 | 3,23                 | 3,22                  | 3,25                  | 3,22                 | 3,21                 | 3,22     | 3,21                | 3,24   |
| Ti               | 0,02                 | 0,02                 | 0,02                 | 0,02                 | 0,03                 | 0,02                  | 0,02                  | 0,02                 | 0,02                 | 0,02     | 0,01                | 0,01   |
| Al (tot)         | 2,32                 | 2,33                 | 2,33                 | 2,32                 | 2,33                 | 2,33                  | 2,36                  | 2,27                 | 2,31                 | 2,33     | 2,44                | 2,41   |
| Fe <sup>2+</sup> | 0,23                 | 0,22                 | 0,22                 | 0,21                 | 0,21                 | 0,25                  | 0,19                  | 0,28                 | 0,25                 | 0,25     | 0,21                | 0,18   |
| $Mn^{2+}$        | 0,00                 | 0,01                 | 0,00                 | 0,01                 | 0,01                 | 0,00                  | 0,00                  | 0,01                 | 0,00                 | 0,00     | 0,00                | 0,00   |
| Mg               | 0,30                 | 0,29                 | 0,29                 | 0,28                 | 0,28                 | 0,28                  | 0,25                  | 0,34                 | 0,32                 | 0,28     | 0,22                | 0,23   |
| Ca               | 0,00                 | 0,00                 | 0,00                 | 0,00                 | 0,02                 | 0,00                  | 0,00                  | 0,01                 | 0,00                 | 0,00     | 0,00                | 0,00   |
| Na               | 0,02                 | 0,02                 | 0,02                 | 0,02                 | 0,02                 | 0,02                  | 0,02                  | 0,02                 | 0,03                 | 0,02     | 0,03                | 0,03   |
| Κ                | 0,95                 | 0,97                 | 0,96                 | 0,98                 | 0,96                 | 0,93                  | 0,94                  | 0,96                 | 0,95                 | 0,95     | 0,91                | 0,93   |
|                  | 7,08                 | 7,08                 | 7,07                 | 7,08                 | 7,07                 | 7,07                  | 7,04                  | 7,12                 | 7,10                 | 7,08     | 7,03                | 7,03   |
| Al <sup>IV</sup> | 0,77                 | 0,77                 | 0,77                 | 0,75                 | 0,77                 | 0,78                  | 0,75                  | 0,78                 | 0,79                 | 0,78     | 0,79                | 0,77   |
| $Al^{VI}$        | 1,55                 | 1,56                 | 1,57                 | 1,57                 | 1,55                 | 1,55                  | 1,61                  | 1,49                 | 1,52                 | 1,55     | 1,65                | 1,65   |

peak temperature conditions are reached, 3 mm/a between 19 and 15 Ma, and 0.5 mm/a during the remaining 15 Ma (Fig. 4f). Note that modern estimates for the temperature at which zircon fission tracks are fully annealed is around 330-380 °C (Carpena 1992; Brix et al. 2002; Yamada et al. 2003; Rahn et al. 2004), which is higher than had been assumed by Wagner et al. (1977), although they subsequently also revised their estimate upwards (Coyle & Wagner, 1998). With the mathematical simplification of instantaneous thickening, the P-T-t evolution of the ECM following model 1 was considered because of its simplicity as well as a fair agreement with FT data. In comparison, the results of model 2 involve a rather extreme variation in exhumation rates but give a better fit to the apatite data and to the lowest temperature-time conditions with respect to the zircon data. The P-T-t evolution of the ECM should be bracketed by these two models considering either constant or marked variations of exhumation rate.

### Results

Based on the above boundary conditions, P-T-t and P-t–T-t paths of the ECM are drawn in Figs. 4b, e and Figs. 4c, f, respectively. The simplified initial assumption of instantaneous thrusting requires a wait time of 10 Ma in order to achieve the observed P-T maximum of 600 MPa/450 °C. In a more realistic reconstruction, this could be viewed as an average burial/heating rate of 60 MPa/Ma and 45 °C/Ma, respectively.

Note that for our purposes the prograde history is not relevant and we therefore can safely use the instantaneous thrusting hypothesis as long as the maximum P-T observations are reproduced. Thus, black and white arrows in Figs. 4b, c, e and f represent the progressive burial of the ECM. In both models, the main shearing event, corresponding to the observed P peak (600 MPa) and T peak (450 °C), is predicted to occur between 23 and 18 Ma (Figs. 4b, e; 4c, f). These results are consistent with the timing of the Kiental phase (Fig. 3: 25–20 Ma according to Burkhard (1988)) and close to the period of Simplon fault activity, located west of the Aar massif (18–15 Ma according to Grasemann & Mancktelow (1993) and Hetherington & Villa (2007)).

Quartz-bearing Alpine fissures also formed as the result of progressive deformation of the ECM (Mullis et al. 1994). These extensional veins are usually subhorizontal and were opened parallel to the vertical stretching lineation. These veins are interpreted as syn- to post-peak temperature and shear zone formation. Thin oblique lines corresponding to fluid inclusion isochores of extensional quartz veins, after Mullis (1996), are drawn on the calculated Oligo-Miocene P-T-t path of the Aar massif (Figs. 4b, e). Intersections of these fluid inclusion isochores with the P–T-t paths give ages of about 18–17 Ma (model 1) or 19–18 Ma (model 2) (high-P intercepts) and between 9 and 5 Ma (model 1) or 14 and 13 Ma (model 2) (low-P intercepts) for the first (a) and the two late generations (b and c), respectively (fluid inclusion



mentary cover; UH: Ultra-Helvetic unit; D: Doldenhorn nappe; W: Wildhorn nappe; UMM: Lower Marine Molasse; USM: Lower Fresh Molasse; OMM: Upper Marine Molasse; OSM: Upper Marine Molasse; OSM: Upper Fresh Molasse.



Fig. 4. Two models for the derived P-T-t path of the Grimsel granodiorite (ECM) using a standard discrete Fourier transform solutions (Macintosh DialogExhume program developed by Mancktelow (1998)).

a and d: Modelled time-temperature history. Properties of rocks: thermal diffusivity,  $8.42E-07 \text{ m}^2/\text{sec}$  (Philpotts 1990); surface volumetric heat production, 2.5E-06 W/m<sup>3</sup>; heat capacity, 1100 J/kg/K; density, 2700 kg/m<sup>3</sup>. The peak pressure of 600 MPa was reached 23 Ma ago; subsequent exhumation histories are: (a) uniform, 1 mm/a; (d) nonuniform, with 1, 3, and 0.5 mm/a, sequentially.

b and e: P-T-t path of the Grimsel granodiorite (ECM) during Oligo-Miocene Alpine tectonics. Vertical dashed line: temperature conditions of the Grimsel granodiorite (cf. Fig.2). Thin oblique lines: fluid inclusions isochores, extensional quartz veins after Mullis (1996).

c and f: Pt–Tt paths of the Grimsel granodiorite (ECM) during Oligo-Miocene Alpine tectonics. Thin line: Pt retrograde modelled path. Bold line: Tt retrograde modelled path. Top of the diagrams: timing of the main shearing event (delay between P and T peaks) and fluid circulation, after fluid inclusion generations b and c (Mullis 1996). Bottom of the diagrams: timing of the Kiental and Grindelwald phases after Burkhard (1988); age of the North Helvetic Taveyannaz Flysch Formation. f: Boxes corresponding to apatite and zircon fission tracks data are from Wagner et al. (1977) and Michalski and Soom (1990).

nomenclature after Mullis et al. 1994). These data are of great importance for the discussion of the geochronological results, because they suggest that late fluid circulation was recorded in the Aar Massif after the main shearing event (generations b and c, Figs. 4c and f).

#### <sup>39</sup>Ar-<sup>40</sup>Ar and Rb-Sr analytical methods

<sup>39</sup>Ar-<sup>40</sup>Ar incremental release heating and Rb-Sr techniques were used to investigate five representative samples collected across two deformation gradients (Swiss topographic co-ordinates: Aar granite: 667.90–160.45, Grimsel granodiorite: 668.50

| Step  | Temp.<br>(°C) | <sup>39</sup> Ar<br>% | <sup>40</sup> Ar total<br>(ml) | 1σ (abs.)<br>(ml) | <sup>40</sup> Ar*<br>(ml) | <sup>39</sup> Ar<br>(ml) | 1σ (abs.)<br>(ml) | <sup>38</sup> Ar<br>(ml) | 1σ (abs.)<br>(ml) | <sup>38</sup> Ar Cl<br>(ml) | <sup>37</sup> Ar<br>(ml) | 1σ (abs.)<br>(ml) |
|-------|---------------|-----------------------|--------------------------------|-------------------|---------------------------|--------------------------|-------------------|--------------------------|-------------------|-----------------------------|--------------------------|-------------------|
| Samp  | le Aar10      | (grain                | size: 1000 µn                  | n): Weakly de     | formed rock -             | - biotite (J = (         | ).00414, mass :   | = 11.25 mg)              |                   |                             |                          |                   |
| 1     | 652           | 4.5                   | 7.05E-09                       | +8.10E-12         | 2.70E-09                  | 8.16E-10                 | +1.10E-12         | 1.65E-11                 | +1.60E-13         | 4.22E-12                    | 1.74E-10                 | +2.00E-12         |
| 2     | 704           | 7.1                   | 4 02E-09                       | +2.20E-12         | 2,95E-09                  | 1 28E-09                 | +2.30E-12         | 2,22E-11                 | +2.80E-13         | 6.42E-12                    | 1 43E-10                 | +1 73E-12         |
| 3     | 749           | 10.0                  | 5 32E-09                       | +6 90E-12         | 4 29E-09                  | 1.82E-09                 | +2.50E-12         | 2,75E-11                 | +1 90E-13         | 5.46E-12                    | 1.66E-10                 | +2.09E-12         |
| 4     | 802           | 17.2                  | 8 33E-09                       | +2 40E-11         | 7.46E-09                  | 3.12E-09                 | +9 40E-12         | 4 89E-11                 | +2 50E-13         | 1 16E-11                    | 2 16E-10                 | +2 97E-12         |
| 5     | 853           | 10.7                  | 5 59E-09                       | +2.80E-11         | 4 61E-09                  | 1 94E-09                 | +10.00E-12        | 2 72E-11                 | +2 50E-13         | 3 79E-12                    | 9.68E-11                 | +2 91E-12         |
| 6     | 900           | 51                    | 3.05E-09                       | +2.30E-11         | 2.02E-09                  | 9.27E-10                 | +4 70E-12         | 1.61E-11                 | +2.20E-13         | 4 57E-12                    | 7.69E-11                 | +1.81E-12         |
| 7     | 966           | 63                    | 3 94E-09                       | +10.00E-13        | 2,78E-09                  | 1 14E-09                 | +10.00E-13        | 1,91E-11                 | +1 90E-13         | 5.04E-12                    | 4 78E-10                 | +1.65E-12         |
| 8     | 1028          | 10.5                  | 5.63E-09                       | +1 80E-12         | 4 65E-09                  | 1 91E-09                 | +2.00E-12         | 2.94E-11                 | +7.60E-14         | 6.43E-12                    | 7.26E-10                 | +2.86E-12         |
| 9     | 1020          | 12.7                  | 6.47E-09                       | +3.10E-12         | 5.86E-09                  | 2.31E-09                 | +2.40E-12         | 3.57E-11                 | +2.00E-13         | 8.25E-12                    | 4.65E-10                 | +2.31E-12         |
| 10    | 1140          | 9.2                   | 4 84E-09                       | +3 10E-12         | 3 95E-09                  | 1.66E-09                 | +2.10E-12         | 2.53E-11                 | +2.00E-13         | 5 32E-12                    | 8 56E-10                 | +3 49E-12         |
| 11    | 1190          | 4.8                   | 3.24E-09                       | +4.40E-13         | 2.22E-09                  | 8.76E-10                 | +8.00E-13         | 1.43E-11                 | +1.50E-13         | 3.65E-12                    | 2.20E-09                 | +6.56E-12         |
| 12    | 1266          | 1.3                   | 1.41E-09                       | +1.60E-12         | 8.26E-10                  | 2.27E-10                 | +2.80E-13         | 4.48E-12                 | +2.30E-13         | 1.81E-12                    | 2.66E-09                 | +8.23E-12         |
| 13    | 1499          | 0.5                   | 1.14E-09                       | ±1.20E-12         | 8.04E-11                  | 9.45E-11                 | ±2.60E-13         | 1.89E-12                 | ±1.20E-13         | 3.59E-13                    | 1.74E-09                 | ±7.00E-12         |
|       | <b>T</b>      | 30 4                  | 40.4 4 4 3                     |                   | 40 4 34                   | 30 4                     |                   | 39 4                     |                   | 384 (1)                     | 37 4                     | 1 (1)             |
| Step  | Temp.         | <sup>39</sup> Ar      | <sup>40</sup> Ar total         | $l\sigma$ (abs.)  | <sup>40</sup> Ar*         | <sup>39</sup> Ar         | $l\sigma$ (abs.)  | <sup>38</sup> Ar         | $l\sigma$ (abs.)  | <sup>38</sup> Ar Cl         | <sup>3/</sup> Ar         | $l\sigma$ (abs.)  |
|       | ('U)          | %0                    | (mi)                           | (mi)              | (mi)                      | (mi)                     | (mi)              | (mi)                     | (mi)              | (mi)                        | (mi)                     | (mi)              |
| Samp  | le Aar17      | (grain                | size: 30 µm):                  | Mylonitic roo     | k – biotite (J            | = 0.00657, ma            | uss = 11.3 mg)    |                          |                   |                             |                          |                   |
| 1     | 451           | 4,5                   | 2,08E-08                       | $\pm 1,40E-12$    | 1,45E-09                  | 3,16E-10                 | ±3,20E-13         | 2,01E-11                 | ±2,10E-13         | 4,18E-12                    | 7,37E-12                 | ±3,48E-12         |
| 2     | 498           | 5,3                   | 1,15E-08                       | ±9,80E-13         | 4,84E-10                  | 3,78E-10                 | ±3,80E-13         | 1,36E-11                 | ±1,50E-13         | 2,19E-12                    | 1,99E-11                 | ±3,02E-12         |
| 3     | 545           | 7,7                   | 7,40E-09                       | ±5,00E-13         | 9,09E-10                  | 5,47E-10                 | ±5,20E-13         | 1,26E-11                 | ±2,00E-13         | 2,04E-12                    | 8,47E-12                 | ±2,73E-12         |
| 4     | 574           | 6,6                   | 4,07E-09                       | ±1,40E-12         | 5,95E-10                  | 4,69E-10                 | ±4,90E-13         | 1,09E-11                 | ±7,90E-14         | 3,15E-12                    | 2,61E-11                 | ±3,05E-12         |
| 5     | 601           | 5,7                   | 8,14E-09                       | $\pm 6,10E-13$    | 8,23E-10                  | 4,02E-10                 | $\pm 4,40E-13$    | 1,36E-11                 | ±3,00E-13         | 4,21E-12                    | 1,72E-11                 | $\pm 4,02E-12$    |
| 6     | 659           | 19,1                  | 5,36E-09                       | ±5,30E-13         | 2,71E-09                  | 1,35E-09                 | ±1,20E-12         | 2,17E-11                 | ±2,60E-13         | 4,16E-12                    | 1,75E-11                 | ±3,43E-12         |
| 7     | 712           | 23,9                  | 5,22E-09                       | ±7,00E-13         | 2,75E-09                  | 1,69E-09                 | ±1,50E-12         | 2,78E-11                 | ±2,60E-13         | 6,43E-12                    | 8,12E-11                 | ±4,39E-12         |
| 8     | 764           | 10,3                  | 3,47E-09                       | ±3,90E-13         | 1,25E-09                  | 7,27E-10                 | ±7,00E-13         | 1,30E-11                 | ±2,30E-13         | 3,02E-12                    | 6,50E-11                 | ±1,85E-12         |
| 9     | 838           | 4,9                   | 4,19E-09                       | ±4,90E-13         | 5,44E-10                  | 3,46E-10                 | ±3,90E-13         | 7,16E-12                 | ±1,80E-13         | 7,80E-13                    | 4,28E-11                 | ±3,64E-12         |
| 10    | 884           | 3,2                   | 3,58E-09                       | ±4,40E-13         | 7,05E-10                  | 2,29E-10                 | ±3,00E-13         | 5,85E-12                 | ±2,20E-13         | 1,35E-12                    | 6,43E-11                 | ±4,11E-12         |
| 11    | 925           | 1,6                   | 2,39E-09                       | ±7,70E-14         | 2,93E-10                  | 1,10E-10                 | ±1,70E-13         | 2,98E-12                 | ±1,20E-13         | 3,62E-13                    | 3,33E-11                 | ±8,80E-13         |
| 12    | 969           | 1,2                   | 2,06E-09                       | ±4,20E-13         | 2,32E-10                  | 8,67E-11                 | ±1,70E-13         | 1,47E-12                 | ±2,20E-13         | -6,89E-13                   | 6,55E-11                 | ±4,76E-12         |
| 13    | 1026          | 1,0                   | 2,50E-09                       | ±5,20E-13         | 2,01E-10                  | 7,11E-11                 | ±1,80E-13         | 2,26E-12                 | ±2,10E-13         | -1,28E-14                   | 7,48E-11                 | $\pm 4,26E-12$    |
| 14-ne | w 1402        | 5,0                   | 3,56E-08                       | ±1,51E-11         | 1,395E-09                 | 3,51E-10                 | ±4,04E-13         | 2,795E-11                | ±3,07E-13         | 0,0                         | 2,78E-10                 | ±5,83E-12         |
| Step  | Temp.         | <sup>39</sup> Ar      | <sup>40</sup> Ar total         | 1σ (abs.)         | <sup>40</sup> Ar*         | <sup>39</sup> Ar         | 1σ (abs.)         | <sup>38</sup> Ar         | 1σ (abs.)         | <sup>38</sup> Ar Cl         | <sup>37</sup> Ar         | 1σ (abs.)         |
|       | (°C)          | %                     | (ml)                           | (ml)              | (ml)                      | (ml)                     | (ml)              | (ml)                     | (ml)              | (ml)                        | (ml)                     | (ml)              |
| Samp  | le Aar17      | (grain                | size: 30 µm):                  | Mylonitic roo     | :k – phengite             | (J = 0.00414, I)         | mass = 6.47 mg    | g)                       |                   |                             |                          |                   |
| 1     | 440           | 3,3                   | 2,09E-08                       | ±1,30E-11         | 8,80E-10                  | 2,59E-10                 | ±3,50E-13         | 2,38E-11                 | ±2,90E-13         | 8,14E-12                    | 2,38E-11                 | ±4,27E-12         |
| 2     | 488           | 4,3                   | 4,26E-09                       | ±9,30E-13         | 8,83E-10                  | 3,43E-10                 | ±3,90E-13         | 1,26E-11                 | ±2,50E-13         | 6,48E-12                    | 2,93E-11                 | ±5,14E-12         |
| 3     | 537           | 7,1                   | 3,31E-09                       | ±2,10E-12         | 1,47E-09                  | 5,62E-10                 | ±5,90E-13         | 1,28E-11                 | ±2,80E-13         | 5,00E-12                    | 2,70E-11                 | $\pm 5,62E-12$    |
| 4     | 567           | 9,2                   | 3,05E-09                       | ±1,80E-12         | 1,50E-09                  | 7,35E-10                 | ±7,20E-13         | 1,25E-11                 | ±1,80E-13         | 2,90E-12                    | 3,93E-11                 | ±3,53E-12         |
| 5     | 597           | 8,4                   | 3,09E-09                       | $\pm 1,50E-12$    | 1,59E-09                  | 6,69E-10                 | $\pm 6,40E-13$    | 1,14E-11                 | ±2,20E-13         | 2,54E-12                    | 3,20E-11                 | ±3,14E-12         |
| 6     | 652           | 10,4                  | 3,09E-09                       | ±1,10E-12         | 1,79E-09                  | 8,30E-10                 | ±7,50E-13         | 1,40E-11                 | ±1,80E-13         | 3,42E-12                    | 2,33E-11                 | $\pm 5,40E-12$    |
| 7     | 706           | 8,8                   | 2,77E-09                       | ±6,70E-13         | 1,39E-09                  | 7,02E-10                 | ±6,50E-13         | 1,14E-11                 | ±1,30E-13         | 2,27E-12                    | 3,64E-11                 | ±3,86E-12         |
| 8     | 754           | 8,9                   | 2,79E-09                       | ±8,70E-13         | 1,46E-09                  | 7,07E-10                 | ±6,70E-13         | 1,11E-11                 | ±1,40E-13         | 1,97E-12                    | 3,75E-11                 | ±3,01E-12         |
| 9     | 829           | 13,4                  | 3,71E-09                       | ±1,20E-12         | 2,35E-09                  | 1,07E-09                 | ±9,70E-13         | 1,63E-11                 | ±2,10E-13         | 2,88E-12                    | 4,21E-11                 | ±5,35E-12         |
| 10    | 898           | 15,3                  | 4,17E-09                       | ±1,10E-12         | 2,96E-09                  | 1,22E-09                 | ±1,10E-12         | 1,91E-11                 | ±3,10E-13         | 4,06E-12                    | 4,57E-11                 | ±2,73E-12         |
| 11    | 963           | 6,3                   | 2,33E-09                       | ±5,60E-13         | 1,39E-09                  | 5,04E-10                 | ±5,20E-13         | 7,72E-12                 | ±7,80E-14         | 1,21E-12                    | 3,88E-11                 | ±4,79E-12         |
| 12    | 1021          | 2,2                   | 1,37E-09                       | ±2,80E-13         | 2,91E-10                  | 1,72E-10                 | ±1,90E-13         | 4,60E-12                 | ±1,80E-13         | 1,91E-12                    | 5,54E-11                 | ±3,69E-12         |
| 13    | 1074          | 1,2                   | 1,05E-09                       | ±3,00E-13         | -8,71E-11                 | 9,29E-11                 | ±2,60E-13         | 3,53E-12                 | ±1,90E-13         | 1,72E-12                    | 6,72E-11                 | ±3,90E-12         |
| 14    | 1159          | 1,0                   | 1,22E-09                       | ±1,70E-13         | 1,671E-10                 | 8,28E-11                 | ±1,10E-13         | 6,045E-12                | ±2,80E-13         | 0,0                         | 9,30E-11                 | ±2,15E-12         |

-158.40), from weakly deformed granites (Aar10 and Aar 31) to orthogneisses (AD20) and mylonites (Aar17 and ACIIh). These samples provided seven multi-grain mineral separates (five biotites, two phengites). In addition to these samples, three mica analyses and one whole rock analysis from Marquer (1987) are included in the present discussion (Table 4).

#### Mineral separation

Samples were crushed and sieved. Visual inspection of the coarser fractions showed that multi-grain aggregates were a major problem, especially for mylonitic samples whose natural grain size is lower than 30  $\mu$ m. Therefore, the 10  $\mu$ m-50  $\mu$ m

| <sup>36</sup> Ar<br>(ml) | 1σ (abs.)<br>(ml) | Cl/K      | 1σ (abs.)      | Ca/K      | 1σ (abs.)       | Age<br>(Ma) | <b>1</b> σ ( <b>abs.</b> )<br>(Ma) | <sup>39</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)      | <sup>36</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)        |
|--------------------------|-------------------|-----------|----------------|-----------|-----------------|-------------|------------------------------------|------------------------------------|----------------|------------------------------------|------------------|
|                          |                   |           |                |           |                 |             |                                    |                                    |                |                                    |                  |
| 1,47E-11                 | ±2,20E-13         | 1,19E-03  | ±4,67E-05      | 4,26E-01  | ±4,90E-03       | 24,6        | ±0,6                               | 1,16E-01                           | ±2,10E-04      | 2,09E-03                           | ±3,20E-05        |
| 3.69E-12                 | ±2.00E-13         | 1.15E-03  | ±5.09E-05      | 2.22E-01  | ±2,70E-03       | 17.1        | ±0.3                               | 3.19E-01                           | ±6.00E-04      | 9.07E-04                           | ±5.00E-05        |
| 3,51E-12                 | ±2,00E-13         | 6,90E-04  | ±2,48E-05      | 1,83E-01  | ±2,30E-03       | 17,5        | ±0,2                               | 3,42E-01                           | ±6,40E-04      | 6,52E-04                           | ±3,70E-05        |
| 3,00E-12                 | ±1,90E-13         | 8,57E-04  | ±2,03E-05      | 1,38E-01  | ±1,90E-03       | 17,8        | ±0,2                               | 3,75E-01                           | ±1,60E-03      | 3,54E-04                           | ±2,20E-05        |
| 3,34E-12                 | ±2,00E-13         | 4,51E-04  | ±3,31E-05      | 10,00E-02 | ±3,00E-03       | 17,7        | ±0,3                               | 3,47E-01                           | ±2,50E-03      | 5,93E-04                           | ±3,50E-05        |
| 3,50E-12                 | ±1,80E-13         | 1,13E-03  | ±5,69E-05      | 1,66E-01  | ±3,90E-03       | 16,2        | ±0,5                               | 3,03E-01                           | ±2,80E-03      | 1,14E-03                           | ±6,10E-05        |
| 4,05E-12                 | ±1,90E-13         | 1,02E-03  | ±3,92E-05      | 8,42E-01  | ±2,90E-03       | 18,2        | ±0,4                               | 2,88E-01                           | ±2,70E-04      | 9,96E-04                           | ±4,60E-05        |
| 3,51E-12                 | ±1,80E-13         | 7,76E-04  | ±1,04E-05      | 7,62E-01  | ±3,00E-03       | 18,1        | ±0,2                               | 3,38E-01                           | ±3,70E-04      | 5,91E-04                           | ±3,10E-05        |
| 2,19E-12                 | ±1,90E-13         | 8,21E-04  | ±2,04E-05      | 4,03E-01  | ±2,00E-03       | 18,9        | ±0,2                               | 3,57E-01                           | ±4,10E-04      | 3,20E-04                           | ±2,80E-05        |
| 3,23E-12                 | ±2,00E-13         | 7,35E-04  | ±2,83E-05      | 1,03E+00  | ±4,20E-03       | 17,6        | ±0,2                               | 3,44E-01                           | ±4,80E-04      | 6,22E-04                           | ±3,80E-05        |
| 4,01E-12                 | ±1,80E-13         | 9,58E-04  | ±4,04E-05      | 5,03E+00  | ±1,50E-02       | 18,9        | ±0,4                               | 2,70E-01                           | ±2,50E-04      | 1,06E-03                           | ±4,70E-05        |
| 2,67E-12                 | ±2,00E-13         | 1,83E-03  | ±2,36E-04      | 2,36E+01  | ±7,30E-02       | 27,1        | ±1,4                               | 1,60E-01                           | ±2,60E-04      | 1,41E-03                           | ±1,00E-04        |
| 4,03E-12                 | $\pm 2,10E-13$    | 8,74E-04  | $\pm 3,07E-04$ | 3,72E+01  | $\pm 1,50E-01$  | 6,4         | ±4,3                               | 8,19E-02                           | $\pm 2,40E-04$ | 3,15E-03                           | $\pm 1,60E-04$   |
| <sup>36</sup> Ar         | 1σ (abs.)         | Cl/K      | 1σ (abs.)      | Ca/K      | 1σ (abs.)       | Age         | 1σ (abs.)                          | <sup>39</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)      | <sup>36</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)        |
| ( <b>ml</b> )            | (ml)              |           |                |           |                 | (Ma)        | (Ma)                               |                                    |                |                                    |                  |
|                          |                   |           |                |           |                 |             |                                    |                                    |                |                                    |                  |
| 6,53E-11                 | ±3,40E-13         | 3,04E-03  | ±1,60E-04      | 4,66E-02  | ±2,20E-02       | 53,6        | ±3,7                               | 1,52E-02                           | ±1,50E-05      | 3,15E-03                           | ±1,60E-05        |
| 3,74E-11                 | ±2,30E-13         | 1,33E-03  | ±9,50E-05      | 1,05E-01  | ±1,60E-02       | 15,1        | ±2,1                               | 3,28E-02                           | ±3,30E-05      | 3,24E-03                           | ±2,00E-05        |
| 2,20E-11                 | ±1,70E-13         | 8,57E-04  | ±8,52E-05      | 3,01E-02  | ±1,00E-02       | 19,6        | ±1,1                               | 7,38E-02                           | ±7,00E-05      | 2,97E-03                           | ±2,30E-05        |
| 1,18E-11                 | ±1,30E-13         | 1,54E-03  | ±4,07E-05      | 1,12E-01  | ±1,30E-02       | 15,0        | ±1,0                               | 1,15E-01                           | ±1,30E-04      | 2,89E-03                           | ±3,20E-05        |
| 2,48E-11                 | ±1,50E-13         | 2,40E-03  | ±1,72E-04      | 8,54E-02  | ±2,00E-02       | 24,1        | ±1,3                               | 4,95E-02                           | ±5,40E-05      | 3,04E-03                           | ±1,80E-05        |
| 8,96E-12                 | ±1,80E-13         | 7,11E-04  | ±4,49E-05      | 2,60E-02  | ±5,10E-03       | 23,7        | ±0,5                               | 2,51E-01                           | ±2,30E-04      | 1,67E-03                           | ±3,30E-05        |
| 8,39E-12                 | ±1,40E-13         | 8,76E-04  | ±3,57E-05      | 9,62E-02  | ±5,20E-03       | 19,2        | ±0,3                               | 3,23E-01                           | ±2,90E-04      | 1,60E-03                           | ±2,60E-05        |
| 7,54E-12                 | ±1,60E-13         | 9,53E-04  | ±7,34E-05      | 1,79E-01  | ±5,10E-03       | 20,3        | ±0,8                               | 2,09E-01                           | ±2,00E-04      | 2,17E-03                           | ±4,60E-05        |
| 1,23E-11                 | ±1,20E-13         | 5,17E-04  | ±1,20E-04      | 2,47E-01  | ±2,10E-02       | 18,5        | ±1,2                               | 8,27E-02                           | ±9,40E-05      | 2,94E-03                           | ±2,90E-05        |
| 9,75E-12                 | ±2,10E-13         | 1,36E-03  | $\pm 2,25E-04$ | 5,63E-01  | $\pm 3,60E-02$  | 36,2        | ±3,2                               | 6,38E-02                           | ±8,50E-05      | 2,72E-03                           | ±6,00E-05        |
| 7,12E-12                 | ±1,10E-13         | 7,58E-04  | $\pm 2,55E-04$ | 6,05E-01  | $\pm 1,60E-02$  | 31,3        | ±3,6                               | 4,60E-02                           | ±7,20E-05      | 2,97E-03                           | ±4,80E-05        |
| 6,19E-12                 | ±1,40E-13         | -1,83E-03 | ±5,88E-04      | 1,51E+00  | $\pm 1,10E-01$  | 31,5        | ±5,7                               | 4,21E-02                           | ±8,10E-05      | 3,00E-03                           | ±6,90E-05        |
| 7,77E-12                 | $\pm 1,70E-13$    | -4,13E-05 | $\pm 6,87E-04$ | 2,11E+00  | $\pm 1,20E-01$  | 34,6        | ±8,3                               | 2,84E-02                           | ±7,10E-05      | 3,10E-03                           | ±6,90E-05        |
| 1,159E-10                | ±4,95E-13         | 1,46E-03  | ±2,10E-04      | 1,59E+00  | ±3,33E-02       | 46,5        | ±4,9                               | 9,85E-03                           | 1,21E-05       | 3,25E-03                           | 1,39E-05         |
| <sup>36</sup> Ar         | 1σ (abs.)         | Cl/K      | 1σ (abs.)      | Ca/K      | 1σ (abs.)       | Age         | 1σ (abs.)                          | <sup>39</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)      | <sup>36</sup> Ar/ <sup>40</sup> Ar | $1\sigma$ (abs.) |
| (ml)                     | (ml)              |           |                |           |                 | (Ma)        | (Ma)                               |                                    |                |                                    |                  |
|                          |                   |           |                |           |                 |             |                                    |                                    |                |                                    |                  |
| 6,77E-11                 | $\pm 4,50E-13$    | 7,23E-03  | $\pm 2,68E-04$ | 1,84E-01  | ±3,30E-02       | 25,2        | ±3,8                               | 1,24E-02                           | 1,80E-05       | 3,24E-03                           | 2,20E-05         |
| 1,14E-11                 | $\pm 4,60E-13$    | 4,35E-03  | $\pm 1,77E-04$ | 1,71E-01  | $\pm 3,00E-02$  | 19,1        | ±2,9                               | 8,04E-02                           | 9,40E-05       | 2,68E-03                           | 1,10E-04         |
| 6,22E-12                 | $\pm 4,00E-13$    | 2,05E-03  | $\pm 1,19E-04$ | 9,63E-02  | $\pm 2,00E-02$  | 19,4        | ±1,5                               | 1,70E-01                           | 2,10E-04       | 1,88E-03                           | 1,20E-04         |
| 5,22E-12                 | ±3,90E-13         | 9,09E-04  | ±6,09E-05      | 1,07E-01  | ±9,60E-03       | 15,2        | ±1,2                               | 2,41E-01                           | 2,80E-04       | 1,71E-03                           | 1,30E-04         |
| 5,11E-12                 | ±3,90E-13         | 8,72E-04  | ±7,97E-05      | 9,57E-02  | ±9,40E-03       | 17,6        | ±1,3                               | 2,16E-01                           | 2,30E-04       | 1,65E-03                           | 1,30E-04         |
| 4,42E-12                 | ±3,80E-13         | 9,49E-04  | ±5,37E-05      | 5,61E-02  | ±1,30E-02       | 16,0        | ±1,0                               | 2,68E-01                           | 2,60E-04       | 1,43E-03                           | 1,20E-04         |
| 4,66E-12                 | ±4,10E-13         | 7,43E-04  | ±4,95E-05      | 1,04E-01  | ±1,10E-02       | 14,7        | ±1,3                               | 2,54E-01                           | 2,40E-04       | 1,68E-03                           | 1,50E-04         |
| 4,49E-12                 | ±3,90E-13         | 6,41E-04  | ±5,14E-05      | 1,06E-01  | ±8,50E-03       | 15,4        | ±1,2                               | 2,54E-01                           | 2,50E-04       | 1,61E-03                           | 1,40E-04         |
| 4,62E-12                 | ±3,90E-13         | 6,19E-04  | ±4,79E-05      | 7,88E-02  | ±1,00E-02       | 16,4        | ±0,8                               | 2,88E-01                           | 2,80E-04       | 1,24E-03                           | 1,00E-04         |
| 4,09E-12                 | ±4,30E-13         | 7,69E-04  | ±6,07E-05      | 7,52E-02  | ±4,50E-03       | 18,1        | ±0,8                               | 2,91E-01                           | 2,70E-04       | 9,78E-04                           | 1,00E-04         |
| 3,17E-12                 | ±4,60E-13         | 5,50E-04  | ±5,30E-05      | 1,54E-01  | ±1,90E-02       | 20,5        | ±2,0                               | 2,17E-01                           | 2,30E-04       | 1,36E-03                           | 1,90E-04         |
| 3,68E-12                 | ±3,90E-13         | 2,55E-03  | ±2,60E-04      | 6,46E-01  | ±4,30E-02       | 12,6        | ±4,9                               | 1,25E-01                           | 1,40E-04       | 2,67E-03                           | 2,80E-04         |
| 3,87E-12                 | ±4,30E-13         | 4,26E-03  | ±5,11E-04      | 1,45E+00  | ±8,40E-02       | -7,0        | ±-10,0                             | 8,84E-02                           | 2,40E-04       | 3,66E-03                           | 4,00E-04         |
| 3,593E-12                | ±4,10E-13         | 1,23E-02  | ±8,06E-04      | 2,25E+00  | $\pm 5,20$ E-02 | 15,0        | ±11,0                              | 6,78E-02                           | 8,80E-05       | 2,92E-03                           | 3,30E-04         |

fraction was obtained by sedimentation in Attenberg cylinders. Magnetic separation allowed the separation of biotite from phengite. However, density separation failed due to the poor wetting and high clustering of grains. Thus, all separates contained significant amounts of quartz  $\pm$  plagioclase, particularly in granite mylonite samples.

#### <sup>39</sup>Ar-<sup>40</sup>Ar techniques

Mineral concentrates, biotites, and phengites were analysed using incremental-heating <sup>39</sup>Ar-<sup>40</sup>Ar analysis, following techniques described in detail by Belluso et al. (2000). Incremental heating techniques provide a quality filter for the data based



on chemical signatures. <sup>37</sup>Ar, <sup>38</sup>Ar, and <sup>39</sup>Ar isotopes are produced by several reactions caused by interactions of neutrons with the isotopes of calcium, chlorine, and potassium during irradiation (Brereton 1970). Thus, these three Ar isotopes provide substantial chemical information that can be used to discriminate different phases. Complex <sup>39</sup>Ar-<sup>40</sup>Ar age spectra are interpreted using the systematics defined for mineral mixtures (Belluso et al. 2000; Villa et al. 2000; Müller et al. 2002). Chemical information provided by the Ca-Cl-K correlation diagrams (Fig. 5) were taken into account to estimate <sup>39</sup>Ar-<sup>40</sup>Ar ages of biotite and white mica from the "isochemical" steps (i.e. those steps with homogeneous Ca/K and Cl/K ratios as determined from the argon isotopes,  ${}^{39}Ar_{K}$ ,  ${}^{38}Ar_{Cl}$ ,  ${}^{37}Ar_{Ca}$ ). The validation of the chemical discrimination approach is provided by Villa et al. (2000). Note that the chronologically relevant steps of a mixture need not encompass a very large part of the Ar release (Villa et al. 2000, Müller et al. 2002). What is more important is the Ca-Cl-K signature of the pure end-members of the mixture. The drawback of the quartz  $\pm$  plagioclase impurities (clearly visible from the high Ca/K ratios (Fig. 5)) is that they make it impossible to use the sub-stoichiometric K concentrations as a monitor of chloritization. The Ar isotope systematics of chloritization are addressed by Di Vincenzo et al. (2003). Finally, we note that from a chronometric point of view the importance of the present impurity phases is subordinate. The inter-sample age variations (17-21 Ma) are larger than the within-sample bias that can be produced by adding or removing one more step to the isochemical set. The <sup>39</sup>Ar-<sup>40</sup>Ar analytical data are listed in Tables 2 and 3 with 1-sigma errors and are depicted as age spectra in Fig. 6.

#### Rb-Sr techniques

Rb and Sr concentrations were determined by isotope dilution, using a mixed <sup>87</sup>Rb-<sup>84</sup>Sr spike. Rb was measured on an AVCO<sup>TM</sup> single-collector thermal ionisation mass spectrometer and Sr on a VG 354 multicollector thermal ionisation mass spectrometer, both in Bern. Analytical details of Rb and Sr analyses performed at the University of Rennes are described in Marquer (1987) and Marquer and Peucat (1994). Rb/Sr whole rock-mineral ages are calculated with the Isoplot/Ex program, version 2.2 (Ludwig 2000). Age results, calculated with the decay constant  $\lambda = 1.42 \ 10^{-11} \ a^{-1}$  and 2-sigma errors, are given in Table 4.

Fig. 5. a and b: Ca-Cl-K correlation diagram for biotites and phengites of the Aar granite and Grimsel granodiorite (note Ca/K scale change for phengites). Biotites: open triangles: weakly deformed rocks; open dots: orthogneisses; black squares: mylonites. Phengites: black dots. Error bars are smaller than symbol size except where shown. Surrounded areas correspond to steps used to calculate isochemical ages (Fig. 6).

#### **Geochronological results**

#### <sup>39</sup>Ar-<sup>40</sup>Ar data

As seen in Fig. 6, none of the seven <sup>39</sup>Ar-<sup>40</sup>Ar age spectra for biotites and phengites from the Aar granite and Grimsel granodiorite samples shows a simple plateau. Generally, the low and high-temperature steps give a disturbed pattern. Integrated ages are calculated on the total steps.

Isochemical ages are defined by using a chemical correlation diagram (Fig. 5), following the diagnostic approach of Belluso et al. (2000) and Villa et al. (2000). As shown by these authors, complex <sup>39</sup>Ar-<sup>40</sup>Ar age spectra that give no plateau can be successfully interpreted, provided that the sample mineralogy and microchemistry can be tied to discordant features of the age spectra and end-member components in 3-isotope correlation plots. The chemical correlation diagrams of biotites and phengites analysed in the Aar granite and Grimsel granodiorite shear zones are shown in Fig. 5. For every sample in these diagrams, many points cluster near low Ca/K and low Cl/K end-members. We interpret these clusters as closest to the true biotite and phengite compositions and therefore only the lowest Ca/K steps are used to calculate the isochemical ages (Tables 2–3 and Fig. 6).

Biotite Aar 31 (Fig. 6) yields an age of  $37.1 \pm 0.8$  Ma, intermediate between Variscan magmatism and the deformation age indicated by all other samples. In view of the petrographic observation mentioned above, the presence of magmatic biotite relics is the probable cause of isotopic inheritance (cf. Villa 1998). Except for this sample, all integrated and isochemical mica age estimates are between 23 and 16 Ma and 21 and 17 Ma, respectively. Because the integrated K-Ar (total-gas) ages obviously mix steps corresponding to different chemical compositions, these are not the same as the isochemical ages (Fig. 6) and have no geological meaning. However, the difference between the total-gas and the isochemical ages is never very large, being + 3.3 Ma in only one instance and + 0.2 Ma on average.

#### <sup>39</sup>Ar-<sup>40</sup>Ar interpretation

In Dodson's (1973) approach, the closure temperature ( $T_c$ ) of a geochronological system is defined as its temperature at the time corresponding to its isotopic age. This assumption is only valid if the mineral grew above this closure temperature. Isotopic diffusion is then assumed to be negligible below the closure temperature. Based on the parameters of volume diffusion, a closure temperature can be calculated (Dodson 1973). K-Ar biotite closure temperatures can be calculated for the three sampled rocks, using diffusion coefficient and activation energy of 0.78 cm<sup>2</sup>/s and 250 kJ/mol, respectively (Villa & Puxeddu 1994), and assuming a cylindrical geometry. The average grain sizes are 1000  $\mu$ m in weakly deformed rocks, 300  $\mu$ m in orthogneiss and 30  $\mu$ m in mylonites (Fig. 7). For average cooling rates of 10 and 40 °C/Ma, corresponding to numerical



Fig. 6. Biotite and phengite <sup>39</sup>Ar.<sup>40</sup>Ar age spectra for the Aar granite and Grimsel granodiorite samples. Integrated ages are performed on the total steps. Isochemical ages are highlighted in black and were defined as the low-Ca steps in the chemical correlation diagrams of Fig. 5.

models 1 and 2, the calculated closure temperatures are 489, 445, and 374, and 517, 470, and 394 °C, respectively. Projecting these values onto the modelled T-t paths predicts a substantial decrease in the biotite cooling ages with reduction of the grain

Tab. 3. Argon data of biotites and phengite from the Grimsel granodiorite.

| Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temp.                                                                                                                                                                                                                                    | <sup>39</sup> Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>40</sup> Ar total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1σ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>40</sup> Ar*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>39</sup> Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1σ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>38</sup> Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1σ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>38</sup> Ar Cl                                                                                                                                                                                                                                                                                  | <sup>37</sup> Ar                                                                                                                                                                                                                                                                                                                      | 1σ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (°C)                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ml)                                                                                                                                                                                                                                                                                                 | (ml)                                                                                                                                                                                                                                                                                                                                  | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le Aar31                                                                                                                                                                                                                                 | (grain s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ize: 1000 µm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ): Weakly defo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormed rock –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | biotite (J = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00414, mass =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.11 mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 650                                                                                                                                                                                                                                      | 9,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,05E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 3,20E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,82E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,52E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 1,50E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,27E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1,90E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,31E-11                                                                                                                                                                                                                                                                                             | 9,86E-11                                                                                                                                                                                                                                                                                                                              | ±3,96E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 740                                                                                                                                                                                                                                      | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,16E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±1,30E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,89E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,80E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±9,40E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,35E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,10E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,18E-11                                                                                                                                                                                                                                                                                             | 3,15E-11                                                                                                                                                                                                                                                                                                                              | ±5,88E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 793                                                                                                                                                                                                                                      | 12,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,12E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 10,00E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,02E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,11E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 2,90E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,29E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,20E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,74E-11                                                                                                                                                                                                                                                                                             | 9,90E-11                                                                                                                                                                                                                                                                                                                              | ±5,18E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 838<br>894                                                                                                                                                                                                                               | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,50E-08<br>8 32E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\pm 4,00E-12$<br>+4.60E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,43E-08<br>8,00F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,87E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 2,00E-12$<br>+1 70E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9,81E-11<br>5.42E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\pm 2,70E-13$<br>+1.90E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,40E-11<br>3 56E-11                                                                                                                                                                                                                                                                                 | 0,70E-11<br>5.80E-11                                                                                                                                                                                                                                                                                                                  | $\pm 3,38E-12$<br>+3.90E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 951                                                                                                                                                                                                                                      | 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.18E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +8.30E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.41E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.30E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +7.10E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.60E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +2.60E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.70E-11                                                                                                                                                                                                                                                                                             | 3.62E-11                                                                                                                                                                                                                                                                                                                              | $\pm 5,50E-12$<br>+548E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1024                                                                                                                                                                                                                                     | 5,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,28E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±6,10E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,96E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,44E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±8,50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,19E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1,50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,06E-11                                                                                                                                                                                                                                                                                             | 3,36E-10                                                                                                                                                                                                                                                                                                                              | ±3,77E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1077                                                                                                                                                                                                                                     | 7,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,76E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±5,60E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,17E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,22E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±1,10E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,25E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,20E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,79E-11                                                                                                                                                                                                                                                                                             | 2,94E-10                                                                                                                                                                                                                                                                                                                              | ±4,74E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1140                                                                                                                                                                                                                                     | 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,08E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±7,50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,03E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,04E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±1,80E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,95E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,60E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,51E-11                                                                                                                                                                                                                                                                                             | 1,51E-10                                                                                                                                                                                                                                                                                                                              | ±3,88E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1185                                                                                                                                                                                                                                     | 8,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,89E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±8,20E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,36E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,44E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±1,30E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,92E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,00E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,20E-11                                                                                                                                                                                                                                                                                             | 2,84E-10                                                                                                                                                                                                                                                                                                                              | ±3,38E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1260                                                                                                                                                                                                                                     | 5,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,55E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±5,10E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,04E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,58E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±8,80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,52E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,40E-11                                                                                                                                                                                                                                                                                             | 2,33E-09                                                                                                                                                                                                                                                                                                                              | ±7,65E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temp.                                                                                                                                                                                                                                    | <sup>39</sup> Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>40</sup> Ar total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1σ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>40</sup> Ar*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>39</sup> Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1σ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>38</sup> Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1σ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>38</sup> Ar Cl                                                                                                                                                                                                                                                                                  | <sup>37</sup> Ar                                                                                                                                                                                                                                                                                                                      | 1σ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (°C)                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ml)                                                                                                                                                                                                                                                                                                 | (ml)                                                                                                                                                                                                                                                                                                                                  | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le AD20                                                                                                                                                                                                                                  | (grain s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ize: 300 µm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Orthogneissi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c rock – biotit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e(J = 0.00414)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , mass = 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 440                                                                                                                                                                                                                                      | 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,60E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±4,00E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,30E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,29E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±3,50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,51E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1,80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,56E-12                                                                                                                                                                                                                                                                                             | 3,27E-11                                                                                                                                                                                                                                                                                                                              | ±3,95E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 493                                                                                                                                                                                                                                      | 2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,95E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±9,40E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,33E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,70E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±5,30E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,44E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1,80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,01E-12                                                                                                                                                                                                                                                                                             | 4,66E-11                                                                                                                                                                                                                                                                                                                              | ±3,42E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 543                                                                                                                                                                                                                                      | 6,1<br>7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,13E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 4,30E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,86E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,23E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 1,10E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,29E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1,80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,04E-12                                                                                                                                                                                                                                                                                             | 1,43E-11                                                                                                                                                                                                                                                                                                                              | $\pm 2,46E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50/                                                                                                                                                                                                                                      | 7,4<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,44E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 2,00E-10$<br>$\pm 2.10E.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,50E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,49E-09<br>0 11E 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\pm 1,30E-12$<br>$\pm 6.40E,12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,10E-11<br>1 32E 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\pm 3,70E-14$<br>$\pm 6.10E.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,22E-11<br>1 83E 12                                                                                                                                                                                                                                                                                 | 2,10E-11<br>2.13E-10                                                                                                                                                                                                                                                                                                                  | $\pm 3,94$ E-12<br>$\pm 5.46$ E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 646                                                                                                                                                                                                                                      | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.51E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +6.80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.70E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.03E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 0,40E-12$<br>+1.80E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.72E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +1.80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.22E-11                                                                                                                                                                                                                                                                                             | 2,13E-10<br>2.92E-11                                                                                                                                                                                                                                                                                                                  | +3.95E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 699                                                                                                                                                                                                                                      | 6,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,90E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±6,70E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,31E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,37E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±1,20E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,67E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1,80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,54E-12                                                                                                                                                                                                                                                                                             | 3,68E-11                                                                                                                                                                                                                                                                                                                              | ±3,15E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 750                                                                                                                                                                                                                                      | 3,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,62E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±7,00E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,21E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,88E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±7,30E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,70E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1,80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,18E-12                                                                                                                                                                                                                                                                                             | 7,38E-11                                                                                                                                                                                                                                                                                                                              | ±3,78E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 828                                                                                                                                                                                                                                      | 5,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,21E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±2,70E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,27E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,13E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±10,00E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,05E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1,60E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,93E-12                                                                                                                                                                                                                                                                                             | 5,46E-11                                                                                                                                                                                                                                                                                                                              | ±2,21E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 896                                                                                                                                                                                                                                      | 10,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,70E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±5,30E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,24E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,04E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±1,80E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,52E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,00E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,63E-12                                                                                                                                                                                                                                                                                             | 1,79E-10                                                                                                                                                                                                                                                                                                                              | ±3,77E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 960                                                                                                                                                                                                                                      | 17,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,01E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±1,40E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,76E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,44E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±3,00E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,88E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,40E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,69E-11                                                                                                                                                                                                                                                                                             | 1,02E-10                                                                                                                                                                                                                                                                                                                              | ±3,44E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1018                                                                                                                                                                                                                                     | 13,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,14E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 0,10E-13$<br>$\pm 3.00E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,34E-09<br>3 57E 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,0/E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 2,40E-12$<br>$\pm 1.40E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,38E-11<br>2 70E 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\pm 10,00E-14$<br>$\pm 2,10E,13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,12E-11<br>8.04E 12                                                                                                                                                                                                                                                                                 | 1,0/E-10<br>2.06E-10                                                                                                                                                                                                                                                                                                                  | $\pm 3,74E-12$<br>$\pm 1.00E 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1150                                                                                                                                                                                                                                     | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,27E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±3,00E-13<br>+2,70E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 517E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.83E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 1,40E-12$<br>+3.60E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,79E-11<br>8 090E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\pm 2,10E-13$<br>+1 50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,656E-12                                                                                                                                                                                                                                                                                            | 2,00E-10<br>2,77E-10                                                                                                                                                                                                                                                                                                                  | +3 83E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1382                                                                                                                                                                                                                                     | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,67E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±9,50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.06E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.30E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±2,00E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.31E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2,80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.81E-12                                                                                                                                                                                                                                                                                             | 1.72E-10                                                                                                                                                                                                                                                                                                                              | ±5,98E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temp                                                                                                                                                                                                                                     | 39 A r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>40</sup> Ar total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1\sigma$ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 A r*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39 A r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1\sigma$ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 A r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1\sigma$ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38Ar Cl                                                                                                                                                                                                                                                                                              | 37 A r                                                                                                                                                                                                                                                                                                                                | $1\sigma$ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (°C)                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ml)                                                                                                                                                                                                                                                                                                 | (ml)                                                                                                                                                                                                                                                                                                                                  | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | (orain s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le AUIII                                                                                                                                                                                                                                 | i (grann s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ize: 30 µm): I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | viyionitic rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x – biotite (J =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 0.00657, mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s = 10.46 mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Samp<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444                                                                                                                                                                                                                                      | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>size: 30 μm):</i> Γ<br>6.59E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ±1.90E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{1.40E-09}{1.40E-09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>0.00657, mas</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s = 10.46  mg<br>±8.40E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.43E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±2.50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.02E-11                                                                                                                                                                                                                                                                                             | 2.44E-11                                                                                                                                                                                                                                                                                                                              | ±1.79E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Samp<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 444<br>497                                                                                                                                                                                                                               | 3,1<br>2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>fize: 30 μm):</i><br>6,59E-09<br>2,85E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ±1,90E-13<br>±2,40E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,40E-09<br>1,30E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>9,18E-10</b><br>7,67E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s = 10.46  mg<br>$\pm 8,40\text{E}-13$<br>$\pm 7,40\text{E}-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,43E-11<br>2,19E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ±2,50E-13<br>±2,00E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,02E-11<br>1,19E-11                                                                                                                                                                                                                                                                                 | 2,44E-11<br>9,98E-12                                                                                                                                                                                                                                                                                                                  | ±1,79E-12<br>±2,34E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samp<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 444<br>497<br>545                                                                                                                                                                                                                        | 3,1<br>2,5<br>7,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fize: 30 μm): Γ<br>6,59E-09<br>2,85E-09<br>6,05E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ±1,90E-13<br>±2,40E-13<br>±2,80E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,40E-09<br>1,30E-09<br>3,68E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,18E-10<br>7,67E-10<br>2,16E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{s = 10.46 \text{ mg}}{\pm 8,40\text{E}-13}$<br>\$\pm 7,40\text{E}-13\$<br>\$\pm 1,90\text{E}-12\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,43E-11<br>2,19E-11<br>5,57E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±2,50E-13<br>±2,00E-13<br>±2,50E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,02E-11<br>1,19E-11<br>2,88E-11                                                                                                                                                                                                                                                                     | 2,44E-11<br>9,98E-12<br>2,06E-11                                                                                                                                                                                                                                                                                                      | ±1,79E-12<br>±2,34E-12<br>±2,59E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Samp<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 444<br>497<br>545<br>575                                                                                                                                                                                                                 | 3,1<br>2,5<br>7,2<br>8,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ±1,90E-13<br>±2,40E-13<br>±2,80E-13<br>±10,00E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,40E-09<br>1,30E-09<br>3,68E-09<br>4,70E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s = 10.46 mg)<br>±8,40E-13<br>±7,40E-13<br>±1,90E-12<br>±2,30E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ±2,50E-13<br>±2,00E-13<br>±2,50E-13<br>±2,30E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11                                                                                                                                                                                                                                                         | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11                                                                                                                                                                                                                                                                                          | ±1,79E-12<br>±2,34E-12<br>±2,59E-12<br>±3,11E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Samp<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 444<br>497<br>545<br>575<br>606                                                                                                                                                                                                          | 3,1<br>2,5<br>7,2<br>8,6<br>7,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,40E-09<br>1,30E-09<br>3,68E-09<br>4,70E-09<br>4,37E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,35E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s = 10.46 mg)<br>±8,40E-13<br>±7,40E-13<br>±1,90E-12<br>±2,30E-12<br>±2,20E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>6,27E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 1,80E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11                                                                                                                                                                                                                                             | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11                                                                                                                                                                                                                                                                              | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 444<br>497<br>545<br>575<br>606<br>666<br>718                                                                                                                                                                                            | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>5,95E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \pm 1,90\text{E-}13\\ \pm 2,40\text{E-}13\\ \pm 2,80\text{E-}13\\ \pm 10,00\text{E-}13\\ \pm 3,00\text{E-}12\\ \pm 7,20\text{E-}13\\ \pm 7,00\text{E-}12\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>a</b> - <b>biotite</b> ( <b>J</b> =<br>1,40E-09<br>1,30E-09<br>3,68E-09<br>4,70E-09<br>4,37E-09<br>7,16E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,35E-09<br>4,02E-09<br>2,67E 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s = 10.46 mg)<br>±8,40E-13<br>±7,40E-13<br>±1,90E-12<br>±2,30E-12<br>±2,20E-12<br>±3,60E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>6,27E-11<br>1,05E-10<br>6,51E 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 1,80E-13$<br>$\pm 3,10E-13$<br>$\pm 3,10E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11                                                                                                                                                                                                                                 | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11                                                                                                                                                                                                                                                                  | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 4,81E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288                                                                                                                                                                                     | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fize: 30 µm): N<br>6,59E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li><b>a</b> - <b>biotite</b> (<b>J</b> =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>4,70E-09</li> <li>1,06E 09</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>5,93E 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s = 10.46 mg)<br>±8,40E-13<br>±7,40E-13<br>±1,90E-12<br>±2,30E-12<br>±2,20E-12<br>±3,60E-12<br>±2,40E-12<br>±5,60E 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>6,27E-11<br>1,05E-10<br>6,51E-11<br>1,65E 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 1,80E-13$<br>$\pm 3,10E-13$<br>$\pm 3,70E-13$<br>$\pm 3,70E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E 12                                                                                                                                                                                                         | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11                                                                                                                                                                                                                                          | ±1,79E-12<br>±2,34E-12<br>±2,59E-12<br>±3,11E-12<br>±3,64E-12<br>±3,81E-12<br>±4,81E-12<br>±3,56E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Samp.           1           2           3           4           5           6           7           8           9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765                                                                                                                                                                              | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09<br>2,51E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li><b>a</b> biofite (J =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>4,70E-09</li> <li>1,06E-09</li> <li>1,54E-09</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>5,93E-10<br>9 88E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 5,60E-13$ $+9,10E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>6,27E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 1,80E-13$<br>$\pm 3,10E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,10E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11                                                                                                                                                                                             | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,11E-11                                                                                                                                                                                                                              | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 4,81E-12$<br>$\pm 3,56E-12$<br>$\pm 3,61E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Samp.           1           2           3           4           5           6           7           8           9           10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838                                                                                                                                                                       | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li><b>a</b> - <b>biofite</b> (<b>J</b> =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,70E-09</li> <li>4,70E-09</li> <li>1,06E-09</li> <li>1,54E-09</li> <li>3,87E-09</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,59E-09<br>2,67E-09<br>2,67E-09<br>5,93E-10<br>9,88E-10<br>2,39E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 5,60E-13$ $\pm 9,10E-13$ $\pm 2,10E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 3,10E-13$<br>$\pm 3,10E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,10E-13$<br>$\pm 1,70E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11                                                                                                                                                                                 | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,11E-11<br>1,41E-10                                                                                                                                                                                                                  | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 4,81E-12$<br>$\pm 3,56E-12$<br>$\pm 3,56E-12$<br>$\pm 3,23E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Samp.           1           2           3           4           5           6           7           8           9           10           11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910                                                                                                                                                                | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09<br>9,14E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 3,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-12} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li><b>a</b> - <b>biofite</b> (<b>J</b> =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>4,70E-09</li> <li>1,06E-09</li> <li>1,54E-09</li> <li>3,87E-09</li> <li>6,21E-09</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>5,93E-10<br>9,88E-10<br>2,39E-09<br>3,55E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 5,60E-13$ $\pm 9,10E-13$ $\pm 2,10E-12$ $\pm 3,30E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 3,10E-13$<br>$\pm 3,10E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,10E-13$<br>$\pm 1,70E-13$<br>$\pm 2,30E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11                                                                                                                                                                     | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,11E-11<br>1,41E-10<br>1,24E-10                                                                                                                                                                                                      | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 4,81E-12$<br>$\pm 3,56E-12$<br>$\pm 3,56E-12$<br>$\pm 3,23E-12$<br>$\pm 3,23E-12$<br>$\pm 9,93E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Samp.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972                                                                                                                                                         | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>3,68E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09<br>9,14E-09<br>1,21E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 3,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-12} \\ \pm 8,70\text{E-13} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li><b>a</b> - <b>biofite</b> (<b>J</b> =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>1,06E-09</li> <li>1,54E-09</li> <li>3,87E-09</li> <li>6,21E-09</li> <li>8,43E-09</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>5,93E-10<br>9,88E-10<br>2,39E-09<br>3,55E-09<br>4,77E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $  s = 10.46 mg)   \pm 8,40E-13   \pm 7,40E-13   \pm 1,90E-12   \pm 2,30E-12   \pm 2,20E-12   \pm 3,60E-12   \pm 2,40E-12   \pm 5,60E-13   \pm 9,10E-13   \pm 2,10E-12   \pm 3,30E-12   \pm 4,20E-12 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 3,10E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,10E-13$<br>$\pm 2,10E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,90E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>6,51E-11                                                                                                                                                         | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,11E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11                                                                                                                                                                                          | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,56E-12$<br>$\pm 3,61E-12$<br>$\pm 3,23E-12$<br>$\pm 9,93E-13$<br>$\pm 3,58E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088                                                                                                                                                 | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09<br>9,14E-09<br>1,21E-08<br>6,24E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 3,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-12} \\ \pm 8,70\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 4,50\text{E-12} \\ \pm 1,50\text{E-12} \\ \pm 1,50\text$ | <b>c</b> - <b>biofite</b> ( <b>J</b> =<br>1,40E-09<br>1,30E-09<br>3,68E-09<br>4,70E-09<br>4,37E-09<br>4,70E-09<br>1,06E-09<br>1,54E-09<br>3,87E-09<br>6,21E-09<br>8,43E-09<br>4,45E-09<br>9,445E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,35E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>5,93E-10<br>9,88E-10<br>2,39E-09<br>3,55E-09<br>4,77E-09<br>2,25E-09<br>8,67E-11                                                                                                                                                                                                                                                                                                                                                                                                                                     | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 5,60E-13$ $\pm 9,10E-13$ $\pm 2,10E-12$ $\pm 3,30E-12$ $\pm 4,20E-12$ $\pm 2,20E-12$ $\pm 2,20E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>2,214E 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 1,80E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,10E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,40E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>6,51E-11<br>3,13E-11                                                                                                                                             | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,20E 11                                                                                                                                                                  | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 4,81E-12$<br>$\pm 3,56E-12$<br>$\pm 3,56E-12$<br>$\pm 3,23E-12$<br>$\pm 9,93E-13$<br>$\pm 3,58E-12$<br>$\pm 2,70E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170                                                                                                                                         | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,05E-09<br>5,95E-09<br>8,35E-09<br>3,68E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09<br>9,14E-09<br>1,21E-08<br>6,24E-09<br>9,18E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 3,00\text{E-13} \\ \pm 3,00\text{E-13} \\ \pm 7,20\text{E-13} \\ \pm 7,20\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-12} \\ \pm 1,50\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ \pm 1,50\text{E-13} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>c</b> – <b>biofite</b> ( <b>J</b> =<br>1,40E-09<br>1,30E-09<br>3,68E-09<br>4,37E-09<br>7,16E-09<br>4,70E-09<br>1,06E-09<br>1,54E-09<br>3,87E-09<br>6,21E-09<br>8,43E-09<br>4,43E-09<br>-9,446E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,35E-09<br>4,02E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>5,93E-10<br>9,88E-10<br>2,39E-09<br>3,55E-09<br>4,77E-09<br>2,25E-09<br>8,66E-11                                                                                                                                                                                                                                                                                                                                                                                                                         | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 5,60E-13$ $\pm 9,10E-13$ $\pm 2,10E-12$ $\pm 3,30E-12$ $\pm 4,20E-12$ $\pm 4,20E-12$ $\pm 2,20E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 1,80E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,30E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12                                                                                                                                | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11                                                                                                                                                                              | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,56E-12$<br>$\pm 3,61E-12$<br>$\pm 3,23E-12$<br>$\pm 9,93E-13$<br>$\pm 3,58E-12$<br>$\pm 2,70E-12$<br>$\pm 3,68E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)                                                                                                                 | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>8,9<br>7,5<br>8,9<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>7,5<br>7,5<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>8,0<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09<br>9,14E-09<br>1,21E-08<br>6,24E-09<br>9,18E-10<br><sup>40</sup> Ar total<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{l} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,20\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,50\text{E-12} \\ \pm 1,50\text{E-12} \\ \pm 4,30\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ 1\sigma \text{ (abs.)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>c</b> – <b>biofite</b> ( <b>J</b> =<br>1,40E-09<br>1,30E-09<br>3,68E-09<br>4,70E-09<br>4,37E-09<br>7,16E-09<br>4,37E-09<br>1,06E-09<br>1,54E-09<br>3,87E-09<br>6,21E-09<br>8,43E-09<br>-9,446E-11<br><sup>40</sup> Ar*<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>5,93E-10</li> <li>9,88E-10</li> <li>2,39E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li>39Ar</li> <li>(ml)</li> </ul>                                                                                                                                                                                                                                                                                                                         | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 5,60E-13$ $\pm 9,10E-13$ $\pm 2,10E-12$ $\pm 3,30E-12$ $\pm 3,30E-12$ $\pm 2,20E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><b>3*Ar</b><br>(m))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 1,80E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,10E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12<br><b>3*Ar Cl</b><br>(m)                                                                                                                   | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,11E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br><sup>37</sup> Ar<br>(m)                                                                                                                                       | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,11E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,61E-12$<br>$\pm 3,23E-12$<br>$\pm 3,23E-12$<br>$\pm 3,58E-12$<br>$\pm 2,70E-12$<br>$\pm 3,68E-12$<br>$1 \sigma$ (abs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)                                                                                                                 | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>0,3<br>3 <sup>9</sup> <b>AF</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,30E-09<br>5,95E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09<br>9,14E-09<br>1,21E-08<br>6,24E-09<br>9,18E-10<br>40Ar total<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,20\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 8,70\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ 1\sigma \text{ (abs.)} \\ \text{(ml)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li><b>a</b> - <b>biofite</b> (<b>J</b> =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>4,70E-09</li> <li>1,06E-09</li> <li>1,54E-09</li> <li>3,87E-09</li> <li>6,21E-09</li> <li>8,43E-09</li> <li>4,45E-09</li> <li>-9,446E-11</li> <li>40Ar*</li> <li>(ml)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>5,93E-10<br>9,88E-10<br>2,39E-09<br>3,55E-09<br>4,77E-09<br>2,25E-09<br>8,66E-11<br><sup>39</sup> Ar<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                         | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 5,60E-13$ $\pm 9,10E-13$ $\pm 2,10E-12$ $\pm 3,30E-12$ $\pm 4,20E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \pm 2,50\text{E-13} \\ \pm 2,00\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 3,10\text{E-13} \\ \pm 3,10\text{E-13} \\ \pm 3,70\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,10\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \textbf{t},240\text{E-13} \\$ | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12<br><sup>38</sup> Ar Cl<br>(ml)                                                                                                             | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br><sup>37</sup> Ar<br>(ml)                                                                                                                                                  | $\begin{array}{c} \pm 1,79\text{E-12} \\ \pm 2,34\text{E-12} \\ \pm 2,59\text{E-12} \\ \pm 3,11\text{E-12} \\ \pm 3,64\text{E-12} \\ \pm 3,81\text{E-12} \\ \pm 3,81\text{E-12} \\ \pm 3,81\text{E-12} \\ \pm 3,61\text{E-12} \\ \pm 3,61\text{E-12} \\ \pm 3,23\text{E-12} \\ \pm 3,23\text{E-13} \\ \pm 3,58\text{E-12} \\ \pm 2,70\text{E-12} \\ \pm 3,68\text{E-12} \\ 1 \\ \sigma \left( \text{abs.} \right) \\ (\text{ml}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>10<br>11<br>12<br>13<br>14<br>5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>He ACIIh</b>                                                                                              | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>0,3<br><sup>39</sup> Ar<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,05E-09<br>6,05E-09<br>8,35E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09<br>9,14E-09<br>1,21E-08<br>6,24E-09<br>9,18E-10<br><b>40Ar total</b><br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-12} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ \pm 1,50\text{E-13} \\ \hline 1\sigma \text{ (abs.)} \\ \text{ (ml)} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li><b>a</b> - biofite (J =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>4,70E-09</li> <li>1,54E-09</li> <li>3,87E-09</li> <li>6,21E-09</li> <li>8,43E-09</li> <li>4,45E-09</li> <li>-9,446E-11</li> <li>40Ar* (ml)</li> <li><b>a</b> - phengite (.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,35E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>2,67E-09<br>2,67E-09<br>3,55E-09<br>4,77E-09<br>2,25E-09<br>8,66E-11<br><sup>39</sup> Ar<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                     | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 5,60E-13$ $\pm 9,10E-13$ $\pm 2,10E-12$ $\pm 3,30E-12$ $\pm 4,20E-12$ $\pm 2,00E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (ml) $ass = 11.18 m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><b>38Ar</b><br>(ml)<br>g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 1,80E-13$<br>$\pm 3,10E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,30E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>6,51E-11<br>3,13E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)                                                                                                      | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,11E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11                                                                                                                                                                  | ±1,79E-12<br>±2,34E-12<br>±2,59E-12<br>±3,11E-12<br>±3,64E-12<br>±3,81E-12<br>±3,56E-12<br>±3,56E-12<br>±3,56E-12<br>±3,23E-12<br>±9,93E-13<br>±3,58E-12<br>±2,70E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Samp           1           2           3           4           5           6           7           8           9           10           11           12           13           14           Step           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>He ACIIh</b><br>440<br>493                                                                                | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>0,3<br><sup>39</sup> Ar<br>%<br>1 (grain s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,59E-09<br>2,85E-09<br>6,05E-09<br>6,05E-09<br>6,05E-09<br>8,35E-09<br>8,35E-09<br>5,98E-09<br>3,68E-09<br>2,51E-09<br>5,60E-09<br>9,14E-09<br>1,21E-08<br>6,24E-09<br>9,18E-10<br><b>40Ar total</b><br>(ml)<br><i>tize: 30 µm</i> ): N<br>1,01E-08<br>2,89E-09                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 1,50\text{E-12} \\ \pm 1,50\text{E-12} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ 1\sigma \text{ (abs.)} \\ \text{ (ml)} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a         biofite (J =           1,40E-09         1,30E-09           1,30E-09         3,68E-09           4,70E-09         4,37E-09           7,16E-09         4,70E-09           1,06E-09         1,54E-09           3,87E-09         6,21E-09           8,43E-09         -9,446E-11           40 Ar*         (ml)           x - phengite (.         1,27E-09           8,74E-10         -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>2,67E-09<br>2,67E-09<br>3,55E-09<br>4,77E-09<br>2,25E-09<br>8,66E-11<br><sup>39</sup> Ar<br>(ml)<br><b>J = 0.00657, m</b><br>1,05E-09<br>6,51E-10                                                                                                                                                                                                                                                                                                                                                                                | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,40E-13$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-13$ $\pm 2,20E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (ml) $ass = 11.18 m$ $\pm 9,50E-13$ $\pm 6,30E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \pm 2,50\text{E-13} \\ \pm 2,00\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 1,80\text{E-13} \\ \pm 3,10\text{E-13} \\ \pm 3,70\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \mathbf{1\sigma} \text{ (abs.)} \\ \text{ (ml)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>6,51E-11<br>3,13E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)                                                                                                      | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>2,11E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br><sup>37</sup> Ar<br>(ml)                                                                                                                          | ±1,79E-12<br>±2,34E-12<br>±2,59E-12<br>±3,11E-12<br>±3,64E-12<br>±3,81E-12<br>±3,56E-12<br>±3,56E-12<br>±3,56E-12<br>±3,56E-12<br>±3,23E-12<br>±3,58E-12<br>±2,70E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12<br>±3,68E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Samp           1           2           3           4           5           6           7           8           9           10           11           12           13           14           Step           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>He ACIIh</b><br>440<br>493<br>542                                                                         | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>0,3<br><sup>39</sup> Ar<br>%<br>1<br>(grain s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iiize: 30 μm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         *0Ar total (ml)         tize: 30 μm): N         1,01E-08         2,89E-09         4.98E-09                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,50\text{E-12} \\ \pm 8,70\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ \hline 1\sigma \text{ (abs.)} \\ \textbf{(ml)} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a         biofite (J =           1,40E-09         1,30E-09           1,30E-09         3,68E-09           4,70E-09         4,37E-09           7,16E-09         4,70E-09           1,54E-09         3,87E-09           6,21E-09         8,43E-09           4,45E-09         -9,446E-11           40Ar*         (ml)           x - phengite (c         1,27E-09           8,74E-10         2,35E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,35E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>2,67E-09<br>2,67E-09<br>3,55E-09<br>4,77E-09<br>2,25E-09<br>8,66E-11<br><sup>39</sup> Ar<br>(ml)<br><b>J = 0.00657, m</b><br>1,05E-09<br>6,51E-10<br>1,53E-09                                                                                                                                                                                                                                                                                                                                                        | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-13$ $\pm 2,20E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \pm 2,50\text{E-13} \\ \pm 2,00\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,80\text{E-13} \\ \pm 3,10\text{E-13} \\ \pm 3,70\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,60\text{E-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)<br>2,65E-11<br>1,08E-11<br>2,00E-11                                                                  | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br><sup>37</sup> Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11                                                                                                  | $\begin{array}{c} \pm 1,79\text{E-}12\\ \pm 2,34\text{E-}12\\ \pm 2,39\text{E-}12\\ \pm 3,11\text{E-}12\\ \pm 3,64\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline 1\sigma (abs.)\\ (ml)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Samp           1           2           3           4           5           6           7           8           9           10           11           12           13           14           Step           1           2           3           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>te ACIIh</b><br>440<br>493<br>542<br>600                                                                  | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>9,2<br>8<br><b>6</b><br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>14,8<br>8,0<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>14,8<br>8,0<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>7,5<br>8,0<br>7,5<br>8,0<br>3,3<br>8,9<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iiize: 30 μm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         *0Ar total (ml)         tize: 30 μm): N         1,01E-08         2,89E-09         4,98E-09         7,90E-09                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 9,50\text{E-13} \\ \pm 7,60\text{E-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a         biofite (J =           1,40E-09         1,30E-09           1,30E-09         3,68E-09           4,70E-09         4,37E-09           7,16E-09         4,70E-09           1,54E-09         3,87E-09           6,21E-09         8,43E-09           4,45E-09         -9,446E-11           40Ar*         (ml)           x         - phengite (c           1,27E-09         8,74E-10           2,35E-09         4,99E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,59E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>2,67E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li><sup>39</sup>Ar</li> <li>(ml)</li> <li><b>J = 0.00657, m</b></li> <li>1,05E-09</li> <li>6,51E-10</li> <li>1,53E-09</li> <li>2,98E-09</li> </ul>                                                                                                                                                                                                                         | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,30E-12$ $\pm 2,40E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-13$ $1 + 2,20E-12$ $\pm 2,20E-13$ $1 + 2,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$ $\pm 2,60E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,06E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>8,02E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \pm 2,50\text{E-13} \\ \pm 2,00\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,80\text{E-13} \\ \pm 3,10\text{E-13} \\ \pm 3,70\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,90\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,60\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,50\text{E-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>4,38E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)<br>2,65E-11<br>1,08E-11<br>2,00E-11<br>4,33E-11                                                                  | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>37Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11                                                                                                  | $\begin{array}{c} \pm 1,79\text{E-}12\\ \pm 2,34\text{E-}12\\ \pm 2,59\text{E-}12\\ \pm 3,11\text{E-}12\\ \pm 3,64\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,61\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline 1\sigma (abs.)\\ (ml)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Samp           1           2           3           4           5           6           7           8           9           10           11           12           13           14           Step           1           2           3           4           5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>te ACIIh</b><br>440<br>493<br>542<br>600<br>656                                                           | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>0,3<br><sup>39</sup> Ar<br><i>%</i><br>4,7<br>9,2<br>14,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iiize: 30 μm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         *0Ar total (ml)         tize: 30 μm): N         1,01E-08         2,89E-09         4,98E-09         7,90E-09         1,01E-08                                                                                                                                                                                                                                                                        | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-13} \\ \pm 1,50\text{E-13} \\ \pm 1,50\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 9,50\text{E-13} \\ \pm 7,60\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,50\text$ | a         biofite (J =           1,40E-09         1,30E-09           1,30E-09         3,68E-09           4,70E-09         4,37E-09           7,16E-09         4,70E-09           1,54E-09         3,87E-09           6,21E-09         8,43E-09           4,45E-09         -9,446E-11           40Ar*         (ml)           x         - phengite (c           1,27E-09         8,74E-10           2,35E-09         4,99E-09           7,82E-09         7,82E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,59E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>2,67E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li><sup>39</sup>Ar</li> <li>(ml)</li> <li><b>J = 0.00657, m</b></li> <li>1,05E-09</li> <li>6,51E-10</li> <li>1,53E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> </ul>                                                                                                                                                                   | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-13$ $10 (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$ $\pm 2,60E-12$ $\pm 2,60E-12$ $\pm 2,60E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>8,02E-11<br>1,09E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \pm 2,50E\text{-}13\\ \pm 2,00E\text{-}13\\ \pm 2,50E\text{-}13\\ \pm 2,50E\text{-}13\\ \pm 1,80E\text{-}13\\ \pm 3,10E\text{-}13\\ \pm 3,70E\text{-}13\\ \pm 2,90E\text{-}13\\ \pm 2,90E\text{-}13\\ \pm 2,90E\text{-}13\\ \pm 2,90E\text{-}13\\ \pm 2,40E\text{-}13\\ \pm 2,40E\text{-}13\\ \pm 2,40E\text{-}13\\ \pm 2,40E\text{-}13\\ \pm 2,40E\text{-}13\\ \pm 2,80E\text{-}13\\ \pm 2,80E\text{-}13\\ \pm 2,80E\text{-}13\\ \pm 2,50E\text{-}13\\ \pm 2,90E\text{-}13\\ \pm 2,90E\text{-}13\\$                                                                                                                                                                                                                                                              | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)<br>2,65E-11<br>1,08E-11<br>2,00E-11<br>4,33E-11<br>5,13E-11                                                      | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>37Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11<br>5,35E-11                                                                                      | $\begin{array}{c} \pm 1,79\text{E-}12\\ \pm 2,34\text{E-}12\\ \pm 2,59\text{E-}12\\ \pm 3,11\text{E-}12\\ \pm 3,64\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,61\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline 1\sigma (abs.)\\ (ml)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Samp           1           2           3           4           5           6           7           8           9           10           11           12           13           14           Step           1           2           3           4           5           6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>Ie ACIIh</b><br>440<br>493<br>542<br>600<br>656<br>708                                                    | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>9,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>2,6<br>6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>7,5<br>8,9<br>7,5<br>8,0<br>3,3<br>8,9<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>7,5<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iiize: 30 μm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         *0Ar total (ml)         iize: 30 μm): N         1,01E-08         2,89E-09         4,98E-09         7,90E-09         1,01E-08         5,49E-09                                                                                                                                                                                                                                                       | $\begin{array}{l} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 9,50\text{E-13} \\ \pm 7,60\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,60\text{E-13} \\ \pm 2,60\text{E-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - biofite (J =           1,40E-09           1,30E-09           3,68E-09           4,70E-09           4,37E-09           7,16E-09           4,70E-09           1,54E-09           3,87E-09           6,21E-09           8,43E-09           4,45E-09           -9,446E-11           40Ar*           (ml)           1,27E-09           8,74E-10           2,35E-09           4,99E-09           7,82E-09           4,16E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,59E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>2,67E-09</li> <li>3,98E-10</li> <li>2,39E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li><sup>39</sup>Ar</li> <li>(ml)</li> <li><b>J = 0.00657, m</b></li> <li>1,53E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,52E-09</li> </ul> | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,20E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-13$ $10 (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$ $\pm 2,60E-12$ $\pm 2,60E-12$ $\pm 2,20E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,06E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>3,97E-11<br>1,09E-10<br>5,12E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \pm 2,50E-13\\ \pm 2,00E-13\\ \pm 2,50E-13\\ \pm 2,30E-13\\ \pm 1,80E-13\\ \pm 3,10E-13\\ \pm 3,70E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,80E-13\\ \pm 2,80E-13\\ \pm 2,60E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 1,80E-13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>4,38E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)<br>2,65E-11<br>1,08E-11<br>2,00E-11<br>4,33E-11<br>2,00E-11<br>2,07E-11                                          | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>37Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11<br>2,35E-11<br>2,65E-11                                                                          | $\begin{array}{c} \pm 1,79\text{E-}12\\ \pm 2,34\text{E-}12\\ \pm 2,59\text{E-}12\\ \pm 3,11\text{E-}12\\ \pm 3,64\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,61\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline 1\sigma (\textbf{abs.})\\ (\textbf{ml})\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Samp           1           2           3           4           5           6           7           8           9           10           11           12           13           14           Step           1           2           3           4           5           6           7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>Ie ACIIh</b><br>440<br>493<br>542<br>600<br>656<br>708<br>756                                             | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>9,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,7<br>2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,7<br>2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>8,0<br>7,7<br>14,8<br>8,0<br>7,7<br>8,0<br>14,9<br>7,7<br>8,0<br>7,7<br>8,0<br>7,8<br>11,8<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>7,5<br>7,5<br>8,0<br>3,3<br>8,9<br>7,5<br>11,8<br>8,9<br>7,5<br>9,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>7,7<br>8,0<br>8,0<br>7,7<br>8,0<br>8,0<br>7,7<br>8,0<br>8,0<br>7,7<br>8,0<br>8,0<br>7,7<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0<br>8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iiize: 30 μm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         *0Ar total (ml)         iize: 30 μm): N         1,01E-08         2,89E-09         4,98E-09         7,90E-09         1,01E-08         5,49E-09         6,00E-09                                                                                                                                                                                                                                      | $\begin{array}{l} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 9,50\text{E-13} \\ \pm 7,60\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 5,10\text{E-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - biofite (J =           1,40E-09           1,30E-09           3,68E-09           4,70E-09           4,37E-09           7,16E-09           4,70E-09           1,54E-09           3,87E-09           6,21E-09           8,43E-09           4,45E-09           -9,446E-11           40Ar*           (ml)           1,27E-09           8,74E-10           2,35E-09           4,99E-09           7,82E-09           4,16E-09           3,96E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,59E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>2,67E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li><sup>39</sup>Ar</li> <li>(ml)</li> <li><b>J = 0.00657, m</b></li> <li>1,05E-09</li> <li>6,51E-10</li> <li>1,53E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>3,62E-09</li> <li>3,02E-09</li> </ul>                                                                                                                                                 | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,30E-12$ $\pm 2,40E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-13$ $10 (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$ $\pm 2,60E-12$ $\pm 2,60E-12$ $\pm 2,20E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,06E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>3,97E-11<br>1,09E-10<br>5,12E-11<br>5,28E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \pm 2,50E-13\\ \pm 2,00E-13\\ \pm 2,50E-13\\ \pm 2,30E-13\\ \pm 1,80E-13\\ \pm 3,10E-13\\ \pm 3,70E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,80E-13\\ \pm 2,80E-13\\ \pm 2,80E-13\\ \pm 2,50E-13\\ \pm 2,90E-13\\ \pm 2,90E-12\\ \pm 2,90E-12\\ \pm 2,90E-12\\ \pm 2,90E-12\\ \pm 2,90E-12\\ \pm 2,90E-12\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>4,38E-11<br>4,38E-11<br>4,38E-11<br>4,38E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)<br>2,65E-11<br>1,08E-11<br>2,00E-11<br>4,33E-11<br>2,07E-11<br>1,60E-11                                                      | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>3,7 <b>Ar</b><br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11<br>5,35E-11<br>2,65E-11<br>6,86E-11                                                     | $\begin{array}{c} \pm 1,79\text{E-}12\\ \pm 2,34\text{E-}12\\ \pm 2,59\text{E-}12\\ \pm 3,11\text{E-}12\\ \pm 3,64\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,61\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline \pm 3,78\text{E-}13\\ \pm 5,37\text{E-}13\\ \pm 5,37\text{E-}13\\ \pm 5,37\text{E-}13\\ \pm 5,9,96\text{E-}13\\ \hline \pm 9,96\text{E-}13\\ \hline \pm 3,96\text{E-}13\\ \hline \pm 3,98\text{E-}12\\ \hline \pm 3,188\text{E-}12\\ \hline $ |
| Samp           1           2           3           4           5           6           7           8           9           10           11           12           13           14           Step           1           2           3           4           5           6           7           8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>Ie ACIIh</b><br>440<br>493<br>542<br>600<br>656<br>708<br>756<br>781                                      | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>9,3<br>9,2<br>14,8<br>7,8<br>9,3<br>9,8<br>9,8<br>5,7<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>7,5<br>9,7<br>8,9<br>7,5<br>9,7<br>8,9<br>7,5<br>9,7<br>8,9<br>7,5<br>9,7<br>8,9<br>7,5<br>8,9<br>7,5<br>9,7<br>8,9<br>7,5<br>8,9<br>7,5<br>9,7<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>7,5<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>8,9<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>7,5<br>8,9<br>7,5<br>7,5<br>7,5<br>8,9<br>7,5<br>8,9<br>7,5<br>7,5<br>7,5<br>7,5<br>8,9<br>7,5<br>7,5<br>7,5<br>7,5<br>7,5<br>7,5<br>7,5<br>7,5<br>7,5<br>7,5 | iiize: 30 μm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         *0Ar total (ml)         iize: 30 μm): N         1,01E-08         2,89E-09         4,98E-09         7,90E-09         1,01E-08         5,49E-09         6,00E-09         5,49E-09         6,00E-09         5,49E-09                                                                                                                                                                                   | $\begin{array}{c} \pm 1,90\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,40\text{E-13} \\ \pm 2,80\text{E-13} \\ \pm 10,00\text{E-13} \\ \pm 3,00\text{E-12} \\ \pm 7,20\text{E-13} \\ \pm 7,00\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,70\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 1,60\text{E-12} \\ \pm 1,50\text{E-12} \\ \pm 8,70\text{E-13} \\ \pm 4,30\text{E-13} \\ \pm 1,50\text{E-13} \\ \pm 1,70\text{E-13} \\ \pm 9,50\text{E-13} \\ \pm 7,60\text{E-13} \\ \pm 2,50\text{E-13} \\ \pm 2,30\text{E-13} \\ \pm 3,30\text{E-13} \\ \pm 3,30$     | <ul> <li><b>biofite (J =</b></li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>4,70E-09</li> <li>1,54E-09</li> <li>3,87E-09</li> <li>6,21E-09</li> <li>8,43E-09</li> <li>4,45E-09</li> <li>-9,446E-11</li> <li><b>40</b>Ar* (ml)</li> <li><b>5</b> - <b>phengite (c</b></li> <li>1,27E-09</li> <li>8,74E-10</li> <li>2,35E-09</li> <li>4,99E-09</li> <li>7,82E-09</li> <li>4,31E-09</li> <li>4,31E-09</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,59E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>2,67E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li><sup>39</sup>Ar</li> <li>(ml)</li> <li><b>J = 0.00657, m</b></li> <li>1,05E-09</li> <li>6,51E-10</li> <li>1,53E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,52E-09</li> <li>3,02E-09</li> <li>3,17E-09</li> </ul>                                                                                                                                                 | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,30E-12$ $\pm 2,40E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-13$ $\pm 2,20E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$ $\pm 2,60E-12$ $\pm 2,60E-12$ $\pm 2,20E-12$ $\pm 2,60E-12$ $\pm 2,$ | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>3,97E-11<br>3,97E-11<br>5,28E-11<br>1,09E-10<br>5,12E-11<br>5,28E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-11<br>4,92E-1 | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 1,80E-13$<br>$\pm 3,10E-13$<br>$\pm 3,10E-13$<br>$\pm 3,70E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,80E-13$<br>$\pm 2,80E-13$<br>$\pm 2,50E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>6,51E-11<br>3,13E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)<br>2,65E-11<br>1,08E-11<br>2,00E-11<br>4,33E-11<br>2,07E-11<br>1,60E-11<br>1,12E-11<br>2,22E (ml)    | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>3,7Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11<br>5,35E-11<br>2,65E-11<br>6,86E-11<br>7,98E-11                                                 | $\begin{array}{c} \pm 1,79\text{E-}12\\ \pm 2,34\text{E-}12\\ \pm 2,59\text{E-}12\\ \pm 3,11\text{E-}12\\ \pm 3,64\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline \pm 3,68\text{E-}13\\ \pm 5,37\text{E-}13\\ \pm 9,96\text{E-}13\\ \pm 9,96\text{E-}13\\ \pm 8,98\text{E-}13\\ \pm 1,19\text{E-}12\\ \hline \pm 3,10\text{E-}12\\ \hline \pm 3,10\text{E-}12\\ \hline \pm 3,28\text{E-}13\\ \pm 3,89\text{E-}13\\ \pm 3,10\text{E-}15\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>Ie ACIIh</b><br>440<br>493<br>542<br>600<br>656<br>708<br>756<br>781<br>796                               | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,0<br>11,8<br>15,8<br>7,5<br>0,3<br><sup>39</sup> Ar<br>%<br>14,8<br>7,8<br>9,2<br>14,8<br>7,8<br>9,9<br>2,0<br>3,3<br>2,0<br>4,7<br>8,0<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>7,5<br>9,7<br>8,9<br>7,7<br>9,7<br>8,9<br>9,7<br>8,9<br>7,7<br>9,7<br>9,7<br>8,9<br>9,8<br>9,9<br>9,9<br>9,9<br>9,9<br>9,9<br>9,9<br>9,9<br>9,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iiize: 30 μm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,95E-09         8,35E-09         5,95E-09         8,35E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         40Ar total         (ml) <i>iize: 30 µm</i> ): N         1,01E-08         2,89E-09         4,98E-09         7,90E-09         1,01E-08         5,49E-09         6,00E-09         5,49E-09         6,00E-09         5,49E-09         6,00E-09         5,49E-09         6,02E-09         6,24E-09 | $\begin{array}{c} \pm 1,90E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,80E-13\\ \pm 10,00E-13\\ \pm 3,00E-12\\ \pm 7,20E-13\\ \pm 7,00E-13\\ \pm 2,70E-13\\ \pm 2,70E-13\\ \pm 2,50E-13\\ \pm 1,50E-12\\ \pm 8,70E-13\\ \pm 1,50E-13\\ \pm 1,50E-13\\ \pm 1,70E-13\\ \pm 9,50E-13\\ \pm 7,60E-13\\ \pm 2,50E-13\\ \pm 2,60E-13\\ \pm 2,60E-13\\ \pm 2,60E-13\\ \pm 2,30E-13\\ \pm 2,30E-12\\ \pm 2,30E-12\\ \pm 2,30E-12$                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>biofite (J =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>4,70E-09</li> <li>1,54E-09</li> <li>3,87E-09</li> <li>6,21E-09</li> <li>8,43E-09</li> <li>4,45E-09</li> <li>-9,446E-11</li> <li>40Ar* (ml)</li> <li>a-phengite (c)</li> <li>1,27E-09</li> <li>8,74E-10</li> <li>2,35E-09</li> <li>4,99E-09</li> <li>7,82E-09</li> <li>4,16E-09</li> <li>3,96E-09</li> <li>4,31E-09</li> <li>2,45E-09</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,18E-10<br>7,67E-10<br>2,16E-09<br>2,59E-09<br>2,35E-09<br>4,02E-09<br>2,67E-09<br>2,67E-09<br>3,55E-09<br>4,77E-09<br>2,25E-09<br>8,66E-11<br><sup>39</sup> Ar<br>(ml)<br><b>J = 0.00657, m</b><br>1,05E-09<br>6,51E-10<br>1,53E-09<br>2,98E-09<br>4,77E-09<br>2,98E-09<br>4,77E-09<br>2,52E-09<br>3,02E-09<br>3,17E-09<br>7,00E-09<br>2,47E-09                                                                                                                                                                                                                                                        | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,30E-12$ $\pm 2,40E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-13$ $\pm 2,20E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$ $\pm 2,60E-12$ $\pm 2,$ | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>3,97E-11<br>3,97E-11<br>5,28E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>5,12E-11<br>5,12E-11<br>5,12E-11<br>5,12E-1 | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 1,80E-13$<br>$\pm 3,10E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)<br>2,65E-11<br>1,08E-11<br>2,00E-11<br>4,33E-11<br>2,07E-11<br>1,60E-11<br>1,12E-11<br>2,32E-11<br>1,87E-11      | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>3,7Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11<br>5,35E-11<br>2,65E-11<br>6,86E-11<br>7,98E-11<br>1,49E-10                                     | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 2,59E-12$<br>$\pm 3,31E-12$<br>$\pm 3,64E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,56E-12$<br>$\pm 3,23E-12$<br>$\pm 2,93E-13$<br>$\pm 3,58E-12$<br>$\pm 2,70E-12$<br>$\pm 3,68E-12$<br>$\pm 3,68E-13$<br>$\pm 1,19E-12$<br>$\pm 9,96E-13$<br>$\pm 8,89E-13$<br>$\pm 1,19E-12$<br>$\pm 9,25E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>15<br>16<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>17<br>10<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                       | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>te ACIIh</b><br>440<br>493<br>542<br>600<br>656<br>708<br>756<br>781<br>796<br>900                        | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>11,8<br>15,8<br>7,5<br>0,3<br><sup>39</sup> Ar<br>%<br>1(grain s<br>3,3<br>2,0<br>4,7<br>9,2<br>14,8<br>7,8<br>9,3<br>9,8<br>21,7<br>7,6<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iiize: 30 μm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         *0Ar total (ml)         iize: 30 μm): N         1,01E-08         2,89E-09         4,98E-09         7,90E-09         1,01E-08         5,49E-09         6,00E-09         5,49E-09         5,20E-00                                                                                                                                                                                                    | $\begin{array}{c} \pm 1,90E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,80E-13\\ \pm 10,00E-13\\ \pm 3,00E-12\\ \pm 7,20E-13\\ \pm 7,00E-13\\ \pm 2,70E-13\\ \pm 2,70E-13\\ \pm 2,50E-13\\ \pm 1,60E-12\\ \pm 8,70E-13\\ \pm 1,50E-13\\ \pm 1,50E-13\\ \pm 1,50E-13\\ \pm 1,70E-13\\ \pm 1,70E-13\\ \pm 2,50E-13\\ \pm 2,60E-13\\ \pm 2,90E-13\\ \pm 2,90E-12\\ \pm 2,90E-12$                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>biofite (J =</li> <li>1,40E-09</li> <li>1,30E-09</li> <li>3,68E-09</li> <li>4,70E-09</li> <li>4,37E-09</li> <li>7,16E-09</li> <li>4,70E-09</li> <li>1,54E-09</li> <li>3,87E-09</li> <li>6,21E-09</li> <li>8,43E-09</li> <li>4,45E-09</li> <li>-9,446E-11</li> <li>40Ar* (ml)</li> <li>a-phengite (c)</li> <li>1,27E-09</li> <li>8,74E-10</li> <li>2,35E-09</li> <li>4,99E-09</li> <li>7,82E-09</li> <li>4,16E-09</li> <li>3,96E-09</li> <li>4,31E-09</li> <li>9,45E-09</li> <li>3,48E-09</li> <li>3,48E-09</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,59E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>2,67E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li><sup>39</sup>Ar</li> <li>(ml)</li> <li><b>J = 0.00657, m</b></li> <li>1,05E-09</li> <li>6,51E-10</li> <li>1,53E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,52E-09</li> <li>3,02E-09</li> <li>3,17E-09</li> <li>2,47E-09</li> <li>2,47E-09</li> </ul>                                                                                                             | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,30E-12$ $\pm 2,40E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-12$ $\pm 2,20E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$ $\pm 2,60E-12$ $\pm 2,20E-12$ $\pm 2,$ | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>3,97E-11<br>3,97E-11<br>5,28E-11<br>1,09E-10<br>5,12E-11<br>1,08E-10<br>4,94E-11<br>1,08E-10<br>4,94E-11<br>1,08E-10<br>4,94E-11<br>1,08E-10<br>4,94E-11<br>1,08E-10<br>4,94E-11<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-10<br>1,08E-1 | $\pm 2,50E-13$<br>$\pm 2,00E-13$<br>$\pm 2,50E-13$<br>$\pm 2,30E-13$<br>$\pm 1,80E-13$<br>$\pm 3,10E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,90E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,40E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,50E-13$<br>$\pm 2,90E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,30E-13$<br>$\pm 2,20E-13$<br>$\pm 2,20E-13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12<br><b>38Ar Cl</b><br>(ml)<br>2,65E-11<br>1,08E-11<br>2,07E-11<br>1,60E-11<br>1,12E-11<br>2,32E-11<br>1,87E-11<br>2,12E 11                  | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>3,7Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11<br>5,35E-11<br>2,65E-11<br>6,86E-11<br>7,98E-11<br>1,49E-10<br>1,34E-10                         | $\pm 1,79E-12$<br>$\pm 2,34E-12$<br>$\pm 3,34E-12$<br>$\pm 3,59E-12$<br>$\pm 3,59E-12$<br>$\pm 3,64E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,81E-12$<br>$\pm 3,23E-12$<br>$\pm 3,23E-12$<br>$\pm 2,70E-12$<br>$\pm 3,68E-12$<br>$\pm 2,70E-12$<br>$\pm 3,68E-12$<br>$\pm 3,68E-12$<br>$\pm 3,68E-12$<br>$\pm 3,68E-12$<br>$\pm 3,68E-12$<br>$\pm 3,68E-12$<br>$\pm 3,68E-12$<br>$\pm 3,68E-12$<br>$\pm 3,72E-13$<br>$\pm 1,19E-12$<br>$\pm 9,96E-13$<br>$\pm 9,96E-13$<br>$\pm 1,19E-12$<br>$\pm 9,25E-13$<br>$\pm 1,19E-12$<br>$\pm 9,25E-13$<br>$\pm 1,19E-12$<br>$\pm 9,25E-13$<br>$\pm 1,19E-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>11<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>11<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                         | 444<br>447<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>te ACIIh</b><br>440<br>493<br>542<br>600<br>656<br>708<br>756<br>781<br>796<br>900<br>981<br>1072         | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>11,8<br>15,8<br>7,5<br>0,3<br><sup>39</sup> Ar<br>%<br>1(grain s<br>3,3<br>2,0<br>4,7<br>9,2<br>14,8<br>7,8<br>9,3<br>9,8<br>21,7<br>7,6<br>5,1<br>4,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | itze: 30 μm): Γ           6,59E-09           2,85E-09           6,05E-09           6,30E-09           5,95E-09           8,35E-09           5,95E-09           8,35E-09           5,95E-09           8,35E-09           5,98E-09           3,68E-09           2,51E-09           5,60E-09           9,14E-09           1,21E-08           6,24E-09           9,18E-10           ***********************************                                                                                                                                                                                                                                                        | $\begin{array}{c} \pm 1,90E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,80E-13\\ \pm 10,00E-13\\ \pm 3,00E-12\\ \pm 7,20E-13\\ \pm 7,00E-13\\ \pm 2,70E-13\\ \pm 2,70E-13\\ \pm 2,50E-13\\ \pm 1,50E-12\\ \pm 8,70E-13\\ \pm 1,50E-13\\ \pm 1,50E-13\\ \pm 1,50E-13\\ \pm 1,70E-13\\ \pm 2,50E-13\\ \pm 2,50E-14$                                                                                                                                                                                                                                                                                                                                                                                                   | <b>c</b> - <b>biofite</b> ( <b>J</b> =<br>1,40E-09<br>1,30E-09<br>3,68E-09<br>4,70E-09<br>4,70E-09<br>1,06E-09<br>1,54E-09<br>3,87E-09<br>6,21E-09<br>8,43E-09<br>4,45E-09<br>-9,446E-11<br><b>40Ar*</b><br>( <b>m</b> )<br><b>c</b> - <b>phengite</b> ( <b>c</b> )<br>1,27E-09<br>8,74E-10<br>2,35E-09<br>4,99E-09<br>7,82E-09<br>4,16E-09<br>3,96E-09<br>4,31E-09<br>9,45E-09<br>3,16E-09<br>3,16E-09<br>3,25E-09<br>4,56E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,16E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09<br>3,25E-09 | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,59E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>2,67E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li><sup>39</sup>Ar</li> <li>(ml)</li> <li><b>J</b> = 0.00657, m</li> <li>1,05E-09</li> <li>6,51E-10</li> <li>1,53E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,52E-09</li> <li>3,02E-09</li> <li>3,17E-09</li> <li>2,47E-09</li> <li>1,66E-09</li> <li>1,37E-09</li> </ul>                                                                                           | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,30E-12$ $\pm 2,40E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 3,30E-12$ $\pm 4,20E-12$ $\pm 2,00E-12$ $\pm 2,00E-12$ $\pm 2,00E-12$ $\pm 2,00E-12$ $\pm 2,00E-13$ $1\sigma (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 6,30E-13$ $\pm 1,60E-12$ $\pm 2,60E-12$ $\pm 2,$ | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>3,97E-11<br>3,97E-11<br>5,28E-11<br>1,08E-10<br>4,94E-11<br>1,08E-10<br>4,94E-11<br>1,08E-10<br>3,43E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \pm 2,50E-13\\ \pm 2,00E-13\\ \pm 2,50E-13\\ \pm 2,30E-13\\ \pm 1,80E-13\\ \pm 3,10E-13\\ \pm 3,70E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,50E-13\\ \pm 2,50E-13\\ \pm 2,50E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,30E-13\\ \pm 2,20E-13\\ \pm 2,20E-14\\ \pm 2,20E-14\\ \pm 2,20E-14\\ \pm 2,20E-14\\ \pm 2,20E-14\\ \pm 2,20E-14\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12<br><sup>38</sup> Ar Cl<br>(ml)<br>2,65E-11<br>1,08E-11<br>2,07E-11<br>1,60E-11<br>1,12E-11<br>2,32E-11<br>1,87E-11<br>2,12E-11<br>1,71E-11 | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,31E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>3,7Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11<br>5,35E-11<br>2,65E-11<br>6,86E-11<br>7,98E-11<br>1,49E-10<br>1,34E-10<br>1,00E-10<br>2,93E-10 | $\begin{array}{c} \pm 1,79\text{E-}12\\ \pm 2,34\text{E-}12\\ \pm 2,59\text{E-}12\\ \pm 3,11\text{E-}12\\ \pm 3,64\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,36\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 2,70\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline 1 \sigma (abs.)\\ (ml)\\ \hline \\ \hline \\ \begin{array}{c} \pm 1,10\text{E-}12\\ \pm 8,14\text{E-}13\\ \pm 5,37\text{E-}13\\ \pm 1,19\text{E-}12\\ \pm 9,71\text{E-}13\\ \pm 9,96\text{E-}13\\ \pm 1,19\text{E-}12\\ \pm 9,25\text{E-}13\\ \pm 1,19\text{E-}12\\ \pm 9,25\text{E-}13\\ \pm 1,49\text{E-}12\\ \pm 1,17\text{E-}12\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Samp<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>Step<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>11<br>12<br>13<br>14<br>12<br>13<br>11<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>12<br>13<br>14<br>15<br>16<br>16<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 444<br>497<br>545<br>575<br>606<br>666<br>718<br>288<br>765<br>838<br>910<br>972<br>1088<br>1170<br><b>Temp.</b><br>(°C)<br><b>Ie ACIIh</b><br>440<br>493<br>542<br>600<br>656<br>708<br>756<br>781<br>796<br>900<br>981<br>1072<br>1152 | 3,1<br>2,5<br>7,2<br>8,6<br>7,8<br>13,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>8,9<br>2,0<br>3,3<br>11,8<br>15,8<br>7,5<br>0,3<br><sup>39</sup> Ar<br>%<br>1(grain s<br>3,3<br>2,0<br>4,7<br>9,2<br>14,8<br>7,8<br>9,3<br>9,8<br>21,7<br>7,6<br>5,1<br>4,3<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iiize: 30 µm): N         6,59E-09         2,85E-09         6,05E-09         6,30E-09         5,95E-09         8,35E-09         5,98E-09         3,68E-09         2,51E-09         5,60E-09         9,14E-09         1,21E-08         6,24E-09         9,18E-10         40Ar total (ml)         iize: 30 µm): N         1,01E-08         2,89E-09         4,98E-09         7,90E-09         1,01E-08         5,49E-09         6,00E-09         5,49E-09         6,18E-09         5,20E-09         4,21E-09         6,18E-09         5,20E-10                                                                                                                                | $\begin{array}{c} \pm 1,90E-13\\ \pm 2,40E-13\\ \pm 2,40E-13\\ \pm 2,80E-13\\ \pm 10,00E-13\\ \pm 3,00E-12\\ \pm 7,20E-13\\ \pm 7,00E-13\\ \pm 2,70E-13\\ \pm 2,70E-13\\ \pm 2,50E-13\\ \pm 1,50E-12\\ \pm 8,70E-13\\ \pm 1,50E-13\\ \pm 1,50E-13\\ \pm 1,50E-13\\ \pm 1,70E-13\\ \pm 2,50E-13\\ \pm 2,60E-13\\ \pm 2,60E-13\\ \pm 2,60E-13\\ \pm 2,30E-13\\ \pm 2,30E-13\\ \pm 3,10E-13\\ \pm 2,90E-13\\ \pm 2,90E-13$                                                                                                                                                                                                                                                                                                                                                                                                   | <b>c</b> - <b>biofite</b> ( <b>J</b> =<br>1,40E-09<br>1,30E-09<br>3,68E-09<br>4,70E-09<br>4,37E-09<br>7,16E-09<br>1,54E-09<br>3,87E-09<br>6,21E-09<br>8,43E-09<br>4,45E-09<br>-9,446E-11<br><b>40Ar*</b><br>( <b>m</b> )<br><b>c</b> - <b>phengite</b> ( <b>c</b> )<br>1,27E-09<br>8,74E-10<br>2,35E-09<br>4,99E-09<br>7,82E-09<br>4,16E-09<br>3,96E-09<br>4,31E-09<br>9,45E-09<br>3,48E-09<br>3,16E-09<br>2,54E-09<br>1,16E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>9,18E-10</li> <li>7,67E-10</li> <li>2,16E-09</li> <li>2,59E-09</li> <li>2,35E-09</li> <li>4,02E-09</li> <li>2,67E-09</li> <li>2,67E-09</li> <li>3,55E-09</li> <li>4,77E-09</li> <li>2,25E-09</li> <li>8,66E-11</li> <li><sup>39</sup>Ar</li> <li>(ml)</li> <li>(ml)</li> <li>= 0.00657, m</li> <li>1,05E-09</li> <li>6,51E-10</li> <li>1,53E-09</li> <li>2,98E-09</li> <li>4,77E-09</li> <li>2,52E-09</li> <li>3,02E-09</li> <li>3,17E-09</li> <li>2,47E-09</li> <li>1,66E-09</li> <li>1,37E-09</li> <li>6,20E-11</li> </ul>                                                                    | $s = 10.46 mg)$ $\pm 8,40E-13$ $\pm 7,40E-13$ $\pm 1,90E-12$ $\pm 2,30E-12$ $\pm 2,30E-12$ $\pm 2,40E-12$ $\pm 3,60E-12$ $\pm 2,40E-12$ $\pm 2,40E-12$ $\pm 2,10E-13$ $\pm 2,10E-12$ $\pm 2,20E-12$ $\pm 2,20E-12$ $\pm 2,20E-12$ $\pm 2,20E-13$ $1\sigma (abs.)$ (ml)<br>ass = 11.18 m<br>$\pm 9,50E-13$ $\pm 0,50E-13$ $\pm 0,50E-13$ $\pm 0,50E-13$ $\pm 0,50E-13$ $\pm 0,50E-12$ $\pm 0,$ | 3,43E-11<br>2,19E-11<br>5,57E-11<br>6,68E-11<br>1,05E-10<br>6,51E-11<br>1,66E-11<br>2,22E-11<br>5,27E-11<br>8,74E-11<br>1,24E-10<br>5,89E-11<br>3,314E-12<br><sup>38</sup> Ar<br>(ml)<br>g)<br>4,44E-11<br>1,97E-11<br>3,97E-11<br>8,02E-11<br>1,09E-10<br>5,12E-11<br>1,09E-10<br>5,12E-11<br>1,09E-11<br>4,92E-11<br>1,08E-10<br>4,94E-11<br>1,08E-10<br>4,94E-11<br>2,86E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \pm 2,50E-13\\ \pm 2,00E-13\\ \pm 2,50E-13\\ \pm 2,30E-13\\ \pm 1,80E-13\\ \pm 3,10E-13\\ \pm 3,10E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\ \pm 2,40E-13\\ \pm 2,80E-13\\ \pm 2,50E-13\\ \pm 2,50E-13\\ \pm 2,90E-13\\ \pm 2,90E-13\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,02E-11<br>1,19E-11<br>2,88E-11<br>3,53E-11<br>3,41E-11<br>5,67E-11<br>3,28E-11<br>8,00E-12<br>1,00E-11<br>2,34E-11<br>4,38E-11<br>3,13E-11<br>1,667E-12<br><sup>38</sup> Ar Cl<br>(ml)<br>2,65E-11<br>1,08E-11<br>2,07E-11<br>1,60E-11<br>1,12E-11<br>2,32E-11<br>1,87E-11<br>1,87E-11<br>1,82E-12 | 2,44E-11<br>9,98E-12<br>2,06E-11<br>2,28E-11<br>2,04E-11<br>3,01E-11<br>4,62E-11<br>2,31E-11<br>2,11E-11<br>1,41E-10<br>1,24E-10<br>8,36E-11<br>1,32E-10<br>8,29E-11<br>3,7Ar<br>(ml)<br>3,20E-11<br>9,50E-12<br>1,79E-11<br>3,97E-11<br>5,35E-11<br>2,65E-11<br>6,86E-11<br>7,98E-11<br>1,49E-10<br>1,00E-10<br>2,93E-10<br>1,49E-10 | $\begin{array}{c} \pm 1,79\text{E-}12\\ \pm 2,34\text{E-}12\\ \pm 2,59\text{E-}12\\ \pm 3,41\text{E-}12\\ \pm 3,64\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,81\text{E-}12\\ \pm 3,56\text{E-}12\\ \pm 3,36\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 3,23\text{E-}12\\ \pm 2,70\text{E-}12\\ \pm 3,68\text{E-}12\\ \pm 3,68\text{E-}12\\ \hline 1 \sigma (abs.)\\ (ml)\\ \hline \\ \begin{array}{c} \pm 1,10\text{E-}12\\ \pm 8,14\text{E-}13\\ \pm 5,37\text{E-}13\\ \pm 1,19\text{E-}12\\ \pm 9,71\text{E-}13\\ \pm 9,96\text{E-}13\\ \pm 1,19\text{E-}12\\ \pm 9,25\text{E-}13\\ \pm 1,19\text{E-}12\\ \pm 8,67\text{E-}13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| <sup>36</sup> Ar<br>(ml) | 1σ (abs.)<br>(ml)                | Cl/K                 | 1σ (abs.)                          | Ca/K                 | 1σ (abs.)                                              | Age<br>(Ma) | 1σ (abs.)<br>(Ma)      | <sup>39</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)                                     | <sup>36</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)                        |
|--------------------------|----------------------------------|----------------------|------------------------------------|----------------------|--------------------------------------------------------|-------------|------------------------|------------------------------------|-----------------------------------------------|------------------------------------|----------------------------------|
|                          |                                  |                      |                                    |                      |                                                        |             |                        |                                    |                                               |                                    |                                  |
| 9,07E-12                 | ±2,40E-13                        | 5,00E-03             | ±2,96E-05                          | 1,30E-01             | ±5,20E-03                                              | 38,0        | ±0,4                   | 1,45E-01                           | ±1,50E-04                                     | 8,62E-04                           | ±2,30E-05                        |
| 9,11E-13                 | ±2,40E-13                        | 5,13E-03             | ±5,05E-05                          | 6,44E-02             | ±1,20E-02                                              | 36,9        | ±0,5                   | 1,90E-01                           | ±1,90E-04                                     | 1,75E-04                           | ±4,50E-05                        |
| 3,44E-12                 | ±2,20E-13                        | 5,16E-03             | ±2,46E-05                          | 9,37E-02             | ±4,90E-03                                              | 35,7        | ±0,2                   | 1,88E-01                           | ±3,10E-04                                     | 3,05E-04                           | ±2,00E-05                        |
| 1,71E-12                 | ±2,00E-13                        | 5,13E-03             | ±2,20E-05                          | 6,12E-02             | ±2,50E-03                                              | 37,2        | ±0,2                   | 1,92E-01                           | ±1,80E-04                                     | 1,13E-04                           | ±1,30E-05                        |
| 1,01E-12                 | ±2,10E-13                        | 5,25E-03             | ±2,88E-05                          | 7,43E-02             | ±5,00E-03                                              | 37,9        | ±0,3                   | 1,87E-01                           | ±2,20E-04                                     | 1,30E-04                           | ±2,50E-05                        |
| 2,63E-12                 | ±2,00E-13                        | 5,34E-03             | ±8,28E-05                          | 9,92E-02             | ±1,50E-02                                              | 34,5        | ±0,6                   | 1,75E-01                           | ±1,70E-04                                     | 6,26E-04                           | $\pm 4,80E-05$                   |
| 1,17E-12                 | ±2,20E-13                        | 5,03E-03             | ±3,80E-05                          | 7,13E-01             | ±8,00E-03                                              | 38,8        | ±0,5                   | 1,79E-01                           | ±1,60E-04                                     | 2,05E-04                           | ±3,90E-05                        |
| 2,06E-12                 | ±2,10E-13                        | 5,28E-03             | $\pm 4,24 \text{E-}05$             | 4,83E-01             | ±7,80E-03                                              | 37,5        | ±0,4                   | 1,80E-01                           | ±1,70E-04                                     | 2,94E-04                           | ±3,00E-05                        |
| 1,82E-12                 | ±2,00E-13                        | 5,09E-03             | ±2,97E-05                          | 1,48E-01             | ±3,80E-03                                              | 37,3        | ±0,2                   | 1,89E-01                           | ±1,70E-04                                     | 1,65E-04                           | ±1,80E-05                        |
| 1,86E-12                 | ±2,30E-13                        | 5,11E-03             | ±3,28E-05                          | 3,95E-01             | ±4,70E-03                                              | 37,8        | ±0,3                   | 1,82E-01                           | $\pm 1,70E-04$                                | 2,27E-04                           | $\pm 2,80E-05$                   |
| 2,32E-12                 | ±2,20E-13                        | 5,75E-03             | ±6,09E-05                          | 4,88E+00             | ±1,60E-02                                              | 38,9        | ±0,4                   | 1,72E-01                           | ±1,60E-04                                     | 3,11E-04                           | ±3,00E-05                        |
| <sup>36</sup> Ar<br>(ml) | 1σ (abs.)<br>(ml)                | Cl/K                 | 1σ (abs.)                          | Ca/K                 | 1σ (abs.)                                              | Age<br>(Ma) | 1σ (abs.)<br>(Ma)      | <sup>39</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)                                     | <sup>36</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)                        |
|                          |                                  |                      |                                    |                      |                                                        |             |                        |                                    |                                               |                                    |                                  |
| 1,65E-11                 | ±2,30E-13                        | 1,79E-03             | ±1,29E-04                          | 1,98E-01             | ±2,40E-02                                              | 16,5        | ±1,5                   | 5,88E-02                           | ±6,20E-05                                     | 2,94E-03                           | ±4,20E-05                        |
| 8,88E-12                 | ±8,30E-14                        | 2,42E-03             | ±7,29E-05                          | 1,63E-01             | ±1,20E-02                                              | 17,3        | ±0,3                   | 1,45E-01                           | ±1,40E-04                                     | 2,25E-03                           | ±2,10E-05                        |
| 7,70E-12                 | ±1,40E-13                        | 1,32E-03             | ±3,41E-05                          | 2,33E-02             | ±4,00E-03                                              | 17,3        | ±0,3                   | 2,39E-01                           | ±2,20E-04                                     | 1,50E-03                           | ±2,70E-05                        |
| 7,27E-12                 | ±3,20E-13                        | 1,89E-03             | ±1,30E-05                          | 2,94E-02             | ±5,30E-03                                              | 16,5        | ±0,5                   | 2,73E-01                           | $\pm 2,40E-04$                                | 1,33E-03                           | ±5,90E-05                        |
| 3,99E-12                 | ±1,30E-13                        | 4,62E-04             | ±1,55E-04                          | 4,68E-01             | ±1,20E-02                                              | 14,5        | ±0,3                   | 3,10E-01                           | ±3,10E-03                                     | 1,34E-03                           | ±4,30E-05                        |
| 6,11E-12                 | ±1,30E-13                        | 2,52E-03             | ±2,07E-05                          | 2,88E-02             | ±3,90E-03                                              | 17,2        | ±0,2                   | 3,12E-01                           | ±2,90E-04                                     | 9,37E-04                           | ±2,10E-05                        |
| 5,39E-12                 | ±1,60E-13                        | 1,60E-03             | ±3,07E-05                          | 5,37E-02             | ±4,60E-03                                              | 17,9        | ±0,3                   | 2,80E-01                           | ±2,60E-04                                     | 1,01E-03                           | ±3,20E-05                        |
| 8,17E-12                 | ±1,60E-13                        | 1,81E-03             | ±5,33E-05                          | 1,87E-01             | ±9,60E-03                                              | 11,4        | ±0,5                   | 2,18E-01                           | ±2,10E-04                                     | 2,26E-03                           | ±4,50E-05                        |
| 6,57E-12                 | ±1,60E-13                        | 1,20E-03             | ±3,31E-05                          | 9,64E-02             | ±3,90E-03                                              | 14,9        | ±0,3                   | 2,70E-01                           | $\pm 2,40E-04$                                | 1,56E-03                           | ±3,70E-05                        |
| 8,37E-12                 | ±2,20E-13                        | 1,09E-03             | ±2,31E-05                          | 1,75E-01             | ±3,70E-03                                              | 15,5        | ±0,2                   | 3,04E-01                           | ±2,70E-04                                     | 1,24E-03                           | ±3,30E-05                        |
| 7,88E-12                 | ±2,10E-13                        | 1,13E-03             | ±1,64E-05                          | 5,96E-02             | ±2,00E-03                                              | 16,8        | ±0,1                   | 3,41E-01                           | ±3,10E-04                                     | 7,79E-04                           | ±2,10E-05                        |
| 6,09E-12                 | ±1,90E-13                        | 9,69E-04             | ±9,46E-06                          | 8,04E-02             | ±2,80E-03                                              | 17,7        | ±0,2                   | 3,28E-01                           | ±3,00E-04                                     | 7,45E-04                           | ±2,30E-05                        |
| 6,27E-12                 | ±1,30E-13                        | 1,16E-03             | ±3,07E-05                          | 2,59E-01             | ±2,50E-03                                              | 16,7        | ±0,2                   | 2,94E-01                           | $\pm 2,60E-04$                                | 1,15E-03                           | $\pm 2,40E-05$                   |
| 5,214E-12                | ±1,80E-13                        | 1,59E-03             | ±9,22E-05                          | 1,44E+00             | ±2,00E-02                                              | 14,6        | ±1,0                   | 1,69E-01                           | ±1,60E-04                                     | 2,26E-03                           | ±7,90E-05                        |
| 5,34E-12                 | ±2,60E-13                        | 3,21E-03             | ±5,02E-04                          | 2,64E+00             | ±9,20E-02                                              | 6,1         | ±4,3                   | 7,78E-02                           | ±1,30E-04                                     | 3,17E-03                           | ±1,50E-04                        |
| <sup>36</sup> Ar         | 1σ (abs.)<br>(ml)                | Cl/K                 | $1\sigma$ (abs.)                   | Ca/K                 | 1σ (abs.)                                              | Age<br>(Ma) | 1σ (abs.)<br>(Ma)      | <sup>39</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)                                     | <sup>36</sup> Ar/ <sup>40</sup> Ar | $1\sigma$ (abs.)                 |
| (IIII)                   | (1111)                           |                      |                                    |                      |                                                        | (1918)      | (Ma)                   |                                    |                                               |                                    |                                  |
| 176E-11                  | +1 70F 13                        | 5 06E 03             | +6 32E 05                          | 5 31E 02             | +3 90F 03                                              | 18.0        | +0.6                   | 1 30F 01                           | +1 30F 04                                     | 2.67E.03                           | +2 50E 05                        |
| 5.24E-12                 | $\pm 1,70E-13$<br>$\pm 1.20E-13$ | 3,56E-03             | $\pm 6.04$ E $\pm 0.05$            | 2,51E-02             | ±5,70E=03                                              | 20.0        | +0.6                   | 2.69E.01                           | ±2,50E-04                                     | 2,07E-03                           | ±4.30E-05                        |
| 3,24L-12<br>8.03E-12     | $\pm 1,20E-13$<br>$\pm 2.40E-13$ | 3.07E-03             | $\pm 2,041-05$<br>$\pm 2,71E-05$   | 1,00E-02             | $\pm 2.40E_{-03}$                                      | 20,0        | $\pm 0.0$              | 2,07E-01                           | ±3,00E-04                                     | 1,34E-03                           | ±4,00E-05                        |
| 5.40E 12                 | ±2,40E-13                        | 3.13E.03             | $\pm 2,712-05$<br>$\pm 2.07E.05$   | 1,76E 02             | $\pm 2,40E-03$                                         | 20,1        | +0.2                   | 4.12E.01                           | ±3,20E-04                                     | 8 57E 04                           | ±2,00E-05                        |
| 5.36E 12                 | $\pm 1,30E-13$<br>$\pm 1.40E-13$ | 3,15E-03             | ±2,07E-05                          | 1,70E-02             | ±2,40E-03                                              | 21,4        | $\pm 0.2$              | 4,12E-01                           | ±3,70E-04                                     | 0.00E 04                           | ±2,40E-05                        |
| 1.02E 12                 | $\pm 1,40E-13$<br>$\pm 1.40E-13$ | 3,35E-03             | $\pm 1,80E-05$<br>$\pm 1.80E-05$   | 1,74E-02             | ±3,10E-03                                              | 21,9        | $\pm 0,2$              | 3,94E-01                           | ±4,30E-04                                     | 9,00E-04                           | ±2,40E-05                        |
| 4,02E-12                 | $\pm 1,40E-13$<br>$\pm 2.00E-13$ | 2.83E-03             | $\pm 1,80E-05$<br>$\pm 3.21E-05$   | 1,50E-02<br>3.46E-02 | $\pm 1,90E-03$<br>$\pm 3.60E-03$                       | 21,0        | $\pm 0.1$              | 4,81E-01                           | $\pm 4,30E-04$<br>$\pm 4,00E,04$              | 7.22E.04                           | ±1,70E-05                        |
| 4,52E-12<br>8 86E 12     | ±2,00E-13                        | 2,85E-05             | $\pm 3,21$ E-03<br>$\pm 1.13$ E 04 | 7.70E-02             | $\pm 3,00$ $\pm 0.00$ $\pm 1.20$ $\pm 0.00$ $\pm 0.00$ | 20,7        | ±0,5                   | 4,47E-01                           | $\pm 4,00E-04$<br>$\pm 1.50E-04$              | 7,22E-04<br>2.41E-03               | ±3,30E-05                        |
| 3 30E 12                 | $\pm 1,70E-13$<br>$\pm 1.70E 13$ | 2 33E 03             | $\pm 1,15E-04$<br>$\pm 4.95E.05$   | 4.26E.02             | $\pm 1,2012-02$<br>$\pm 7,3012,03$                     | 18.3        | ±1,0<br>±0.6           | 3.04E.01                           | $\pm 1,50$ $\pm -04$<br>$\pm 3.60$ $\pm 0.04$ | 2,41E-03                           | $\pm 4,70E-05$                   |
| 5,00E-12                 | $\pm 1,70E-13$<br>$\pm 1.30E-13$ | 2,55E-05             | $\pm 4,95E-05$<br>$\pm 1.67E-05$   | 4,20E-02             | $\pm 7,50E-03$<br>$\pm 2.70E-03$                       | 10,5        | ±0,0<br>±0,2           | 3,94E-01                           | ±3,00E-04                                     | 1,51E-05                           | ±0,00E-05                        |
| 0.05E-12                 | $\pm 1,30E-13$<br>$\pm 2.00E-13$ | 2,25E-05<br>2.84E-03 | $\pm 1,07E-05$<br>$\pm 1.53E-05$   | 6.00E-02             | $\pm 2,70E-03$<br>$\pm 5.60E-04$                       | 20.6        | $\pm 0,2$<br>$\pm 0.2$ | 4,27E-01                           | ±4,00E-04                                     | 1,05E-03                           | $\pm 2,40E-05$<br>$\pm 2,20E,05$ |
| 1.24E-11                 | ±2,00E-13                        | 2,04E-03             | $\pm 1,35$ E-05                    | 3.50E-02             | $\pm 1.50E-03$                                         | 20,0        | $\pm 0.2$<br>$\pm 0.1$ | 3.05E-01                           | $\pm 3,70E-04$<br>$\pm 3.50E-04$              | 1,00E-03                           | $\pm 1.10E.05$                   |
| 6 10E 12                 | $\pm 2.10E \cdot 13$             | 3 20E 03             | $\pm 2,50E,05$                     | 1 18E 01             | ±1,50E-05                                              | 20,0        | ±0,1                   | 3,55E-01                           | ±3,00E-04                                     | 9.73E.04                           | ±1,10E-05                        |
| 3,446E-12                | ±2,10E-13<br>±2,10E-13           | 4,43E-03             | ±6,46E-04                          | 1,92E+00             | ±8,50E-02                                              | -13,0       | ±-8,5                  | 9,43E-02                           | ±2,40E-04                                     | 3,73E-04                           | ±2,30E-04                        |
| <sup>36</sup> Ar         | 1σ (abs.)                        | Cl/K                 | 1σ (abs.)                          | Ca/K                 | 1σ (abs.)                                              | Age         | 1σ (abs.)              | <sup>39</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)                                     | <sup>36</sup> Ar/ <sup>40</sup> Ar | 1σ (abs.)                        |
| (ml)                     | (ml)                             |                      |                                    |                      |                                                        | (Ma)        | (Ma)                   |                                    |                                               |                                    |                                  |
|                          |                                  |                      |                                    |                      |                                                        |             |                        |                                    |                                               |                                    |                                  |
| 2,97E-11                 | ±1,80E-13                        | 5,79E-03             | ±5,53E-05                          | 6,09E-02             | ±2,10E-03                                              | 14,3        | ±0,6                   | 1,05E-01                           | ±9,40E-05                                     | 2,95E-03                           | ±1,80E-05                        |
| 6,81E-12                 | ±2,10E-13                        | 3,82E-03             | ±9,99E-05                          | 2,92E-02             | ±2,50E-03                                              | 15,8        | ±1,1                   | 2,26E-01                           | ±2,20E-04                                     | 2,36E-03                           | ±7,20E-05                        |
| 8,92E-12                 | ±3,00E-13                        | 3,00E-03             | ±4,00E-05                          | 2,34E-02             | $\pm /,00E-04$                                         | 18,1        | ±0,7                   | 3,08E-01                           | ±3,30E-04                                     | 1,79E-03                           | ±0,10E-05                        |
| 9,80E-12                 | ±1,50E-13                        | 5,54E-03             | ±1,95E-05                          | 2,06E-02             | ±4,20E-04                                              | 19,7        | ±0,2                   | 5,/8E-01                           | ±5,30E-04                                     | 1,25E-03                           | ±1,90E-05                        |
| 7,03E-12                 | $\pm 2,00E-13$                   | 2,48E-03             | ±1,43E-05                          | 2,24E-02             | ±5,00E-04                                              | 19,3        | ±0,1                   | 4,/4E-01                           | ±4,40E-04                                     | 7,56E-04                           | ±1,90E-05                        |
| 4,51E-12                 | ±2,40E-13                        | 1,88E-03             | ±1,/1E-05                          | 2,10E-02             | ±/,/0E-04                                              | 19,4        | ±0,3                   | 4,59E-01                           | ±4,10E-04                                     | 8,20E-04                           | ±4,30E-05                        |
| 0,93E-12                 | ±1,90E-13                        | 1,22E-03             | ±1,/9E-05                          | 4,55E-02             | ±6,60E-04                                              | 15,5        | ±0,2                   | 5,03E-01                           | ±4,40E-04                                     | 1,15E-03                           | ±3,20E-05                        |
| 4,01E-12                 | ±2,00E-13                        | 8,08E-04             | ±1,/1E-05                          | 5,03E-02             | ±5,60E-04                                              | 16,0        | ±0,2                   | 5,78E-01                           | ±5,10E-04                                     | /,26E-04                           | ±3,70E-05                        |
| 1,04E-11                 | $\pm 2,20E-13$                   | 7,64E-04             | ±8,98E-06                          | 4,26E-02             | ±3,40E-04                                              | 15,9        | ±0,1                   | 5,59E-01                           | ±4,90E-04                                     | 8,29E-04                           | ±1,70E-05                        |
| 9,16E-12                 | ±1,80E-13                        | 1,75E-03             | ±2,09E-05                          | 1,08E-01             | ±7,50E-04                                              | 16,7        | ±0,3                   | 3,99E-01                           | ±3,50E-04                                     | 1,48E-03                           | ±2,90E-05                        |
| 6,93E-12                 | ±1,40E-13                        | 2,94E-03             | ±2,26E-05                          | 1,22E-01             | ±1,80E-03                                              | 22,4        | ±0,3                   | 3,19E-01                           | ±2,80E-04                                     | 1,33E-03                           | ±2,60E-05                        |
| 5,74E-12                 | ±1,80E-13                        | 2,87E-03             | ±3,40E-05                          | 4,26E-01             | ±1,70E-03                                              | 21,8        | ±0,4                   | 3,26E-01                           | ±3,00E-04                                     | 1,35E-03                           | ±4,10E-05                        |
| 1 X5E-12                 | +2.10E-13                        | 6,/4E-03             | ±9,75E-04                          | 4,81E+00             | $\pm 2,80E-02$                                         | 22,0        | ±11,0                  | 9,53E-02                           | $\pm 2,30E-04$                                | 2,78E-03                           | $\pm 3,10E-04$                   |

size: 18 Ma for the weakly deformed rock and orthogneiss, and 16 Ma (model 1) or 11 Ma (model 2) for the mylonitic rock (triangles, Fig. 7). A similar trend would be expected for phengites (circles, Fig. 7) using the diffusion coefficient and activation energy of 0.11 cm<sup>2</sup>/s and 250 kJ/mol, respectively (Hames and Cheney 1997). Thus, significantly younger ages would be expected for smaller grains.

In both sampling profiles, no correlation between <sup>39</sup>Ar-<sup>40</sup>Ar biotite ages and strain intensity or grain size is observed. Except for the Aar 31 biotite, all isochemical mica ages in orthogneisses and mylonites are bracketed between 21 and 17 Ma (Fig. 6). These results are younger than the maximum permissible stratigraphic age of 34 Ma and concordant with the modelled metamorphic age of the ECM (23–18 Ma, Figs. 4c, and f). This argues against significant excess Ar. Furthermore, the comparatively tight age distribution of the six inheritance-free micas also argues against a large influence of excess Ar (e.g. see Brewer 1969).

## Rb-Sr data

In the Grimsel granodiorite profile, the undeformed rock (Aar  $31 = AD \ 13$ ) was analyzed by Marquer and Peucat (1994) and is shown here for completeness. Inter-mineral isotopic disequilibrium can be seen in the weakly deformed rock and the orthogneissic rock in the shear zone profile of the Grimsel granodiorite (Fig. 8). In the Rb-Sr isochron plot, only the Grimsel granodiorite mylonitic rock exhibits a statistically "acceptable" alignment of the data points (AC II h:WR, phengite and biotite). Apparent Rb/Sr whole rock-biotite ages are  $15.9 \pm 0.4$ ,  $22.4 \pm 2.5$  and  $12.2 \pm 1.3$  Ma for the three rock types in the Grimsel granodiorite shear zone profile (Fig. 8 and Table 4). The last, more highly strained sample gives a whole rock-phengite age of  $12.6 \pm 0.3$  Ma (Fig. 8 and Table 4). Thus, these two whole rock-mica ages give concordant results around 12.5 Ma.

For the mylonitic rock in the Aar granite, the whole rockbiotite age is  $10.1 \pm 0.3$  Ma whereas the whole rock-phengite age is negative, which is proof of initial isotopic disequilibrium (Table 4 and Fig. 8). As deformation progresses, the wholerock point becomes more enriched in Rb and in <sup>87</sup>Sr (compare Aar10 and Aar 17, Fig. 8). This requires an open system with chemical mass-transfer and large fluid circulations (Marquer and Peucat 1994).

#### **Rb-Sr interpretation**

Rb-Sr ages were determined for two reasons: i) to compare with the often-quoted data presented by Jaeger and co-workers and reviewed by Hunziker et al. (1992) and ii) to assess whether such samples fully satisfy the prerequisite of Rb-Sr dating, i.e. internal isotopic equilibrium.

The whole rock Rb-Sr isotopic dating method, applied to greenschist-facies shear zones in the ECM, was previously investigated by Marquer and Peucat (1994). These authors analysed weakly deformed rocks of the Aar granite and the Grimsel granodiorite with the aim of determining their magmatic age. Their Rb-Sr isochron age was concordant with Upper Carboniferous zircon U-Pb ages (Schaltegger 1994). However, orthogneissic and mylonitic rocks yielded a large scatter of Rb-Sr ages and were aligned, from weakly deformed to orthogneissic and mylonitic rocks, along a geologically meaningless "errorchron", giving fictitious Early Cretaceous ages. This suggested that isotopic homogenisation was not reached in these shear zones and hence that the whole rock Rb-Sr isotopic dating method is not appropriated for determining geologically meaningful ages in granitic rocks that experience greenschist-facies deformation, because of the mass transfer that occurs in a chemically open system. We have attempted to understand which component of the whole-rock system is responsible for this. Furthermore, the whole-rock perturbations certainly also affect whole rock-mineral ages, and the significance of apparent ages is not obvious. Indeed, an inconsistent pattern is revealed by the whole rock-biotite data: the weakly deformed sample ( $25.1 \pm 0.7$  Ma) and the mylonitic rock  $(10.1 \pm 0.3 \text{ Ma})$  give two different "ages" for the same 450 °C deformation event. Furthermore, the three whole rock-biotite ages do not show systematically decreasing values with decreasing grain size in the Grimsel granodiorite samples. Moreover, considering the mylonites in the Grimsel granodiorite, the whole rock-biotite age  $(12.2 \pm 1.3 \text{ Ma})$  is close to the whole rock-phengite age ( $12.6 \pm 0.3$  Ma) while "thermochronology" requires drastically different "closure temperatures" values for these two minerals, namely  $300 \pm 50$  °C and  $500 \pm 50$  °C, respectively (Hunziker et al. 1992). If these ages were interpreted using the conventional "closure temperature" hypothesis, this result would imply an unrealistic, ultra-fast temperature drop of 200 °C between 12.6 and 12.2 Ma. To escape that paradox, in principle one could extend the conventional approach and interpret the mylonite ages as formation ages, implying that



Fig. 7. Calculated "closure temperatures" for K-Ar in micas versus grain size, projected onto the modelled T-t paths for the ECM. Retrograde paths: dashed line: model 1 (Fig. 4c); solid line: model 2 (Fig. 4f).

Tab. 4. Rb-Sr results from the External Crystalline Massifs.

| Sample      |              | Rb<br>[ppm] | Sr<br>[ppm] | <sup>87</sup> Rb/ <sup>86</sup> Sr | 2σ<br>(abs)    | <sup>87</sup> Sr/ <sup>86</sup> Sr | 2σ<br>(abs) |           | Age<br>[Ma] | 2σ<br>(abs) | Intercept | 2σ<br>(abs)  | M.S.W.D. |
|-------------|--------------|-------------|-------------|------------------------------------|----------------|------------------------------------|-------------|-----------|-------------|-------------|-----------|--------------|----------|
| Aar granit  | e            |             |             |                                    |                |                                    |             |           |             |             |           |              |          |
| Weakly de   | formed roc   | k (grain s  | size: 1000  | μm)                                |                |                                    |             |           |             |             |           |              |          |
| Aar10       | WR           | 214         | 79          | 7,806979                           | ±0,010825      | 0,731928                           | ±0,000028   |           |             |             |           |              |          |
|             | Bt           | 1166        | 100         | 33,915499                          | ±0,605921      | 0,741252                           | ±0,000167   | WR-Bt     | 25,1        | ±0,7        | 0,7291    | ±0,0001      | 2 pt     |
| Mylonitic 1 | rock (grain  | size: 30 µ  | m)          |                                    |                |                                    |             |           |             |             |           |              |          |
| Aar17       | WR           | 396         | 71          | 16,152830                          | ±0,010657      | 0,744057                           | ±0,000056   |           |             |             |           |              |          |
|             | Bt           | 210         | 13          | 47,504246                          | ±0,022223      | 0,748567                           | ±0,000098   | WR-Bt     | 10,1        | ±0,3        | 0,7417    | ±0,0001      | 2 pt     |
|             | Phe          | 172         | 6           | 81,136672                          | ±0,213129      | 0,732672                           | ±0,000244   |           |             |             |           |              | -        |
|             | Phe"         | 63          | 4           | 44,647915                          | ±0,033370      | 0,735040                           | ±0,000039   | WR-Phe    | negative    | e           |           |              | 2 pt     |
| Grimsel gr  | anodiorite   |             |             |                                    |                |                                    |             |           |             |             |           |              |          |
| Weakly de   | formed roc   | k (grain s  | size: 1000  | μm)                                |                |                                    |             |           |             |             |           |              |          |
| AD13        | WR*          | 115         | 399         | 0,840000                           | ±0,004200      | 0,708950                           | ±0,000079   |           |             |             |           |              |          |
|             | Bt*          | 552         | 55          | 29,300000                          | $\pm 0,150000$ | 0,715370                           | ±0,000158   | WR*-Bt*   | 15,9        | ±0,4        | 0,7088    | ±0,0001      | 2 pt     |
| Orthogneis  | ssic rock (g | rain size:  | 300 µm)     |                                    |                |                                    |             |           |             |             |           |              |          |
| AD20        | WR           | 149         | 235         | 1,836146                           | ±0,001976      | 0,710093                           | ±0,000029   |           |             |             |           |              |          |
|             | Bt           | 566         | 126         | 13,024662                          | ±0,024467      | 0,713651                           | ±0,000394   | WR-Bt     | 22,4        | ±2,5        | 0,7095    | $\pm 0,0001$ | 2 pt     |
| Mylonitic 1 | rock (grain  | size: 30 µ  | m)          |                                    |                |                                    |             |           |             |             |           |              |          |
| AD20        | Bt*          | 608         | 29          | 60,800000                          | ±0,304000      | 0,720660                           | ±0,000360   |           |             |             |           |              |          |
| ACIIh       | WR           | 218         | 225         | 2,800116                           | ±0,005038      | 0,711382                           | ±0,000053   |           |             |             |           |              |          |
|             | Bt           | 551         | 64          | 25,074639                          | ±0,041008      | 0,715351                           | ±0,000074   | WR-Bt-Bt* | 12,2        | ±1,3        | 0,7109    | ±0,0003      | 25,2     |
|             | Phe          | 452         | 68          | 19,122276                          | ±0,012198      | 0,714308                           | ±0,000038   | WR-Phe    | 12,6        | ±0,3        | 0,7109    | ±0,0001      | 2 pt     |

\*Rennes University analyses, 1987.

biotites and phengites both grew at ca. 12.5 Ma below 300  $^{\circ}$ C, ca. 5–8 Ma later than the micas in weakly deformed rocks of the same shear zone. However, the microstructural observations and the petrological constraints (such as the Si content of white mica) rule out such a diachronous growth, and indeed the K-Ar system does not record it either.

The Grimsel granodiorite and Aar granite Rb-Sr WR results demonstrate that the whole rock system is not the most retentive one, as postulated by the conventional closure temperature approach (Hunziker et al. 1992). For whole rock-biotite ages, we observe a lack of correlation between ages and strain intensity and between ages and grain size. This means that ages in deformed rocks are not simply controlled by grain size reduction. Furthermore, shear zones are interconnected pathways open to late fluid circulation and thus partial resetting of Rb-Sr systematics is expected to occur by chemical exchange, independent of temperature (see Marquer 1987; Marquer & Burkhard 1992; McCaig 1997). We propose that, in a chemically open system, it is the extent of recrystallisation which determines the resetting of isotopic systems. Thus, we do not observe Sr isotopic equilibrium because the different minerals have recrystallised to different degrees at the time of late fluid circulations.

#### Discussion

In the rocks sampled across progressively deformed profiles, the Rb-Sr and <sup>39</sup>Ar-<sup>40</sup>Ar dates scatter within Oligo-Miocene

time, but do not present a systematic correlation with either strain intensity or grain size (Fig. 9). In deformed samples, biotite and phengite yield similar ages for each isotopic method: 21–17 Ma by <sup>39</sup>Ar-<sup>40</sup>Ar and 12–10 Ma by Rb-Sr. These new isotopic observations in metamorphic shear zones cannot be reconciled with the hypothesis that mineral ages are controlled by temperature. If that were true, the calculated T-t history would be mirrored by the age results in Fig. 7.

<sup>39</sup>Ar-<sup>40</sup>Ar biotite and white mica ages give results (21-17 Ma) in approximate agreement with the calculated timing of peak T conditions, regardless of their mineral grain size, while Rb-Sr whole rock-mineral ages scatter from ages corresponding to peak T conditions to young ages at around 10 Ma in mylonites (Fig. 9). These "young" ages cannot be reconciled with either geological age estimates or P-T modelling. In the shear zones, a strong decrease in the grain size and the degree of interconnection of small-scale shear planes enhanced synmetamorphic fluid circulation (Marquer 1989). From major element and stable isotope mobility in the Grimsel granodiorite, theoretical calculations suggest that these metamorphic ductile shear zones were infiltrated by around 10<sup>5</sup> moles H<sub>2</sub>O/ cm<sup>2</sup>, with a fluid flow in the direction of decreasing temperature (Dipple & Ferry 1992). This result is compatible with the fact that, in the major thrusts, rocks located in the overlying Helvetic cover were affected and contaminated by fluid circulations coming from the underlying basement (Marquer & Burkhard 1992). The average flow rate and in situ permeabil-



Fig. 8. Rb-Sr isochron plots for the Aar granite and Grimsel granodiorite samples. Bold dashed lines: 18 Ma reference lines corresponding to first (a) fluid inclusion generation age (recalculated after Mullis (1996); Fig. 4b and e). Bt\*: analyses performed at the University of Rennes on different separates (Tab. 4).

ity were evaluated as  $10^{-1}$ - $10^{-3}$  m/a and  $10^{-15}$ - $10^{-17}$  m<sup>2</sup>, respectively, which emphasises the fact that mylonite zones are more permeable than rocks affected by regional metamorphism (Dipple & Ferry 1992). Thus, <sup>39</sup>Ar-<sup>40</sup>Ar mica ages between 21–17 Ma are interpreted as crystallisation ages, during the main shearing event and at the peak temperature, assisted by syn-metamorphic fluid circulation (Fig. 9 and 10). Neither the peak temperature around 450 °C nor the subsequent lower-temperature history had any influence on biotite and muscovite ages.

Rb-Sr mica-whole rock apparent ages in mylonitic samples cluster around 12 to 10 Ma. From the P-T-t evolution described in model 1, it follows that the occurrence of late quartz overgrowths in extensional veins (generations b and c after Mullis 1996) had to take place at a time dictated by the intersection of the isochores with the model P-T-t curve. The timing of this intersection is variably modelled as a function of boundary conditions (Fig. 4). For our set of input parameters, model age ranges for generation b are 14–9 Ma, and for generation c 13–5 Ma (Figs. 4b, e). While these young ages in mylonites are apparently coherent with K/Ar dating of clays from a fault gouge in the same area (Kralik et al. 1992: age 10–7 Ma), it is not clear to what extent these latter ages reflect fluid flow, shearing, partial inheritance, or partial alteration in a chemically open system. Rb-Sr dates, scattering from 25 to 10 Ma, are interpreted as partially reset ages, with resetting more complete in mylonites as the result of enhanced late fluid circulation (Fig. 9). The whole rock-mineral isochrons are thus controlled by the geohygrometric events, rather than by the thermal ("cooling") history.



Fig. 9. <sup>39</sup>Ar-<sup>40</sup>Ar isochemical age and Rb-Sr dating results correlated with the modelled Oligo-Miocene PTt path of the ECM (model 1, Fig. 4). White, grey, and black symbols correspond to weakly deformed, orthogneiss and mylonite samples, respectively.

As for the "closure temperature" hypothesis, we observe that it conflicts with the present data in two essential respects. Firstly, our geodynamic numerical model rules out an Eocene metamorphism. As pointed out by Villa (1998, his Fig. 1), decreasing the age of Central Alpine metamorphism necessarily requires that all "closure temperature" estimates must be substantially increased. In the case of the Aar massif, this increase must be at least by 150 °C to accommodate the P-T constraints. A revised set of high "closure temperatures" has the logical implication that most mineral age rejuvenations encountered in the Central Alps were not due to a sufficiently high temperature but to other processes such as recrystallisation (favoured by fluid circulation and/or deformation). Secondly, our observations of age diversity within small outcrops require that mineral ages vary independently of temperature. In summary, no Alpine mineral age can be used as a "cooling age" to constrain paleo-temperatures, "cooling histories" or exhumation rates in rocks affected by large-scale fluid circulations.

The Rb-Sr apparent ages around 12-10 Ma are unlikely to be true ages solely due to mica recrystallization, as that would imply that the whole rock remained unperturbated, and would also imply that the K-Ar system would be similarly affected. On the contrary, a significant mass transfer is certain to have affected the whole rocks (see above and Marqueur and Pencar, 1994). This event can be associated with the "b" and "c" fluid circulation events described on Fig. 4. These may be fluids that were expelled during burial of the European crust below the Aar massif, as the Jura belt began to form (Fig. 10). The P-T-t paths related to model 1 and model 2 give the youngest (9–7 Ma) and the oldest (14–13 Ma) time conditions for late fluid circulation that could have occurred in ECM (Fig. 4). The fluids expelled during progressive under-thrusting of the European crust and the time delay needed to heat up and dehydrate these buried basement rocks could explain the difference in age between the beginning of the Jura formation at around 12 Ma and the migration of metamorphic fluids through the ECM.



Fig. 10. Correlation between mineral ages, ductile deformation of the ECM, Jura formation and fluid circulation in the external part of the Swiss Alps.

#### Conclusions

Our results provide new constraints on the Oligo-Miocene tectono-metamorphic evolution of the External Crystalline Massifs. The age of the last stages of ductile deformation in the basement of the ECM can now be bracketed between 21 and 17 Ma using <sup>39</sup>Ar-<sup>40</sup>Ar isochemical dates in orthogneisses and mylonites, which appear to be less sensitive to partial resetting and inheritance. These isotopic dates correspond to the calculated peak T conditions in the one-dimensional P-T-t path model constructed independently from isotopic results. These new results fit with the tectonic evolution proposed for the Helvetic system (Burkhard 1988).

The results of Rb-Sr dating in shear zones are likely to reflect late fluid circulation. Our data on the Aar massif conclusively show that temperature is not the main limiting parameter of isotopic closure for metagranites deformed during a low-grade metamorphic event and that fluid circulation plays a major role in isotopic resetting. Simple application of the "closure temperature" concept predicts different Rb-Sr ages for biotite-phengite isochrons from those observed. Furthermore, this study shows that the <sup>39</sup>Ar-<sup>40</sup>Ar method can be used to constrain the timing of the ductile deformation at peak temperature to have occurred around 17-21 Ma. Disturbance of the Rb-Sr system by fluid circulation resulted in apparent whole rock-biotite Rb-Sr ages discordant with the <sup>39</sup>Ar-<sup>40</sup>Ar ages. The Rb-Sr whole rock-mica ages of 10-12 Ma in the shear zones certainly do not date a pure "cooling" and instead are perturbated by the late hygrometric event documented by fluid inclusion studies. This could be linked to the expulsion of deep fluids during the under-thrusting of European continental crust below the ECM, synchronous with the formation of the Jura belt.

#### Acknowledgements

This paper is dedicated to the memory of Martin Burkhard for the enthusiastic and helpful discussions we had at the University of Neuchâtel. This work was part of the PhD project of N.C. (1996–2000). Isotope research in Bern was partly funded by SNF grant n° 20.47157-96. We would like to thank R. Hosein for correcting the English in this manuscript, T. Adatte for his help with time scales, N. Mancktelow for providing the modelling code, R. Brunner for mass spectrometer maintenance. The authors would finally thank R. Spikings, A. Steck, W. Müller and N. Mancktelow for their constructive remarks about the manuscript.

#### REFERENCES

- Abrecht, J. 1994: Geologic units of the Aar Massif and their pre-Alpine rock associations: a critical review. The pre-Alpine crustal evolution of the Aar, Gotthard and Tavetsch massifs. Schweizerische Mineralogische und Petrographische Mitteilungen 74, 5–27.
- Bambauer, H.U. & Bernotat, W.H. 1982: The microcline/sanidine transformation isograd in metamorphic regions: I, Composition and structural state of alkali feldspars from granitoid rocks of two N-S traverses across the Aar Massif and Gothard "Massif", Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 62, 185–230.
- Belluso, E., Ruffini, R., Schaller, M. & Villa, I.M. 2000: Electron-microscope and Ar isotope characterization of chemically heterogeneous amphiboles

from the Palala Shear Zone, Limpopo Belt, South Africa. European Journal of Mineralogy 12, 45–62.

- Berggren, W.A., Kent, D.V., Swisher, C.C., & Aubry, M.P. 1995: A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.P. & Hardenbol. J. (Eds.): Geochronology, time scales and global stratigraphic correlation. Special Publication – SEPM (Society for Sedimentary Geology) 54, 129–212.
- Bernotat, W. & Bambauer, H.U. 1980: Die Mikroklin/Sanidin-Isograde in Aarund Gotthardmassiv. Eclogae Geologicae Helvetiae 73, 559–561.
- Bernotat, W.H. & Bambauer, H.U. 1982: The microcline/sanidine transformation isograd in metamorphic regions: II, The region of Lepontine metamorphism, Central Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 62, 231–244.
- Brereton, N.R. 1970: Corrections for interfering isotopes in the <sup>40</sup>Ar/<sup>59</sup>Ar dating method. Earth and Planetary Science Letters 8, 427–433.
- Brewer, M.S. 1969: Excess radiogenic argon in metamorphic micas from the eastern Alps, Austria. Earth and Planetary Science Letters 6, 321– 331.
- Brix, M.R., Stöckhert, B., Seidel, E., Theye, T., Thomson, S.N. & Kuster, M. 2002: Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349, 309–326.
- Burkhard, M. 1988: L'Hélvetique de la bordure occidentale du massif de l'Aar (évolution tectonique et métamorphique) Eclogae Geologicae Helvetiae 81, 63–114.
- Carpéna, J. 1992: Fission track dating of zircon; zircons from Mont Blanc Granite (French-Italian Alps). Journal of Geology 100, 411–421.
- Challandes, N., Marquer, D., & Villa, I. M. 2003: Dating the evolution of C-S microstructures: a combined <sup>39</sup>Ar-<sup>40</sup>Ar step-heating and UV laserprobe analysis of the Alpine Roffna shear zone. Chemical Geology 197, 3–19.
- Choukroune, P. & Gapais, D. 1983: Strain pattern in the Aar Granite (Central Alps): orthogneiss developed by bulk inhomogeneous flattening. Journal of Structural Geology 5, 411–418.
- Coyle, D.A. & Wagner, G.A. 1998: Positioning the titanite fission-track partial annealing zone. Chemical Geology 149, 117–125.
- Crespo-Blanc, A., Masson, H., Sharp, Z., Cosca, M. & Hunziker, J. 1995: A stable and <sup>40</sup>Ar/<sup>59</sup>Ar isotope study of a major thrust in the Helvetic nappes (Swiss Alps): evidence for fluid flow and constraints on nappe kinematics. Geological Society of America Bulletin 107, 1129–1144.
- Davy, P. & Gillet, P. 1986: The stacking of thrust slices in collision zones and its thermal consequences. Tectonics 5, 913–929.
- Dempster, T.J. 1986: Isotope systematics in minerals: biotite rejuvenation and exchange during Alpine metamorphism. Earth and Planetary Science Letters 78, 355–367.
- Dipple, G.M. & Ferry, J.M. 1992: Metasomatism and fluid flow in ductile fault zones. Contributions to Mineralogy and Petrology 112, 149–164.
- Di Vincenzo, G., Vitiri, C. & Rocchi, S. 2003: The effect of chlorite interlayering on <sup>40</sup>Ar-<sup>39</sup>Ar dating: an <sup>40</sup>Ar-<sup>39</sup>Ar laser-probe and TEM investigations of variably chloritised biotites. Contributions to Mineralogy and Petrology 145, 643–658.
- Dodson, M.H. 1973: Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology 40, 259–274.
- Dolivo, E. 1982: Nouvelles observations structurales au SW du massif de l'Aar entre Visp et Gampel. Beiträge zur Geologischen Karte der Schweiz (NF) 157.
- Escher, A., Hunziker, J., Marthaler, M., Masson H., Sartori, M. & Steck, A.1997: Geological framework and structural evolution of the western Swiss-Italian Alps. In: Pfiffner, O.A., Lehner, P., Heitzmann, P., Mueller, S. & Steck, A. (Eds.): Deep structure of the Swiss Alps: Results of NRP 20. Birkhäuser Verlag, Basel, 205–221.
- England, P.C. & Richardson, S.W. 1977: The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of the Geological Society of London 134, Part 2, 201–213.
- England, P.C. & Thompson, A.B. 1984: Pressure-temperature-time paths of regional metamorphism. I. Heat transfer during the evolution of a region of thickened continental crust. Journal of Petrology 25, 894–928.

Fischer, H., Villa, I.M., 1990: Erste K/Ar und <sup>40</sup>Ar/<sup>39</sup>Ar -Hornblende-Mineralalter des Taveyannaz-Sandsteins. Schweizerische Mineralogische und Petrographische Mitteilungen 70, 73–75.

- Fourcade, S., Marquer, D. & Javoy, M. 1989: <sup>18</sup>O/<sup>16</sup>O variations and fluid circulation in a deep shear zone: the case of the Alpine ultramylonites from the Aar Massif (Central Alps, Switzerland). Chemical Geology 77, 119–131.
- Frey, M., Bucher, K., Frank, E. & Mullis, J. 1980: Alpine metamorphism along the Geotraverse Basel-Chiasso: a review. Eclogae Geologicae Helvetiae 73, 527–546.
- Frey, M., Hunziker, J.C., Frank, W., Bocquet, J., Dal Piaz, G.V., Jaeger, E. & Niggli, E. 1974: Alpine metamorphism of the Alps: a review. Schweizerische Mineralogische und Petrographische Mitteilungen 54, 247–290.
- Frey, M. & Ferreiro M\u00e4hlmann, R. 1999: Alpine metamorphism of the Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 79, 135–154.
- Gapais, D., Bale, P., Choukroune, P., Cobbold, P.R., Mahjoub, Y. & Marquer, D. 1987: Bulk kinematics from shear zone patterns: some field examples. Journal of Structural Geology 9, 635–646.
- Gerya, T.V., Stöckhert, B. & Perchuk, A.L., 2002: Exhumation of high pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics 26, 6, 1–15.
- Grasemann, B. & Mancktelow, N.S. 1993: Two-dimensional thermal modelling of normal faulting: the Simplon fault zone, Central Alps, Switzerland. Tectonophysics 225, 155–165.
- Hames, W.E. & Cheney, J.T. 1997: On the loss of <sup>40</sup>Ar\* from muscovite during polymetamorphism. Geochimica et Cosmochimica Acta 61, 3868–3872.
- Hetherington, C.J. & Villa, I.M. 2007: Barium silicates of the Berisal Complex, Switzerland: a study in geochronology and rare-gas release systematics. Geochimica et Cosmochimica Acta 71, 3336–3347.
- Hofmann, B.A., Helfer, M., Diamond, L.W., Villa, I., Frei, R. & Eikenberg, J. 2004: Topography-driven hydrothermal breccia mineralization of Pliocene age at Grimsel Pass, Aar Massif, Central Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 84, 271–302.
- Hunziker, J.C., Desmons, J. & Martinotti, G. 1992: Thirty-two years of geochronological work in the Central and Western Alps: a review on seven maps. Mémoires de Géologie, Lausanne 13, 59 pp.
- Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P. & Schwander, H. 1986: The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology 92, 157–180.
- Jaeger, E., Niggli, E. & Wenk, E. 1967: Altersbestimmungen an Glimmern der Zentralalpen. Beiträge zur die Geologischen Karte der Schweiz., N.F. 134, 1–67.
- Jamieson, R.A., Beaumont, C., Fullsack, P. & Lee, B. 1998: Barrovian regional metamorphism: Where's the heat? In: Treolar, P. & O'Brien, P. (Eds.): What Drives Metamorphism and Metamorphic Reactions? Geological Society of London Special Publication 138, 23–51.
- Karabinos, P. & Ketcham, R. 1988: Thermal structure of active thrust belts. Journal of Metamorphic Geology 6, 559–570.
- Kirschner, D.L., Sharp, Z.D. & Masson, H. 1995: Oxygen isotope thermometry of quartz-calcite veins: unraveling the thermal-tectonic history of the subgreenschist facies Morcles Nappe (Swiss Alps). Geological Society of America Bulletin 107, 1145–1156.
- Kirschner, D.L., Cosca, M.A., Masson, H. & Hunziker, J.C. 1996: Staircase <sup>40</sup>Ar/<sup>39</sup>Ar spectra of fine-grained white mica: timing and duration of deformation and empirical constraints on argon diffusion. Geology 24, 747–750.
- Kralik, M., Clauer, N., Holnsteiner, R., Huemer, H. & Kappel, F. 1992: Recurrent fault activity in the Grimsel Test Site (GTS, Switzerland) revealed by Rb-Sr, K-Ar and tritium isotope techniques. Journal of the Geological Society of London 149, 293–301.
- Labhart, T.P. 1977: Aarmassiv und Gotthardmassiv. Sammlung geologischer Fuchrer. Gebrüder Borntraeger, Berlin, Stuttgart, 173 pp.
- Lateltin, O. & Muller, D. 1987: Evolution paléogéographique du bassin des grès de Taveyannaz dans les Aravis (Haute-Savoie) à la fin du Paléogène. Eclogae Geologicae Helveticae 80, 127–140.

- Ludwig, K.R. 2000: Isoplot/Ex. Berkeley Geochronology Center, Special Publication No.1a.
- Mancktelow, N.S. 1998: A stepwise discrete Fourier transform approach to 1D thermal modelling of exhumation by erosion and stretching. Computers & Geosciences 24, 829–837.
- Marquer, D. 1987: Transfert de matière et déformation progressive des granitoïdes. Exemple des massifs de l'Aar et du Gothard (Alpes centrales suisses). PhD Thesis, Mémoires et Documents du Centre Armoricain d'Etudes Structurales des Socles, Université de Rennes, 10, 250 pp.
- Marquer, D. 1989: Transfert de matière et déformation des granitoïdes. Aspects méthodologiques. Schweizerische Mineralogische und Petrographische Mitteilungen 69, 15–35.
- Marquer, D. 1990: Structures et déformation alpine dans les granites hercyniens du massif du Gothard (Alpes centrales suisses). Eclogae Geologicae Helvetiae 83, 77–97.
- Marquer, D. & Burkhard, M. 1992: Fluid circulation, progressive deformation and mass-transfer processes in the upper crust; the example of basementcover relationships in the External Crystalline Massifs, Switzerland. Journal of Structural Geology 14, 1047–1057.
- Marquer, D., Gapais, D. & Capdevila, R. 1985: Comportement chimique et orthogneissification d'une granodiorite en faciès schistes verts (Massif de l'Aar, Alpes Centrales). Bulletin de Minéralogie 108, 209–221.
- Marquer, D. & Peucat, J.J. 1994: Rb-Sr systematics of recrystallized shear zones at the greenschist-amphibolite transition: examples from granites in the Swiss Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 74, 343–358.
- Maruyama, S., Suzuki, K. & Liou, J.G. 1983: Greenschist-amphibolite transition equilibria at low pressures. Journal of Petrology 24, 583–604.
- Massonne, H.J. & Schreyer, W. 1987: Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology 96, 212–224.
- McCaig, A.M. 1997: The geochemistry of volatile fluid flow in shear zones In: Holness, M.B. (Ed), Deformation-Enhanced Fluid Transport in the Earth's Crust and Mantle, The Mineralogical Society series 8, 227– 266.
- Michalski, I. & Soom, M. 1990: The Alpine thermo-tectonic evolution of the Aar and Gotthard massifs, Central Switzerland: fission track ages on zircon and apatite and K-Ar mica ages. Schweizerische Mineralogische und Petrographische Mitteilungen 70, 373–387.
- Milnes, A.G. 1976: Strukturelle Probleme im Bereich der Geotraverse: das Lukmanier-massiv. Schweizerische Mineralogische und Petrographische Mitteilungen 56, 615–618.
- Milnes, A.G. & Pfiffner, O.A. 1980: Tectonic evolution of the Central Alps in the cross section St.Gallen-Como. Eclogae Geologicae Helvetiae 73, 619–633.
- Mullis, J., Dubessy, J., Poty, B. & O'Neil, J. 1994: Fluid regimes during late stages of a continental collision: physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochimica et Cosmochimica Acta 58, 2239–2267.
- Mullis, J. 1996: P-T-t path of quartz formation in extensional veins of the Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 76, 159–164.
- Müller, W., Mancktelow, N.S. & Meier, M. 2000: Rb-Sr microchrons of synkinematic mica in mylonites: an example from the DAV fault of the Eastern Alps. Earth and Planetary Science Letters 180, 385–397.
- Müller, W., Prosser, G., Mancktelow, N.S., Villa, I.M., Kelley, S.P., Viola, G. & Oberli, F. 2001: Geochronological constraints on the evolution of the Periadriatic Fault System (Alps). International Journal of Earth Sciences 90, 623–653.
- Müller, W., Kelley, S.P. & Villa, I.M. 2002: Dating fault-generated pseudotachylytes: Comparison of <sup>40</sup>Ar/<sup>59</sup>Ar stepwise-heating, laser-ablation and Rb-Sr-microsampling analyses. Contributions to Mineralogy and Petrology 144, 57–77.
- Pfiffner, O.A. 1986: Evolution of the north Alpine foreland basin in the Central Alps. In: Allen, P.A. & Homewood, P. (Eds.): Foreland Basins, Special Publications of the International Association of Sedimentologists 8, 219–228.

- Pfiffner, O.A., Frei, W., Valasek, P., Staeuble, M., Levato, L., DuBois, L., Schmid, S.M. & Smithson, S.B. 1990a: Crustal shortening in the Alpine Orogen: results from deep seismic reflection profiling in the eastern Swiss Alps, Line NFP 20-East. Tectonics 9, 1327–1355.
- Pfiffner, O.A., Klaper, E.M., Mayerat, A.M. & Heitzmann, P. 1990b: Structure of the basement-cover contact in the Swiss Alps. In: Roure, F., Heitzmann, P. & Polino, R. (Eds.): Deep Structure of the Alps, Société Géologique de France, Mémoire 156, 247–262.
- Pfiffner, O.A. & Heitzmann, P. 1997: Geologic interpretation of the seismic profiles of the Central Traverse (lines C1, C2 and C3-north). In: Pfiffner, O.A., Lehner, P., Heitzmann, P., Mueller, St. & Steck, A. (Eds.): Deep Structure of the Swiss Alps: Results of NRP 20. Birkhäuser, Basel, Boston, Berlin, 115–122.
- Philpotts, A.R. 1990: Principles of Igneous and Metamorphic petrology. Prentice Hall, Englewood Cliffs, NJ, United States, 498 pp.
- Probst, P. 1980: Die Bündnerschiefer des nördlichen Penninikums zwischen Valser Tal und Passo di San Giacomo. Beiträge zur die Geologischen Karte der Schweiz, NF, 153.
- Rahn, M.K., Brandon, M.T., Batt, G.E. & Garver, J.I. 2004: A zero-damage model for fission track annealing in zircon. American Mineralogist 89, 473–484.
- Ruffini, R., Polino, R., Callegari, E., Hunziker, H. & Pfeiffer H. 1997: Volcanic clast-rich turbidites of the Tavayanne sandstones from the Thone syncline (Savoie France): records for a Tertiary post-collisional volcanism. Schweizerische Mineralogische und Petrographische Mitteilungen 77, 161–174.
- Ruppel, C. & Hodges, K.V. 1994: Pressure-temperature-time paths from twodimensional thermal models; prograde, retrograde, and inverted metamorphism. Tectonics 13, 17–44.
- Ruppel, C., Royden, L. & Hodges, K.V. 1988: Thermal modeling of extensional tectonics; application to pressure-temperature-time histories of metamorphic rocks. Tectonics 7, 947–957.
- Schaltegger, U. 1994: Unravelling the pre-Mesozoic history of Aar and Gotthard massifs (Central Alps) by isotopic dating: a review. Schweizerische Mineralogische und Petrographische Mitteilungen 74, 41–51.
- Stalder, H.A. 1964: Petrographische und mineralogische Untersuchungen im Grimselgebiet (Mittleres Aarmassiv). Schweizerische Mineralogische und Petrographische Mitteilungen 44, 188–384.
- Steck, A. 1966: Petrographische und tektonische Untersuchungen am zentralen Aaregranit und seinen altkristallinen Huellgesteinen im westlichen Aarmassiv im Gebiet Belalp-Grisighorn. Beiträge zur die Geolgischen Karte der Schweiz, NF, 130, 96 pp.
- Steck, A. 1968: Die alpinischen Strukturen in den zentralen Aargraniten des westlichen Aarmassivs. Eclogae Geologicae Helvetiae 61, 19–48.
- Steck, A. 1976: Albit-Oligoklas-Mineralgesellschaften der Peristeritluecke aus alpinmetamorphen Granitgneisen des Gotthardmassivs. Schweizerische Mineralogische und Petrographische Mitteilungen 56, 269–292.
- Steck, A. 1984: Structures et déformations tertiaires dans les Alpes Centrales (transversale Aar-Simplon-Ossola). Eclogae Geologicae Helvetiae 77, 55–100.
- Steck, A. & Burri, G. 1971: Chemismus und Paragenesen von Granaten aus Granitgneisen der Grünschiefer- und Amphibolitfazies der Zentralalpen.

Schweizerische Mineralogische und Petrographische Mitteilungen 51, 534–538.

- Steck, A. 1987: Le massif du Simplon réflexions sur la cinématique des nappes de gneiss. Schweizerische Mineralogische und Petrographische Mitteilungen 67, 27–45.
- Steck, A., Epard, J.L., Escher, A., Marchand, R., Masson, H. & Spring, L. 1989: Coupe tectonique horizontale des Alpes centrales. Mémoires de Géologie, Lausanne 5, 8.
- Steck, A., Epard, J.L., Escher, A., Lehner, P., Marchant, R. & Masson, H. 1997: Geological interpretation of the seismic profiles through Western Switzerland: Rawil (W1), Val d'Anniviers (W2), Mattertal (W3), Zmutt-Findelen (W4) and Val de Bagnes (W5). In: Pfiffner, O.A., Lehner, P., Heitzmann, P., Mueller, S. & Steck, A. (Eds.): Deep structure of the Swiss Alps: Results of NRP 20 Birkhäuser Verlag, Basel,123–137.
- Steck, A., Epard, J.L., Escher, A., Gouffon, Y. & Masson, H. 2001: Carte géologique des Alpes de Suisse occidentale 1:100 000. Carte géologique spéciale Nº 123, notice explicative. Office Fédéral des Eaux et de Géologie (Berne).
- Stöckhert, B. & Gerya, T.V., 2005: Pre-collisional high pressure metamorphism and nappe tectonics at active continental margin: a numerical simulation. Terra Nova 17, 2, 102–110.
- Villa, I.M. 1998: Isotopic closure. Terra Nova 10, 42-47.
- Villa, I.M. & Puxeddu, M. 1994: Geochronology of the Larderello geothermal field: new data and the «closure temperature» issue. Contributions to Mineralogy and Petrology 115, 415–426.
- Villa, I.M., Hermann, J., Müntener, O. & Trommsdorff, V. 2000: <sup>39</sup>Ar/<sup>40</sup>Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contributions to Mineralogy and Petrology 140, 363–381.
- Voll, G. 1976: Structural studies of the Valser Rhine Valley and Lukmanier region and their importance for the nappe structures of the Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 56, 619–626.
- von Raumer, J.F. 1984: The external massifs, relics of Variscan basement in the Alps. Geologische Rundschau 73, 1–31.
- von Raumer, J.F., Abrecht, J., Bussy, F., Lombardo, B., Ménot, R.P. & Schaltegger, U. 1999: The Palaeozoic metamorphic evolution of the Alpine External Massifs. Schweizerische Mineralogische und Petrographische Mitteilungen 79, 5–22.
- Wagner, G.A., Reimer, G.M. & Jaeger, E. 1977: Cooling ages derived by apatite fission-track, mica Rb-Sr and K-Ar dating. The uplift and cooling history of the Central Alps. Memorie degli Istituti di Geologia e Mineralogia dell' Universita di Padova 30, 1–27.
- Yamada, K., Tagami, T. & Shimobayashi, N. 2003: Experimental study on hydrothermal annealing of fission tracks in zircon. Chemical Geology 201, 351–357.

Manuscript received July 10, 2007

Revision accepted November 27, 2007

Published Online first July 25, 2008

Editorial Handling: N. Macktelow, S. Bucher