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diffusive transport coupled with precipitation-dissolution reactions
and porosity changes
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[1] One of the challenging problems in mathematical geosciences is the determination
of analytical solutions of nonlinear partial differential equations describing transport
processes in porous media. We are interested in diffusive transport coupled with
precipitation-dissolution reactions. Several numerical computer codes that simulate such
systems have been developed. Analytical solutions, if they exist, represent an important tool
for verification of numerical solutions. We present a methodology for deriving such
analytical solutions that are exact and explicit in space and time variables. They describe
transport of several aqueous species coupled to precipitation and dissolution of a single
mineral in one, two, and three dimensions. As an application, we consider explicit
analytical solutions for systems containing one or two solute species that describe the
evolution of solutes and solid concentrations as well as porosity. We use one of the
proposed analytical solutions to test numerical solutions obtained from two conceptually
different reactive transport codes. Both numerical implementations could be verified with
the help of the analytical solutions and show good agreement in terms of spatial and
temporal evolution of concentrations and porosities.

Citation: Hayek, M., G. Kosakowski, A. Jakob, and S. V. Churakov (2012), A class of analytical solutions for multidimensional

multispecies diffusive transport coupled with precipitation-dissolution reactions and porosity changes, Water Resour. Res., 48, W03525,

doi:10.1029/2011WR011663.

1. Introduction
[2] Numerical simulations are an important tool widely

used to assess the mechanisms of reactive transport proc-
esses in geochemical environment. Particularly challenging
from the computational point of view are the simulations of
systems in which precipitation and/or dissolution reactions
led to significant changes of porosity in the media. Strong
porosity changes typically observed at interfaces of engi-
neered technical barriers and natural rock formations with
different geochemical characteristics, e.g., clay and cement
interfaces [Marty et al., 2009; Kosakowski et al., 2009; De
Windt et al., 2004]. Mineral precipitation in aquifers and
reservoirs change their transport properties significantly
and may lead eventually to complete clogging of the pore
space [Saripalli et al., 2001]. The porosity reduction for
example at claystone/concrete interfaces has been experi-
mentally reported by Read et al. [2001] as well as from
small scale diffusive experiment using cement paste [Sarott
et al., 1992]. Similar processes have been observed at the
Maqarin site in Jordan, a natural analog for cement/clay
interactions at which hyperalkaline groundwater interact
with marl formations [Smellie, 1998].

[3] Several numerical computer codes dealing with pre-
cipitation-dissolution reactions and porosity changes in
multidimensional reactive transport problems have been
developed over last decades, for example HYTEC [van
der Lee and De Windt, 2001; van der Lee et al., 2003; van
der Lee, 2005], TOUGHREACT [Xu et al., 2004, 2006,
2011], PHREEQC [Parkhurst and Appelo, 1999], MIN3P
[Mayer et al., 2002], PHAST [Parkhurst et al., 2002],
CRUNCH [Steefel, 2001]. These codes and others have
been continuously cross benchmarked [De Windt et al.,
2003; Carrayrou, 2010; Carrayrou et al., 2010a, 2010b].
Although the agreement between codes is satisfactory, it is
shown that the numerical methods used in solving the trans-
port equations, i.e., finite differences, finite elements, mixed-
hybrid finite elements, and the sequential coupling schemes,
i.e., the sequential noniterative approach, the sequential iter-
ative approach and the global implicit approach, may lead to
systematic discrepancies. Moreover, because of their inabil-
ity to describe subgrid pore space changes correctly, the nu-
merical approaches predict discretization-dependent values
of porosity changes and clogging times [Marty et al., 2009].
In this context, analytical solutions become an essential tool
to verify numerical solutions.

[4] Mass transport influenced by precipitation-dissolution
reactions via changing porosity can be represented mathemati-
cally by a nonlinear system of partial differential equations. In
contrast to conservative mass transport which is described by
a linear system of partial differential equations, such systems
are not trivial to solve. Analytical solutions for transport of re-
active solutes involving precipitation-dissolution reactions
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are available in the case of constant porosity. Lichtner et al.
[1986] proposed analytical and numerical solutions to
the moving boundary problem resulting from reversible
heterogeneous reactions and aqueous diffusion in a porous
medium. De Simoni et al. [2005, 2007] presented a method-
ology to compute homogeneous and heterogeneous analyti-
cal reaction rates directly under instantaneous equilibrium.
Donado et al. [2009] extended this approach to the multirate
mass transfer equation. Analytical expressions for solute
concentrations and reaction rates associated with a multi-
species reactive transport problem in the presence of both
kinetic and equilibrium chemical reactions are developed
and presented by Sánchez-Vila et al. [2010].

[5] However, analytical solutions for problems coupled
with porosity changes are very few. The only available
works on this topic are the two recent works of Lagneau
and van der Lee [2010] and Hayek et al. [2011]. Lagneau
and van der Lee [2010] proposed an analytical solution for
a one-dimensional system containing one species and one
mineral. This analytical solution was obtained on the basis
of Fourier series and was used to verify numerical solution
obtained from the numerical computer code HYTEC. They
obtained good agreement between the analytical and the
numerical solutions for small porosity changes far away
from pore space clogging. However, this analytical solution
cannot be applied to systems with strong porosity changes,
in which a complete clogging of the pore space takes place.
Recently, Hayek et al. [2011] presented new analytical sol-
utions for one-dimensional diffusion problems coupled
with one precipitation-dissolution reaction and strong feed-
back of porosity change for a system contained two aque-
ous species where the concentration of one species is fixed
in time. Their solutions describe a system that contains two
aqueous species where only one species is mobile. These
solutions were obtained by using the original method of sim-
plest equation [Kudryashov, 2005a, 2005b]. The proposed
solutions are exact and do not contain any approximation.
They can be used to describe systems with strong porosity
changes and especially systems which reach clogging.

[6] In this paper, a general methodology is developed
to derive analytical solutions for one-, two-, and three-
dimensional diffusive transport coupled with precipitation-
dissolution reactions and porosity changes. These solutions
can be used to simulate systems containing multiple aque-
ous species and a single solid phase. To our knowledge, the
analytical solutions proposed here are the first dealing with
transport of reactive species coupled with precipitation-
dissolution reactions and porosity changes in several
dimensions. The method of the simplest equation [Kudrya-
shov, 2005a, 2005b] used by Hayek et al. [2011] to derive
the analytical solutions for one-dimensional problems was
applied here to solve the nonlinear transport equations in
two and three dimensions. The obtained analytical solu-
tions describe spatial and temporal evolutions of solute
concentrations, porosity, and mineral distribution for a set
of initial and boundary conditions. The main purpose of the
derived solutions is in verification numerical reactive trans-
port codes for systems with strong porosity changes.

2. Governing Mathematical Equations
[7] We consider a porous medium with porosity � ¼

�ðx; tÞ defined in a bounded domain � � Rd where d ¼ 1,

2 or 3, and x ¼ x1 if d ¼ 1, x ¼ ðx1; x2Þ if d ¼ 2 and
x ¼ ðx1; x2; x3Þ if d ¼ 3. The porous medium consists of a
solid OðsÞ reacting with an aqueous solution. Solid-fluid
interaction is described by reversible reaction (1)

OðsÞ �
XN

i¼1

�iBi (1)

where Bi is the ith solute species, �i equal to the number of
moles of the ith species in one mole of solid, and N is the
total number of solute species.

[8] The mass conservation equation for transport of the
ith species is obtained by applying the general diffusion-
reaction equation [Bear, 1972; Lichtner, 1996], which
yields

@ð�ðx; tÞciðx; tÞÞ
@t

þr � Jiðx; tÞ ¼ �iRðx; tÞ; (2)

where ciðx; tÞ is the concentration of the ith species
(mol m�3), Rðx; tÞ (mol m�3 s�1) is the rate of the reaction
(1). Jiðx; tÞ (mol m�2 s�1) represents the diffusive flux of
the ith species which is given by Fick’s law

Jiðx; tÞ ¼ �Deðx; tÞrciðx; tÞ; (3)

where Deðx; tÞ is referred to as the effective diffusion coef-
ficient (m2 s�1). The effective diffusion coefficient is
related to the pore diffusion coefficient D0 via the tortuosity
which is function of porosity [Shen and Chen, 2007]. In the
present work, the effective diffusion coefficient is assumed
to be linearly proportional to the porosity with a constant
pore diffusion coefficient, i.e., Deðx; tÞ ¼ D0�ðx; tÞ. The
reader is referred to Boving and Grathwohl [2001] and
Shen and Chen [2007] for more complex relationships
between the effective diffusion coefficient and the porosity.
For simplicity, we assume that all the solute species have
the same pore diffusion coefficient D0. In equation (2) we
neglected advective fluxes which involve Darcy velocities.
Indeed, in media with very low hydraulic conductivities,
Darcy velocities are very small and diffusion is the domi-
nant transport mechanism [Desaulniers et al., 1981; John-
son et al., 1989; Shackelford and Daniel, 1991; Liu and
Ball, 1998; Navarro et al., 2000; Jang and Kim, 2003;
Landais, 2004; Huysmans and Dassargues, 2007].

[9] The conservation law for solid phase OðsÞ requires that
the porosity �ðx; tÞ satisfies the equation [Lichtner, 1996]

@�ðx; tÞ
@t

¼ VmRðx; tÞ; (4)

where Vm is the molar volume of solid (m3 mol�1). Since
the system contains one solid phase, the change in volume
can be described by the equation (see Appendix D)

�ðx; tÞ ¼ �0ðxÞ þ Vm�0ðxÞc0ðxÞ � Vm�ðx; tÞcðx; tÞ; (5)

where cðx; tÞ denotes the concentration of the solid phase
(mol m�3 of fluid), and �0ðxÞ and c0ðxÞ are the initial dis-
tributions of the porosity and the concentration of solid,
respectively.
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[10] Using equation (4), the reaction rate Rðx; tÞ can be
eliminated from equation (2), which leads to the following
system of equations:

@

@t
�ðx; tÞciðx; tÞ � �ðx; tÞ

�i

Vm

� �

þ
Xd

k¼1

@

@xk
�D0�ðx; tÞ

@ciðx; tÞ
@xk

� �
¼ 0; ði ¼ 1; . . . ;NÞ:

(6)

The system of equations (6) represents N partial differential
equations with N þ 1 unknowns c1ðx; tÞ; c2ðx; tÞ; . . . ;
cN ðx; tÞ and �ðx; tÞ, respectively. To close this system,
a supplementary equation for the reaction rate Rðx; tÞ has
to be provided. We describe the rate law for precipitation
and dissolution of the solid phase O(s) using [Lichtner,
1996]

Rðx; tÞ ¼ kSðx; tÞ 1�

YN

i¼1
ciðx; tÞ�i

K

2
4

3
5; (7)

where k is the kinetic rate constant (mol m�2 s�1), Sðx; tÞ is
the solid phase reactive surface area per unit volume of
rock (m2 m�3) and K is the solubility constant of the min-
eral. Reaction rate laws of the form (7) have been used in
many numerical codes for modeling reactive transport
problems [Trotignon et al., 2007; Palandri and Kharaka,
2004; Soler, 2003; van der Lee, 2005]. We denote that
when the product

QN
i¼1 ciðx; tÞ�i is smaller, larger, or equal

to K, the aqueous solution is undersaturated, supersatu-
rated, or in equilibrium, respectively, with respect to the
solid at location x and time t.

[11] Information relative on the evolution of the pore
structure is composed of the surface area Sðx; tÞ. For sim-
plicity, we assume Sðx; tÞ ¼ S0�ðx; tÞ, where S0 is the spe-
cific surface area of the solid phase. More complicated
relationships can be found in [Saripalli et al., 2001; Noiriel
et al., 2004, 2007].

[12] Using equation (4) to eliminate Rðx; tÞ from equa-
tion (7), we obtain the supplementary equation, which
relates the N þ 1 unknowns of the system

@�ðx; tÞ
@t

¼ kS0Vm�ðx; tÞ 1�

YN

i¼1
ciðx; tÞ�i

K

2
4

3
5: (8)

The reactive transport system is governed by equations (6)
and (8). The boundary conditions corresponding to these
equations can be of both Dirichlet and/or Neumann types.
The initial conditions for the species concentrations are
defined as

ciðx; 0Þ ¼ fiðxÞ ði ¼ 1; . . . ;NÞ; (9)

where fiðxÞ are functions of the space variable. The poros-
ity is assumed to be initially known:

�ðx; 0Þ ¼ �0ðxÞ: (10)

Equations (6) and (8) with the specified boundary and ini-
tial conditions provide a closed system of N þ 1 partial dif-
ferential equations with N þ 1 unknowns, which are the
concentrations of N solutes and the porosity �. Once these
equations have been solved, the solid concentration c can
be determined from equation (5).

3. The Transformed Problem
[13] We introduce the following new dimensionless vari-

able (which we call the wave variable) in order to rewrite
the system of equations (6) and (8) in a simple form:

� ¼
Xd

k¼1

�kxk � �t (11)

where �k and � are nonzero constants to be determined
later and which may depend on the parameters of the prob-
lem. Using the transformation (11), it is assumed that a so-
lution exists, which is expressed as

ciðx; tÞ ¼ Cið�Þ; ði ¼ 1; . . . ;NÞ; (12)

�ðx; tÞ ¼ �ð�Þ: (13)

In equations (12) and (13), we use Cið�Þ and �ð�Þ rather
than cið�Þ and �ð�Þ to avoid any nomenclature confusion.
Substituting (12) and (13) into (6) and (8) along with (11),
we obtain a set of ordinary differential equations

D0

Xd

k¼1

�2
k

 !
�

d2Ci

d�2 þ D0

Xd

k¼1

�2
k

 !
d�

d�

dCi

d�
þ ��

dCi

d�

� � d�

d�

�i

Vm
� Ci

� �
¼ 0; ði ¼ 1; . . . ;NÞ;

(14)

d�

d�
¼ � kS0Vm

�
� 1�

YN

i¼1
C�i

i

K

0
@

1
A: (15)

Substituting (15) into (14), we obtain

D0

Xd

k¼1

�2
k

 !
d2Ci

d�2 þ

"
��

kS0VmD0

Xd

k¼1

�2
k

 !

�

#
dCi

d�

þ
kS0VmD0

Xd

k¼1

�2
k

 !

�K

YN

j¼1
C
�j

j

dCi

d�

þ kS0Vm 1�

YN

j¼1
C
�j

j

K

0
@

1
A �i

Vm
� Ci

� �
¼ 0; ði ¼ 1; . . . ;NÞ:

(16)

[14] The system of equations (16) represents a system of
N ordinary differential equations in the N unknown
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functions Cið�Þ. When an exact solution Cið�Þ ¼ ciðx; tÞ
(i ¼ 1, . . . , N) of system of equations (16) is found, the
porosity �ðx; tÞ ¼ �ð�Þ can be easily determined from
equation (15). Indeed, equation (15) is a first-order ordinary
differential equation in �, which can be solved straightfor-
wardly, and we obtain

�ð�Þ ¼ �1exp � kS0Vm

�
� � �1 �

1

K

Z �

�1

YN

i¼1
Cið�0Þ�i d�0

" #( )
;

(17)

where �1 and �1 are two arbitrary constants. Details of the
derivation of the porosity functions are given in Appen-
dixes B and C.

[15] The analytical solution of the mineral concentration
cðx; tÞ can be obtained from equation (5) once the porosity
function �ðx; tÞ is determined. For simplicity we neglect
the mass fraction of the inert solid. In this case we have
�0ðxÞ þ Vm�0ðxÞc0ðxÞ ¼ 1. Therefore, from equation (5)
we get the analytical expression of the mineral concentra-
tion as follows:

cðx; tÞ ¼ 1

Vm

1

�ðx; tÞ � 1

� �
: (18)

[16] The transformation (11) is a pure mathematical con-
struction which enables the partial differential equations
(6)–(8) to be solved analytically. The transformation (11)
obviously results in special form of the admissible solutions
as well as limits the corresponding initial and boundary
conditions. This transformation however does not change
the underlying physical nature of the transport problem
which is entirely defined by the original system of PDEs.

4. The Analytical Solutions
4.1. Methodology

[17] In order to derive the analytical solutions for the
concentrations of solutes described by the system of equa-
tions (16), we apply the simplest equation method to each
one of these ordinary differential equations.

[18] The simplest equation method is a very powerful
mathematical technique for deriving exact solutions of non-
linear ordinary differential equations. It was developed by
Kudryashov [Kudryashov, 2005a, 2005b] and has been
used successfully by many authors for finding exact solu-
tions of ODEs in mathematical physics [Kudryashov and
Loguinova, 2008; Vitanov et al., 2010; Vitanov and Dimi-
trova, 2010]. This method is reviewed in Appendix A. The
reader is referred to the works of Kudryashov [2005a,
2005b] for more details about this method.

[19] Following the simplest equation method, we assume
that the concentration of the ith species can be written as

Cið�Þ ¼
XMi

�¼0

A�iY
�; AMii 6¼ 0; ði ¼ 1; . . . ;NÞ; (19)

where the coefficients A�i are all constant to be determined
and Mi are unknown integers to be determined also, which
represent the degrees of series (19).

4.1.1. Determination of the Degrees Mi

[20] The degrees Mi of the series defined by (19) can be
determined by inserting the Bernoulli equation (A3) into
each one of the equations of system (16) and balancing the
high-order (in Y ) linear term with the high-order nonlinear
term in each one of these equations. In other words we

balance the order in Y of d2Ci

d�2 (the high-order linear term),

Mi þ 2m � 2, with the order in Y of
YN

j¼1
C
�j

j

dCi

d�
(the high-

order nonlinear term),
XN

j¼1

�jMj þMi þ m� 1. We obtain

XN

j¼1

�jMj ¼ m� 1: (20)

The use of the Bernoulli equation (A3) with arbitrary order
of nonlinearity m is essential to our problem. Indeed, since
we know the general solutions, i.e., solutions (A4), (A5),
and (A6), for every m > 1, we are free to choose any value
of m. In particular, if we choose m equal to 1 plus the total
number of moles of the solute species reacting to produce 1
mole of solid according to reaction (1),

m ¼ 1þ
XN

j¼1

�j; (21)

then by inserting (21) into (20) we get

XN

i¼1

�iðMi � 1Þ ¼ �1ðM1 � 1Þ þ �2ðM2 � 1Þ

þ � � � þ �nðMN � 1Þ ¼ 0:

(22)

It is clear that for Mi equal to unity, equation (22) holds for
any value of the stoichiometric coefficients �i of the solute
species. Thus, we have

Mi ¼ 1; ði ¼ 1; . . . ;NÞ: (23)

Therefore, using (23) and (19), the solute species concen-
trations are defined as

Cið�Þ ¼ A0i þ A1iY ð�Þ;A1i 6¼ 0; ði ¼ 1; . . . ;NÞ: (24)

4.1.2. Determination of the Coefficients Aai

[21] The coefficients A�i as well as the parameters a, b,
�, and �k can be determined by inserting (24) into each
equation of the system of equations (16). Each equation is
transformed to a polynomial in Y denoted by Pi(Y ). By
eliminating all the coefficients of these polynomials, we
obtain a system of overdetermined algebraic equations of
a, b, �, �k , A0i and A1i (i ¼ 1, . . . , N), respectively. There-
fore, the obtained system can be solved analytically with
the help of packages for computer algebra like Maple and
Mathematica.

[22] In section 4.2 we apply this methodology to derive
analytical solutions for systems contained one species and
two species, respectively. This methodology can be easily
extended to systems contained more than two solute
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species. For sake of simplicity we assume that the stoichio-
metric coefficients of the species are all equal to unity.

4.2. Derivation of Analytical Solutions for
Single-Species Systems (N 5 1)

[23] We consider first a system containing a single aqueous
species B which reacts with the solid phase OðsÞ according to

OðsÞ � B: (25)

In this case the species concentration is defined by (24) for
N ¼ 1

C1ð�Þ ¼ A01 þ A11Y ð�Þ;A11 6¼ 0: (26)

Therefore, d þ 5 unknowns should be determined A01, A11,
a, b, �k , and �, respectively. Since the stoichiometric coef-
ficient of the species B is equal to 1 (i.e., �1 ¼ 1), then
from (21) we take m ¼ 2 in the Bernoulli equation (A3).
Substituting (26) into (16) for N ¼ 1 we obtain a polyno-
mial in Y denoted by P1(Y). Eliminating all the coefficients
of this polynomial, we obtain the following system of over-
determined algebraic equations of A01, A11, a, b, �k , and �

A01 � Kð Þ VmA01 � 1ð Þ ¼ 0;

�Kaþ kS0Vm A01 � Kð Þ½ � D0

Xd

k¼1

�2
k

 !
aþ �

" #

þ�kS0 VmA01 � 1ð Þ ¼ 0;

D0

Xd

k¼1

�2
k

 !
½Kbð3�a� kS0VmÞ

þ kS0VmðA01bþ A11aÞ� þ �2Kbþ �kS0VmA11 ¼ 0;

D0

Xd

k¼1

�2
k

 !
ð2�Kbþ kS0VmA11ÞA11b ¼ 0:

(27)

[24] System (27) is a system of four algebraic equations
with d þ 5 unknowns. Solving this system using Maple we
obtain three exact solutions of system (27) denoted ðS1Þ,
ðS2Þ, and ðS3Þ, respectively

ðS1Þ :¼

(
A01 ¼

1

Vm
;A11 ¼ A11; a ¼ a; b ¼ 0; �k ¼ �k ;

� ¼ �D0a
Xd

k¼1

�2
k

)
;

ðS2Þ :¼ A01 ¼ K;A11 ¼ �
2KD0b‘

Xd

k¼1

�2
k

kS0Vm
; a ¼ 6‘; b ¼ b;

8>>>><
>>>>:

�k ¼ �k ; � ¼ 6D0‘
Xd

k¼1

�2
k

9>>>>=
>>>>;
;

ðS3Þ :¼
(

A01 ¼
1

Vm
;A11 ¼ �

2�Kb

kS0Vm
; a ¼ � kS0ð1� KVmÞ

2�K
;

b ¼ b; �1 ¼ 6‘0; �2 ¼ �2; �3 ¼ �3; � ¼ �
)
;

where ‘¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS0ð1�KVmÞ

�
2KD0

Xd

k¼1

�2
k

vuut and

‘0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2K � kS0D0ð1�KVmÞ

Xn

k¼2

�2
k

�
kS0D0ð1�KVmÞ

s
.

The plus-minus sign means that both plus and minus can be
taken into account. The minus-plus sign must always be taken
as the opposite of the plus-minus sign. Each solution of sys-
tem (27) gives a set of analytical solutions for the solute con-
centration, the porosity and the solid concentration as follows.

4.2.1. Analytical Solutions Obtained From (S1)
[25] In this case the wave variable is defined by

� ¼
Xd

k¼1

�kðxk þ D0a�k tÞ: (28)

In (S1) we have b ¼ 0. Therefore, in equation (26) we use
the solution Y ð�Þ defined by (A6). Therefore, the concen-
tration is defined by

C1ð�Þ ¼
1

Vm
þ � exp ða�Þ; (29)

where � is an arbitrary constant (i.e., obtained by combin-
ing A11 and exp ða�0Þ). The analytical solution of the sol-
ute concentration is obtained by simply substituting (28)
into (29):

c1ðx; tÞ ¼
1

Vm
þ � exp a

Xd

k¼1

�kðxk þ D0a�k tÞ
" #( )

: (30)

[26] The porosity function is calculated by using
equation (B6), which gives, after using (S1) and (28)
and reducing the number of arbitrary constants to the
minimum,

�ðx; tÞ ¼ �1 exp �
kS0ð1� KVmÞ

Xd

k¼1

�kðxk þ D0a�k tÞ

K D0a
Xd

k¼1

�2
k

8>>>><
>>>>:

� kS0Vm�

K D0a2
Xd

k¼1

�2
k

exp a
Xd

k¼1

�kðxk þ D0a�k tÞ
" #( )9>>>>=

>>>>;
:

(31)

By substituting (31) into (18) we get the analytical solution
of the solid concentration:

cðx; tÞ¼ 1

�1Vm
exp

kS0ð1�KVmÞ
Xd

k¼1

�kðxkþD0a�k tÞ

K D0a
Xd

k¼1

�2
k

8>>>><
>>>>:

þ kS0Vm�

K D0a2
Xd

k¼1

�2
k

exp a
Xd

k¼1

�kðxkþD0a�k tÞ
" #( )9>>>>=

>>>>;
� 1

Vm
:

(32)
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4.2.2. Analytical Solutions Obtained From (S2)
[27] In this case the wave variable is defined by

� ¼
Xd

k¼1

�kðxk � D0‘�k tÞ: (33)

We assume b 6¼ 0 in (S2) because when b ¼ 0 we have A11

¼ 0 in (26) and then the solute concentration is constant.
Therefore the solutions (A4) and (A5) should be used (with
m ¼ 2) for Y ð�Þ in (26).

[28] If b > 0 then we take a ¼ �‘ < 0 in (S2) and we use
solution (A4) for Y ð�Þ in (26). Consequently, equation (26)
becomes

C1ð�Þ ¼
kS0VmK þ Kb kS0Vm þ 2D0‘

2
Xd

k¼1

�2
k

 !
exp �‘ð� þ �0Þ½ �

kS0Vmf1þ b exp ½�‘ð� þ �0Þ�g
:

(34)

[29] If b < 0 then we take a ¼ ‘ > 0 in (S2) and we use
solution (A5) for Y ð�Þ in (26). Consequently, equation (26)
becomes

C1ð�Þ ¼
kS0VmK � Kb kS0Vm þ 2D0‘

2
Xd

k¼1

�2
k

 !
exp ½‘ð� þ �0Þ�

kS0Vmf1þ b exp ½‘ð� þ �0Þ�g
:

(35)

[30] By combining (34) and (35) and using (33), we
obtain the analytical solution of the solute concentration

c1ðx; tÞ ¼
kS0VmK þ � exp 6‘

Xd

k¼1

�kðxk � D0‘�k tÞ
" #( )

kS0Vm 1þ j	jexp 6‘
Xd

k¼1

�kðxk � D0‘�k tÞ
" #( )( ) ;

(36)

where � ¼ Kj	j kS0Vm þ 2D0‘
2Pd

k¼1
�2

k

� �
and 	 is an arbi-

trary constant obtained by combining b and exp ð6‘�0Þ.
[31] The analytical solution of the porosity is obtained

by simply substituting the parameters of (S2) into equation
(B6) and reducing the number of arbitrary constant to the
minimum. We get

�ðx; tÞ ¼ �1 1þ j	jexp 6‘
Xd

k¼1

�kðxk � D0‘�k tÞ
" #( )( )2

:

(37)

[32] Substituting (37) into (18), we obtain the analytical
solution of the solid concentration

cðx;tÞ¼ 1

�1Vm
1þj	jexp 6‘

Xd

k¼1

�kðxk�D0‘�k tÞ
" #( )( )�2

� 1

Vm
:

(38)

[33] It is important to mention that the analytical solu-
tions derived from (S2) are only valid for 1 � KVm > 0.
However, this condition holds for a wide range of minerals
[see, e.g., Piantone et al., 2006]. Moreover, since the main
objective of these analytical solutions is verification of nu-
merical codes, the users can always choose the parameters
in such a way that this condition holds even if these param-
eters do not represent real mineral parameters.

4.2.3. Analytical Solutions Obtained From (S3)
[34] In this case the wave variable is defined by

� ¼ 6‘0x1 þ
Xd

k¼2

�kxk � �t: (39)

As in the previous case, we assume that b 6¼ 0 and then we
use the solutions (A4) and (A5) for Y ð�Þ in (26). With solu-
tion (A4) we get the following concentration:

C1ð�Þ ¼
1þ KVmb exp � kS0ð1� KVmÞ

2�K
ð� þ �0Þ

� �

Vm 1þ b exp � kS0ð1� KVmÞ
2�K

ð� þ �0Þ
� �� 	 ; (40)

for b > 0, and

C1ð�Þ ¼
1� KVmb exp � kS0ð1� KVmÞ

2�K
ð� þ �0Þ

� �

Vm 1� b exp � kS0ð1� KVmÞ
2�K

ð� þ �0Þ
� �� 	 ; (41)

for b < 0. Combining equations (40) and (41) and using
(39), we get the analytical solution of the solute concentra-
tion as follows:

c1ðx; tÞ ¼

1þ KVmj	j exp � kS0ð1� KVmÞ
2�K

�
6‘0x1 þ

Xd

k¼2

�kxk � �t

�" #

Vm 1þ j	j exp � kS0ð1� KVmÞ
2�K

�
6‘0x1 þ

Xd

k¼2

�kxk � �t

�" #( ) ;

(42)

where 	 is an arbitrary constant obtained by combining b

and exp � kS0ð1�KVmÞ
2�K �0

h i
.

[35] Since b 6¼ 0, the analytical solution of the porosity
is determined by using equation (B6). Substituting (S3) into
(B6) and using (39), we obtain the following analytical so-
lution for the porosity after reducing the number of arbi-
trary constant to the minimum

�ðx; tÞ ¼ �1 exp

kS0ð1� KVmÞ
�

6‘0x1 þ
Xd

k¼2

�kxk � �t

�
�K

2
66664

3
77775

� 1þ j	j exp �
kS0ð1� KVmÞ

�
6‘0x1 þ

Xd

k¼2

�kxk � �t

�
2�K

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

2

:

(43)
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[36] We deduce the analytical solution of the solid con-
centration by substituting (43) into (18):

cðx;tÞ¼ 1

�1Vm
exp �

kS0ð1�KVmÞ 6‘0x1þ
Xd

k¼2

�kxk��t

 !

�K

2
66664

3
77775

� 1þj	jexp �
kS0ð1�KVmÞð6‘0x1þ

Xd

k¼2

�kxk��tÞ

2�K

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

�2

� 1

Vm
:

(44)

4.3. Derivation of Analytical Solutions for
Two-Species Systems (N 5 2)

[37] We consider now the case of two solute species
where the immobile solid mineral OðsÞ dissolves reversibly
to yield ions B1 and B2:

OðsÞ�B1 þ B2: (45)

A large number of solids and minerals can be described by
reactions of type (45). Such minerals include sulfates, car-
bonates and others. The concentrations of the two species
are defined by (24) with N ¼ 2:

C1ð�Þ ¼ A01 þ A11Y ð�Þ; A11 6¼ 0;

C2ð�Þ ¼ A02 þ A12Y ð�Þ; A12 6¼ 0:
(46)

[38] The solution Y ð�Þ of the Bernoulli equation is
obtained from (A4) and (A5) for m ¼ 3 since �1 ¼ �2 ¼ 1
(see equation (21)). Therefore we have to determine A01,
A11, A02, A12, a, b, �k and �. Inserting (24) into (16) with
N ¼ 2 along with (A3) we obtain two polynomials in Y. By
eliminating all the coefficients of these polynomials we
come by the following nonlinear system of algebraic equa-
tions in the unknowns A01, A11, A02, A12, a, b, �k , and � :

ðA01A02�KÞðVmA01�1Þ¼ 0;

ðA01A02�KÞðVmA02�1Þ¼ 0;

½�KaþkS0VmðA01A02�KÞ� D0

 Xd

k¼1

�2
k

!
aþ�

" #
A11

þ�kS0ðVmA01�1ÞðA01A12þA11A02Þ¼ 0;

½�KaþkS0VmðA01A02�KÞ� D0

 Xd

k¼1

�2
k

!
aþ�

" #
A12

þ�kS0ðVmA02�1ÞðA01A12þA11A02Þ¼ 0;

Vm D0

 Xd

k¼1

�2
k

!
aþ�

" #
ðA01A12þA11A02Þþ�A12ðVmA01�1Þ¼ 0;

Vm D0

Xd

k¼1

�2
k

 !
aþ�

" #
ðA01A12þA11A02Þþ�A11ðVmA02�1Þ¼ 0;

D0

Xd

k¼1

�2
k

 !
aþ�

" #
ð�KbþkS0VmA11A12ÞþD0

Xd

k¼1

�2
k

 !

3�KaþkS0VmðA01A02�KÞ½ � ¼ 0;

ðA01A12þA11A02Þb¼ 0;

ð3�KbþkS0VmA11A12Þb¼ 0:

(47)

[39] Solving this system analytically with the help of
maple, we obtain the following solution:

ðS1Þ :¼
(

A01 ¼
1

Vm
; A11 ¼ A11; A02 ¼

1

Vm
; A12 ¼ A12;

a ¼ a; b ¼ 0; �k ¼ �k ; � ¼ �D0a
Xd

k¼1

�2
k

)
;

ðS2Þ :¼
(

A01 ¼
1

Vm
; A11 ¼ �A12; A02 ¼

1

Vm
; A12 ¼ A12;

a ¼ �
kS0 1� KV 2

m


 �
3�KVm

; b ¼ kS0VmA2
12

3�K
;

�1 ¼ 6‘; �2 ¼ �2; �3 ¼ �3; � ¼ �
)
;

where ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2KVm � kS0D0ð1� KV 2

mÞ
 Xd

k¼2

�2
k

!

kS0D0ð1� KV 2
mÞ

vuuuut
. Each

solution of system (47) gives a set of analytical solutions
for the solute concentration, the porosity and the solid con-
centration as follows.

4.3.1. Analytical Solutions Obtained From (S1)
[40] In this case the wave variable � is defined as in (28).

We use (A6) for the definition of Y ð�Þ in (46) since b ¼ 0.
Substituting (28) and the parameters of (S1) into (46), we
obtain the analytical solutions of the solute concentrations
as follows:

c1ðx; tÞ ¼
1

Vm
þ a1 exp a

Xd

k¼1

�kðxk þ D0a�k tÞ
" #( )

; (48)

c2ðx; tÞ ¼
1

Vm
þ a2 exp a

Xd

k¼1

�kðxk þ D0a�k tÞ
" #( )

; (49)

where a1 and a2 are two arbitrary constants obtained by
combining A11 and exp ða�0Þ, and A12 and exp ða�0Þ,
respectively.

[41] The analytical expression of the porosity function is
obtained by using equation (C8) since b ¼ 0. Inserting (S1)
into this later equation, we obtain, after reducing the num-
ber of arbitrary constants to the minimum,
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�ðx; tÞ ¼ �1 exp � kS0ð1� KV 2
mÞ

KVmD0a
Xd

k¼1

�2
k

Xd

k¼1

�kðxk þ D0a�k tÞ
" #8>>>><

>>>>:
� kS0ða1 þ a2Þ

K D0a2
Xd

k¼1

�2
k

exp a
Xd

k¼1

�kðxk þ D0a�k tÞ
" #( )

� kS0Vma1a2

2K D0a2
Xd

k¼1

�2
k

exp 2a
Xd

k¼1

�kðxk þ D0a�k tÞ
" #( )9>>>>=

>>>>;
:

(50)

[42] The analytical solution of the solid concentration is
derived by substituting the porosity (50) into (18), which gives

cðx;tÞ ¼ 1

�1Vm
exp

kS0ð1�KV 2
mÞ

KVmD0a
Xd

k¼1

�2
k

Xd

k¼1

�kðxkþD0a�k tÞ
" #8>>>><

>>>>:
þ kS0ða1þa2Þ

KD0a2
Xd

k¼1

�2
k

exp a
Xd

k¼1

�kðxkþD0a�k tÞ
" #( )

þ kS0Vma1a2

2KD0a2
Xd

k¼1

�2
k

exp 2a
Xd

k¼1

�kðxkþD0a�k tÞ
" #( ))

� 1

Vm
:

(51)

4.3.2. Analytical Solutions Obtained From (S2)
[43] In this case the wave variable is defined by

� ¼ 6‘x1 þ
Xd

k¼2

�kxk � �t: (52)

In (S2), b ¼ 0 only if A12 ¼ 0 which implies that A11 ¼ 0. In
this case, both solute concentrations are constants and these
solutions are disregarded. Therefore, we assume b 6¼ 0.
Consequently, the solutions (A4) and (A5) (for m ¼ 3) must
be used for Y ð�Þ in (46).

[44] Assume that a > 0 and b < 0, therefore � < 0 and
consequently 1� KV 2

m > 0 (see a and b in (S2)). In this
case, we use (A4) for Y ð�Þ, and we obtain

C1ð�Þ ¼
1

Vm
� A12

�
�kS0ð1� KV 2

mÞ exp � 2kS0ð1� KV 2
mÞ

3�KVm
ð� þ �0Þ

� �

Vm 3�K � kS0VmA2
12 exp � 2kS0ð1� KV 2

mÞ
3�KVm

ð� þ �0Þ
� �� 	

8>>><
>>>:

9>>>=
>>>;

1
2

:

(53)

[45] If a < 0 and b > 0, therefore, � > 0 and conse-
quently 1� KV 2

m > 0 (see a and b in (S2)). In this case, we
use (A5) for Y ð�Þ, and we obtain

C1ð�Þ ¼
1

Vm

� A12

kS0ð1� KV 2
mÞ exp � 2kS0ð1�KV 2

mÞ
3�KVm

ð� þ �0Þ
h i

Vm 3�K þ kS0VmA2
12 exp � 2kS0ð1�KV 2

mÞ
3�KVm

ð� þ �0Þ
h in o

8<
:

9=
;

1
2

:

(54)

[46] By combining (53) and (54) and by using (52), we
obtain the analytical solution of the concentration of spe-
cies B1 as follows:

c1ðx; tÞ ¼
1

Vm

� 	

kS0ð1� KV 2
mÞ

exp � 2kS0ð1� KV 2
mÞ

3�KVm

 
6‘x1 þ

Xd

k¼2

�kxk � �t

!" #

Vm

(
3j�jK þ kS0Vm	

2

exp � 2kS0ð1� KV 2
mÞ

3�KVm

 
6‘x1 þ

Xd

k¼2

�kxk � �t

!" #)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

1
2

;

(55)

where 	 is an arbitrary constant obtained by combining A12

and exp � kS0ð1� KV 2
mÞ

3�KVm
�0

� �
.

[47] The analytical solution of the concentration of spe-
cies B2 is obtained by the same way, and we get

c2ðx; tÞ ¼
1

Vm

þ 	

kS0ð1� KV 2
mÞ

exp � 2kS0ð1� KV 2
mÞ

3�KVm
6‘x1 þ

Xd

k¼2

�kxk � �t

 !" #

Vm

(
3j�jK þ kS0Vm	

2

exp � 2kS0ð1� KV 2
mÞ

3�KVm

 
6‘x1 þ

Xd

k¼2

�kxk � �t

!" #)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

1
2

:

(56)

[48] Equation (C6) should be used to calculate the ana-
lytical solution of the porosity since b 6¼ 0. Therefore, sub-
stituting (S2) into (C6) yields the following analytical
solution of the porosity function after reducing the number
of arbitrary constants to the minimum:

�ðx; tÞ ¼ �1 exp

"
kS0ð1� KV 2

mÞ 6‘x1 þ
Xd

k¼2

�kxk � �t

 !

�KVm

#

�
(

3j�jK þ kS0Vm	
2

exp � 2kS0ð1� KV 2
mÞ

3�KVm
6‘x1 þ

Xd

k¼2

�kxk � �t

 !" #)3
2

:

(57)
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[49] The analytical solution of the solid concentration is
derived by using (57) in equation (18), therefore

cðx; tÞ ¼ 1

�1Vm
exp �

kS0ð1� KV 2
mÞð6‘x1 þ

Xd

k¼2

�kxk � �tÞ

�KVm

2
66664

3
77775

�
(

3j�jK þ kS0Vm	
2

exp � 2kS0ð1� KV 2
mÞ

3�KVm
6‘x1 þ

Xd

k¼2

�kxk � �t

 !" #)�3
2

� 1

Vm
:

(58)

With the help of Maple, all the analytical solutions pre-
sented in this paper have been verified by putting them
back into the original equations (6) and (8).

4.4. Specification of Initial and Boundary Conditions

[50] Unlike standard methods like Laplace transform
methods or Fourier series methods, which are usually used
to find analytical solutions for transport equations with pre-
defined initial and boundary conditions, our approach con-
sists in determining first the analytical (exact) expressions
of the unknowns (concentrations and porosity). The initial
and boundary conditions are then obtained from the exact
expression of the solutions.

[51] In sections 4.2.1, 4.2.2, and 4.2.3 we presented three
sets of analytical solutions for the case of single-species
systems. The first set is defined by equations (30), (31), and
(32), the second set is defined by equations (36), (37), and
(38), and the third set is defined by equations (42), (43),
and (44). In a similar way we obtained two sets of analyti-
cal solutions for the case of two-species systems. The first
one is defined by equations (48), (49), (50), and (51), and
the second one is defined by equations (55), (56), (57), and
(58). All these sets of analytical solutions can be applied
for the three dimensional spaces (d ¼ 1, 2 or 3). For d ¼ 1
we simply substitute �2 ¼ �3 ¼ 0 and we get the analytical
solutions for the one-dimensional space. In the case d ¼ 2
we substitute �3 ¼ 0 and we obtain the solutions for the
two-dimensional space. For the three-dimensional space (d
¼ 3) �1, �2, and �3 should be different from zero. It is im-
portant to mention that each set of analytical solutions
implies specific initial and boundary conditions (e.g., the ini-
tial and boundary conditions corresponding to the solutions
(30), (31), and (32) are different from that of solutions (36),
(37), and (38)). Therefore, each set of analytical solutions
describes different transport regime. According to the
requirements those set of analytical solutions together with
the corresponding initial and boundary conditions has to be
used. The initial conditions are then obtained for t ¼ 0 from
the analytical solutions; this yields space-dependent initial
conditions. Time-dependent boundary conditions can be
specified by substituting the boundary coordinates. For 1-D
problems (d ¼ 1) defined on the interval [0, L], two boundary
conditions have to be specified at x1 ¼ 0 and x1 ¼ L. For 2-D
problems defined on a square [0, L] � [0, L] and 3-D

problems defined on a cube [0, L] � [0, L] � [0, L] a similar
procedure can be applied for x1, x2, and x3, respectively. Fur-
ther details about the definition of initial and boundary condi-
tions are provided to the reader in the example in section 5.

5. Applications
[52] Section 5 is devoted to the applications of the ana-

lytical solutions for benchmarking of numerical codes. We
use one of the proposed solutions and we will show how
such solution can be used to simulate precipitation and/or
dissolution of a solid phase. We discuss the ability and the
limitations of the analytical solutions and we compare them
to numerical solutions obtained with two conceptually dif-
ferent reactive transport codes.

5.1. A 2-D Example of a Two-Species System

[53] We consider a 2-D system defined on � ¼ ½0; L�
� ½0; L� � R2, consisting of two aqueous species B1 and B2

in equilibrium with a solid phase OðsÞ according to reaction
(45). For this example, we use the analytical solutions
obtained from solutions (S1) of section 4.3. Therefore, the
solute concentrations of species B1 and B2 are defined by
equations (48) and (49), respectively, and the porosity func-
tion is obtained from equation (50) with d ¼ 2 and
x ¼ ðx1; x2Þ. For ðx1; x2Þ 2 � and for t > 0, the solute con-
centrations of species B1 and B2 and the porosity evolve in
space and time according to

c1ðx1;x2; tÞ¼
1

Vm
þa1 exp

n
a �1x1þ�2x2þD0a �2

1þ�2
2


 �
t

� o
;

c2ðx1;x2; tÞ¼
1

Vm
þa2 exp

n
a �1x1þ�2x2þD0a �2

1þ�2
2


 �
t

� o
;

�ðx1;x2; tÞ¼

�1 exp

(
�

kS0ð1�KV 2
mÞ �1x1þ�2x2þD0a �2

1þ�2
2


 �
t

� 
KVmD0a �2

1þ�2
2


 �
� kS0ða1þa2Þ

K D0a2 �2
1þ�2

2


 � exp
n

a �1x1þ�2x2þD0a �2
1þ�2

2


 �
t

� o

� kS0Vma1a2

2K D0a2 �2
1þ�2

2


 � exp
n

2a½�1x1þ�2x2þD0a �2
1þ�2

2Þt

 o)

:

(59)

The solute concentrations are assumed to be known at the
boundaries of the computational domain (Dirichlet bound-
ary conditions) :

at x1 ¼ 0,

c1ð0;x2;tÞ ¼
1

Vm
þa1 exp

n
a �2x2þD0a �2

1þ�2
2


 �
t

� o
;

c2ð0;x2;tÞ ¼
1

Vm
þa2 exp

n
a �2x2þD0a �2

1þ�2
2


 �
t

� o
;

(60)

at x1¼L;

c1ðL;x2;tÞ ¼
1

Vm
þa1 exp

n
a �1Lþ�2x2þD0a �2

1þ�2
2


 �
t

� o
;

c2ðL;x2;tÞ ¼
1

Vm
þa2 exp

n
a �1Lþ�2x2þD0a �2

1þ�2
2


 �
t

� o
;

(61)
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at x2¼0;

c1ðx1;0;tÞ¼
1

Vm
þa1 exp

n
a �1x1þD0a �2

1þ�2
2


 �
t

� o
;

c2ðx1;0;tÞ¼
1

Vm
þ a2 exp

n
a �1x1þD0a �2

1þ�2
2


 �
t

� o
;

(62)

at x2¼L,

c1ðx1;L;tÞ ¼
1

Vm
þ a1 exp

n
a �1x1þ�2LþD0a �2

1þ�2
2


 �
t

� o
;

c2ðx1;L;tÞ ¼
1

Vm
þ a2 exp

n
a �1x1þ�2LþD0a �2

1þ�2
2


 �
t

� o
:

(63)

[54] The initial concentrations are defined by

c1ðx1;x2;0Þ ¼
1

Vm
þa1 exp

n
a½�1x1þ�2x2�

o
;

c2ðx1;x2;0Þ ¼
1

Vm
þa2 exp

n
a½�1x1þ�2x2�

o
:

(64)

[55] The initial spatial distribution of the porosity is
described by the following function

�0ðx1;x2Þ ¼ �1 exp

(
�

kS0 1�KV 2
m


 �
ð�1x1þ�2x2Þ

KVmD0a �2
1þ�2

2


 �
� kS0ða1þa2Þ

K D0a2 �2
1þ�2

2


 � exp ½að�1x1þ�2x2Þ�

� kS0Vma1a2

2K D0a2 �2
1þ�2

2


 � exp ½2að�1x1þ�2x2Þ�
)
:

(65)

The system (59) with the associated boundary and initial
conditions (60)–(65) can be used to simulate different pre-
cipitation and/or dissolution scenarios by varying the pa-
rameters of the problem.

5.1.1. Precipitation of Mineral: Clogging System
[56] In this example, we parameterize the system in such

a way that precipitation of a solid phase from supersatu-
rated aqueous solution (i.e., c1c2 > K) reduces porosity to-
ward zero. As we see in the system of equations (59) the
product c1c2 is independent of K. Therefore, it is easy to
choose the parameters in Table 1 such that c1c2 > K. In
order to avoid very high concentrations (see the definitions of
c1 and c2 in system (59)) at the beginning of the system evo-
lution, the molar volume was set to unity. Such high molar
volume is normally not found in reality but it allows to apply
the analytical solution for benchmarking numerical codes for
the case of strong porosity decrease. We could have chosen a
realistic value for the molar volume, but this would result in
very high solute concentrations which are also unrealistic.
The other parameters are chosen in such a way that the poros-
ity function takes physical values. Mineral solubility con-
stants can be taken from general thermodynamic databases
like THERMODDEM [Piantone et al., 2006].

[57] We show the spatial evolution of the product c1c2 in
units of mol2 dm�6 for successive times in Figure 1. By
definition of c1 and c2, this product increases exponentially
at the lower left corner of the computational domain which
is accompanied by a corresponding porosity decrease, as
shown in Figure 2. The initial porosity distribution in Fig-
ure 2a is not constant in space. We have chosen the param-
eter values such that the porosity values range from 0.2 at
(0, 0) to nearly 0.25 at (1, 1). The porosity value at the
lower left corner is fixed by an appropriate choice of the
parameter �1 in Table 1. For early times, the porosity at
the lower left corner decreases slowly and for larger times,
porosity decreases exponentially. At time t ¼ 15 � 106 the
porosity reaches 5.3 � 10�4 which in reality would result
in clogging the medium (see Figure 2c). The choice of ini-
tial concentrations is such that, without kinetic control, pre-
cipitation of the mineral would immediately decrease the
porosity to zero within the whole domain. With kinetic
control, the porosity is decreasing slowly everywhere. At
the lower left corner, the concentrations are increased expo-
nentially which cause a faster porosity reduction there.
Because of the oversaturation of the two solutes, the poros-
ity reduction causes an additional exponential concentra-
tion increase. This is a self-accelerating clogging process,
as higher concentrations increase porosity reduction which
increases concentrations even more. Increasing concentra-
tion gradients drive diffusive transport of solutes into
regions of lower concentrations which causes the propaga-
tion of clogging front with constant speed (see Figure 3,
which shows concentration c1 of species B1 and its absolute

diffusive flux D0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@c1=@x1Þ2 þ ð@c2=@x2Þ2

q
along the di-

agonal of the computational domain). The process contin-
ues even after clogging. In this case the advance of the
solid front is driven solely by the exponential concentration
increase and accelerating diffusive transport because of
increasing concentration gradients (see Figure 4). The prop-
agation of the clogging front is faster than the purely kineti-
cally controlled porosity decrease in the whole domain.

[58] Clearly, by changing the arbitrary parameters in the
analytical solutions (i.e., like a, a1, a2, �1 and �2 in system
(59)) we obtain different shapes of the analytical solutions.
As an example, we show in Figure 5 the effect of the pa-
rameter a. Note, how the porosity front gets steeper as jaj

Table 1. System Parameters of the Precipitation Example

Parameter

Value

Precipitation
Example

Precipitation-Dissolution
Example

D0 (m2 s�1) 10�9 10�9

S0 (m2 m�3) 103 103

Vm (m3 mol�1) 1.0 1.0
k (mol m�2 s�1) 10�12 10�10

log K �0.41 1.85
L (m) 1.0 1.0
F1 0.210550448 0.210550448
a �10.0 �10.0
a1 1.0 1.0
a2 2.0 2.0
� 1.0 1.0
�1 1.0 1.0
�2 1.0 1.0
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increases. In numerical methods which require spatial dis-
cretization (i.e., finite difference, finite volume, finite ele-
ment, etc.) steep fronts give rise to numerical diffusion or
dispersion. The analytical solutions with large jaj can be
used to investigate such problems.

5.1.2. Precipitation and Dissolution of a Mineral
[59] In this example, we present by changing input pa-

rameters a system where precipitation and dissolution of a
mineral occurs. Again, the system involves two aqueous
solute species with concentrations c1 and c2 and one min-
eral phase. Compared to the first example, we change only
the values of the solubility constant K and the kinetic rate
constant k (see Table 1). Since both concentrations c1 and
c2 are independent of K and k, the concentrations profiles
are the same as in the previous example. Figure 6 shows
the porosity evolution with time.

[60] The initial porosity values in Figure 6a range from
0.2046854748 at the lower left corner at (0, 0) to quasi-
zero value at the upper right corner at (1, 1). For time t ¼ 0,
the product c1c2 is smaller than the solubility constant K

(i.e., @�ð0;0;tÞ
@t > 0). Therefore, dissolution of mineral takes

place at the lower left corner and consequently, porosity
increases in this region (see Figures 6b and 6c). The maxi-
mal porosity value of �� ¼ 0:3511656341 is reached at
time t� ¼ 8.247918176 � 106 s, where t� verifies
@�ð0;0;t�Þ

@t ¼ 0. For t > t�, we have @�ð0;0;tÞ
@t < 0 and the prod-

uct c1c2 becomes larger than K which causes porosity
decrease. For large times, this system reaches clogging. In
other locations of the computational domain only dissolu-
tion (porosity increase) takes place, for example, at location
(0.3, 0.3). Figure 7 shows the temporal evolution of the po-
rosity at locations (0, 0) and (0.3, 0.3), respectively.

[61] As a conclusion, the analytical solutions (59) can be
used to simulate different scenarios of precipitation and/or
dissolution of minerals including strong decrease in poros-
ity (i.e., clogging) by changing the system parameters.

5.2. Comparison With Numerical Solutions

[62] In section 5.2, we use the example of a clogging sys-
tem (section 5.1.1) for benchmarking of two conceptually
different numerical solvers OpenGeoSys-GEMS and COM-
SOL Multiphysics.

Figure 1. Spatial profiles of the concentrations product c1c2 in units of mol2 dm�6 for successive
times.
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Figure 2. The 3-D plots of the spatial evolution of the porosity for successive times for the precipita-
tion example.

Figure 3. The spatial distribution of the solute concentration c1 and its corresponding absolute flux
along the diagonal of the 2-D domain at time 30 � 106 s.
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Figure 4. The spatial distribution of the porosity � and the porosity variation @�
@t along the diagonal of

the 2-D domain at time 30 � 106 s.

Figure 5. The 3-D plots of the porosity show the effect of the model parameter a in system (59).
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[63] OpenGeoSys-GEMS [Shao et al., 2009a, 2009b] is a
multicomponent reactive transport code which employs the
sequential noniterative approach (SNIA) to couple the mass
transport finite element code OpenGeoSys (http://www.
ufz.de/index.php?en¼18345) [Wang and Kolditz, 2007]

with the Gibbs Energy Minimization Software GEMS-PSI
(http://gems.web.psi.ch) [Karpov et al., 2001] for thermo-
dynamic modeling of aquatic geochemical systems. Kineti-
cally controlled precipitation and dissolution of mineral
phases can be enforced in GEMS-PSI by fixing the phase
mole amounts to desired values and calculating the partial
equilibrium for the chemical system with constraints. Ki-
netic control of precipitation-dissolution reactions in the
coupled code is implemented by a (time) stepwise change
of partial equilibrium constraints according to equation (7)
of Palandri and Kharaka [2004]. For the benchmarking,
this implementation was simplified to Mt ¼Mt�1�
�tS0Vm�tð1� QtÞ, where Mt and Mt�1 are the mole
amounts of the kinetically controlled mineral phase at cur-
rent and last time step, respectively. �t is the time step
length and Q is the mineral saturation index which is the
activity product of the reactants divided by the equilibrium
constant of reaction. Q is not calculated directly, it is
retrieved from the GEMS solution. If activity corrections
are ignored (activity coefficients are unity) the activity
product corresponds to the concentration product as in
equation (8).

[64] COMSOL Multiphysics (http://www.comsol.com/
products/4.2/) is a commercial finite element simulation
package widely used in various physical and engineer-
ing applications. COMSOL solves the partial differential

Figure 6. The 3-D plots of the spatial evolution of the porosity for successive times for the precipita-
tion-dissolution example.

Figure 7. Temporal evolution of the porosity function at
two different locations, (0, 0) and (0.3, 0.3), for the exam-
ple of precipitation and dissolution of a solid phase.
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equations directly without operator splitting using an
implicit time discretization scheme.

[65] The dimension of the domain, the initial and bound-
ary conditions are described in section 5.1.1. In summary,
we consider a 2-D rectangular domain (1 m � 1 m) (see
Figure 8), time-dependent Dirichlet boundary conditions as
defined by (60)–(63) and initial distributions of concentra-
tions and porosity as defined by (64) and (65). Parameters
of the system are summarized in Table 1. For the spatial
discretization, we used an unstructured triangular mesh
with 738 elements and 406 nodes (Figure 8). The mesh is
refined at the lower left corner since we expect the steepest
concentration and porosity gradients in this region during
the simulation. The final simulation time is 15 � 106 s. For

OpenGeoSys-GEMS, a constant time step �t equal to 104 s
is used which respects the Neumann criterion [Sousa,
2003; Hindmarsh et al., 1984] (i.e., 2De�t

h2 	 1) needed to
ensure a physically correct solution, where h is the mesh
size. COMSOL uses mainly implicit methods for the time
integration. However, an explicit solver is available that
uses the Runge-Kutta method for solving time-dependent
problems with explicit time stepping. There are two meth-
ods available for solving time-dependent problems: the
IDA and the generalized � method. IDA was created at the
Lawrence Livermore National Laboratory [Hindmarsh
et al., 2005] and uses variable-order, variable–step size
backward differentiation formulas (BDF). The BDF is a
robust method which is commonly used for a broad variety
of numerical problems; the generalized � method is well
suited for solving structural mechanics problems but can
also be applied for other applications. Generalized �
method is an implicit and second-order-accurate method
where with the help of a control parameter high frequencies
can be damped. For the present problem, the BDF method
was used with a maximum order of four and using adaptive
and unrestricted time steps.

[66] The numerical and analytical solutions are com-
pared along the diagonal of the computational domain
(see Figure 8). Figure 9 shows the comparison of the poros-
ities along the first 30 cm of the diagonal for successive
times. Absolute values of porosities obtained in the numeri-
cal simulations agree well with the analytical solution. In
Figure 10, we plot the relative error in predicted porosity
at time 15 � 106 s at which the system reaches clogging
(i.e., � ¼ 5:3� 10�4). The relative error in porosity (RE)
is computed using the following formula:

RE ¼ Snum � Sana

Sana

����
����� 100; (66)

Figure 8. Schematic representation of the computational
mesh of the 2-D domain. Comparison of numerical and an-
alytical solutions in Figures 9 and 10 performed along the
diagonal is shown by the blue line.

Figure 9. Comparison between the analytical solutions and the numerical solutions obtained from
OpenGeoSys-GEMS (with �t ¼ 104 s) and COMSOL along the diagonal of the computational domain
(Figure 8).
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where Sana and Snum are the analytical and numerical solu-
tions, respectively. In Figure 10, we show the relative error
in porosity for three different time steps for OpenGeoSys-
GEMS. The larger time step �t ¼ 105 s violates the Neu-
mann criterion and the smaller time steps �t ¼ 104 s and
�t ¼ 103 s satisfy this criterion. As we see in Figure 10,
the relative error is very large (around 40%) when the time
step violates the Neumann criterion. This relative error is
improved when the time step satisfies the Neumann crite-
rion and decreases for smaller time steps. The relative error
is much smaller for COMSOL which uses an adaptive
time-stepping technique. We believe that the bigger rela-
tive error in OpenGeoSys-GEMS can be attributed to oper-
ator splitting errors [Carrayrou et al., 2004].

6. Conclusion
[67] In this paper, a general method is presented to

derive analytical solutions for multidimensional diffusive
transport equations of any number of solute species coupled
with precipitation-dissolution reaction and porosity
changes. The methodology consists in converting the sys-
tem of multidimensional partial differential equations to a
system of ordinary differential equations by making use of
a special transformation. The system of ODEs is then
solved by the simplest equation method. The details of cal-
culation for the cases of one and two-species systems are
illustrated by deriving explicit analytical solutions for the
solutes and solid concentrations, and the porosity. The
methodology is flexible and can be extend to systems con-
taining arbitrary number of species. The derived analytical
solutions are exact and do not contain any approximation.
We showed through a 2-D example of analytical solutions
the ability and limitations of the proposed analytical solu-
tions. The analytical solutions contain a number of arbitrary
constants which allow these solutions to be tuned to simu-
late different precipitation and/or dissolution problems with
strong porosity changes. The transformation (11) used to
solve the system of transport equations leads to a special
form of the initial and boundary conditions which are not

typical for natural system. Still these are the exact solution
of PDEs which describe natural transport processes. There-
fore the primary application of the presented solutions is
for benchmarking of transport codes. These solutions were
used for verifying numerical solutions obtained from the
reactive transport code OpenGeoSys-GEMS and the COM-
SOL Multiphysics software.

Appendix A: The Simplest Equation Method
[68] We review the simplest equation method used to

determine the solute concentrations as presented by Hayek
et al. [2011] and Kudryashov and Loguinova [2008]. This
method provides exact analytical solutions for nonlinear or-
dinary differential equations in the form

P y;
dy

d�
;
d2y

d�2 ; y
dy

d�
; . . .

� �
; (A1)

where P is a polynomial in the unknown variable y ¼ yð�Þ
and its derivatives. The main idea of this method is to
assume that the solution of equation (A1) can be expanded
in polynomial (finite series) of the form

yð�Þ ¼
XM
k¼0

AkY k ; AM 6¼ 0; (A2)

where the coefficients Ak are independent of � to be deter-
mined, M is an integer to be determined and Y ¼ Y ð�Þ is a
function which verify some ordinary differential equation.
This ordinary differential equation is called the simplest
equation. The order of admissible simplest equation is less
than of equation (A1). In order to express the exact solu-
tions yð�Þ of equation (A1) as finite series (A2), the general
solution Y ¼ Y ð�Þ of the chosen simplest equation has to
be known.

[69] In this work, the Bernoulli equations are used as the
simplest equations:

dY

d�
¼ aY þ bY m; (A3)

where a and b are two constants and m is an integer such
that m > 1.

[70] The Bernoulli equation (A3) has the following gen-
eral solutions:

Y ð�Þ ¼ a exp ½aðm� 1Þð� þ �0Þ�
1� b exp ½aðm� 1Þð� þ �0Þ�

� 	 1
m�1

; (A4)

for the case a > 0, b < 0,

Y ð�Þ ¼ � a exp ½aðm� 1Þð� þ �0Þ�
1þ b exp ½aðm� 1Þð� þ �0Þ�

� 	 1
m�1

; (A5)

for the case a < 0, b > 0, and

Y ð�Þ ¼ exp ½að� þ �0Þ�; (A6)

when b ¼ 0. Above �0 is a constant of integration.

Figure 10. The porosity relative error for OpenGeoSys-
GEMS and COMSOL at time 15 � 106 s along the diago-
nal of the computational domain (Figure 8).
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Appendix B: Calculation of the Porosity
Functions for the Case of Single-Species Systems

[71] In the case of single-species system, equation (17)
becomes

�ð�Þ ¼ �1 exp � kS0Vm

�
� � �1 �

1

K

Z �

�1

C1ð�0Þd�0
" #( )

; (B1)

Substituting (26) into (B1), we obtain

�ð�Þ ¼ �1 exp
kS0Vm

�K
ðA01 � KÞð� � �1Þ þ A11

Z �

�1

Y ð�0Þd�0
" #( )

:

(B2)

In this case, m ¼ 2 in equations (A4) and (A5). The value
of the integral in equation (B2) depends on the solution of
the Bernoulli equation (A3).

[72] If b 6¼ 0, then either solution (A4) or (A5) should be
used. If solution (A4) is used, then

Z �

�1

Y ð�0Þd�0 ¼
Z �

�1

a exp ½að�0 þ �0Þ�
1� b exp ½að�0 þ �0Þ�

d�0

¼ � 1

b
ln

1� b exp ½að� þ �0Þ�
1� b exp ½að�1 þ �0Þ�

� 	
;

(B3)

where a > 0 and b < 0. However, if (A5) is used, then

Z �

�1

Y ð�0Þd�0 ¼ �
Z �

�1

a exp ½að�0 þ �0Þ�
1þ b exp ½að�0 þ �0Þ�

d�0

¼ � 1

b
ln

1þ b exp ½að� þ �0Þ�
1þ b exp ½að�1 þ �0Þ�

� 	
;

(B4)

where a < 0 and b > 0.
[73] Equations (B3) and (B4) can be combined as

follows:

Z �

�1

Y ð�0Þd�0 ¼ � 1

b
ln

1þ b exp ½að� þ �0Þ�
1þ b exp ½að�1 þ �0Þ�

� 	
: (B5)

where a is arbitrary constant (may be positive or negative)
and b > 0.

[74] Substituting (B5) into (B2), we obtain the following
porosity function:

�ð�Þ ¼ �1 exp
kS0VmðA01 � KÞð� � �1Þ

�K

� �

� 1þ b exp ½að� þ �0Þ�
1þ b exp ½að�1 þ �0Þ�

� 	�kS0VmA11
�Kb

;

(B6)

where a is arbitrary constant and b > 0.
[75] If b ¼ 0, then solution (A6) must be used, and we

have

Z �

�1

Y ð�0Þd�0 ¼
Z �

�1

a exp ½að�0 þ �0Þ�d�0

¼ exp ½að� þ �0Þ� � exp ½að�1 þ �0Þ�
a

:

(B7)

Substituting (B7) into (B2), we obtain the following poros-
ity function:

�ð�Þ ¼ �1 exp

(
kS0Vm

�K

�
ðA01 � KÞð� � �1Þ

þ A11

a

n
exp ½að� þ �0Þ� � exp ½að�1 þ �0Þ�

o	)
:

(B8)

Appendix C: Calculation of the Porosity
Functions for the Case of Two-Species Systems

[76] In the case of two-species system and according to
reaction (45), equation (17) becomes

�ð�Þ ¼ �1 exp � kS0Vm

�
� � �1 �

1

K

Z �

�1

C1ð�0ÞC2ð�0Þd�0
" #( )

;

(C1)

where C1 and C2 are defined by (24) with N ¼ 2. Therefore,
we have

C1ð�0ÞC2ð�0Þ ¼ A01A02 þ ðA01A12 þ A11A02ÞY ð�0Þ þ A11A12Y ð�0Þ2;
(C2)

where Y is defined as in equation (A4), (A5), or (A6) with
m ¼ 3.

[77] If b 6¼ 0, then Y is defined by solution (A4) or
solution (A5) of the Bernoulli equation. In this case, the so-
lution (S2) must be used which gives A01A12 þ A11A02 ¼ 0.
Therefore, we have

Z �

�1

C1ð�0ÞC2ð�0Þd�0 ¼ A01A02ð� � �1Þ

� A11A12

2b
ln

1� b exp ½2að� þ �0Þ�
1� b exp ½2að�1 þ �0Þ�

� 	
;

(C3)

if a > 0 and b < 0, and

Z �

�1

C1ð�0ÞC2ð�0Þd�0 ¼ A01A02ð� � �1Þ

� A11A12

2b
ln

1þ b exp ½2að� þ �0Þ�
1þ b exp ½2að�1 þ �0Þ�

� 	
;

(C4)

if a < 0 and b > 0.
[78] Equations (C3) and (C4) can be combined as

follows:

Z �

�1

C1ð�0ÞC2ð�0Þd�0 ¼ A01A02ð� � �1Þ

� A11A12

2b
ln

1þ b exp ½2að� þ �0Þ�
1þ b exp ½2að�1 þ �0Þ�

� 	
;

(C5)

where a is arbitrary constant (may be positive or negative)
and b > 0.
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[79] Substituting (C5) into (C1), we obtain the following
porosity function:

�ð�Þ ¼ �1 exp
kS0VmðA01A02 � KÞð� � �1Þ

�K

� �

1þ b exp ½2að� þ �0Þ�
1þ b exp ½2að�1 þ �0Þ�

� 	�kS0VmA11A12
2�Kb

;

(C6)

where a is arbitrary constant and b > 0.
[80] If b ¼ 0, then solution (A6) must be used, and we

haveZ �

�1

C1ð�0ÞC2ð�0Þd�0 ¼ A01A02ð� � �1Þ þ
A01A12 þ A11A02

a

�
n

exp ½að� þ �0Þ� � exp ½að�1 þ �0Þ�
o

þ A01A02

2a

n
exp ½2að� þ �0Þ�

� exp ½2að�1 þ �0Þ�
o
:

(C7)

Substituting (C7) into (C1), we obtain the following poros-
ity function:

�ð�Þ¼�1 exp

(
kS0Vm

�K

�
ðA01A02 � KÞð� � �1Þ

þ A01A12 þ A11A02

a

n
exp ½að� þ �0Þ� � exp ½að�1 þ �0Þ�

o

þ A01A02

2a

n
exp ½2að� þ �0Þ� � exp ½2að�1 þ �0Þ�

o	)
:

(C8)

Appendix D: Derivation of Equation (5)
[81] Equation (5) derives from the conservation of vol-

ume. Indeed, let V t
� and V t

s the volume of void and the vol-
ume of solid phase at time t. The conservation of volume
writes

V t
� þ V t

s ¼ V 0
� þ V 0

s ; (D1)

which gives

V t
� ¼ V 0

� þ V 0
s � V t

s : (D2)

Dividing equation (D2) by the total volume V yields

�t ¼ �0 þ
V 0

s

V
� V t

s

V
; (D3)

where �t ¼
Vt
�

V is the porosity at time t. The volume of solid
phase is related to the molar volume Vm by V t

s ¼ Vmnt,
where nt is the number of moles at time t. Therefore, equa-
tion (D3) can be rearranged as

�t ¼ �0 þ
Vmn0

V

V 0
�

V

V

V 0
�

� Vmnt

V

V t
�

V

V

V t
�

: (D4)

Finally, we get

�t ¼ �0 þ Vm�0c0 � Vm�tct; (D5)

where ct ¼ nt

V t
�

is the concentration of solid in moles per

volume of fluid.
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