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Abstract

We investigate the real-time dynamics of open quantum spin-1/2 or hardcore boson systems on a
spatial lattice, which are governed by a Markovian quantum master equation. We derive general
conditions under which the hierarchy of correlation functions closes such that their time evolution
can be computed semi-analytically. Expanding our previous work (2016 Phys. Rev. A 93 021602) we
demonstrate the universality of a purely dissipative quantum Markov process that drives the system of
spin-1/2 particles into a totally symmetric superposition state, corresponding to a Bose—Einstein
condensate of hardcore bosons. In particular, we show that the finite-size scaling behavior of the
dissipative gap is independent of the chosen boundary conditions and the underlying lattice structure.
In addition, we consider the effect of a uniform magnetic field as well as a coupling to a thermal bath to
investigate the susceptibility of the engineered dissipative process to unitary and nonunitary
perturbations. We establish the nonequilibrium steady-state phase diagram as a function of
temperature and dissipative coupling strength. For a small number of particles N, we identify a
parameter region in which the engineered symmetrizing dissipative process performs robustly, while
in the thermodynamic limit N — oo, the coupling to the thermal bath destroys any long-range order.

1. Introduction

With the advent of ultracold gases and trapped ions as tunable quantum simulators, experiments are now in the
position to investigate the real-time evolution of quantum many-body systems directly with engineered model
Hamiltonians [1-3]. Recent years have seen tremendous progress that promises new insights at the intersection
of condensed matter physics, high energy physics, and beyond [4, 5]. While experiments have been very
successful in probing the dynamics of quantum many-body systems, it is fair to say that to date our theoretical
understanding remains incomplete. Thus, many important problems regarding nonequilibrium quantum
dynamics as, e.g., the characterization of steady states or the calculation of transport properties far from
equilibrium are still beyond our reach. There are several reasons for this disparity. While exact diagonalization
provides us with rigorous results it is limited to systems consisting of a small number of particles. The density
matrix renormalization group [6, 7] allows for the efficient simulation of real-time dynamics for a large variety of
one-dimensional gapped quantum many-body systems [8—11]. Nevertheless, its applicability remains largely
limited to short times due to the growth of entanglement. Quantum Monte Carlo methods are not limited by
macroscopic quantum correlations, however, their application to nonequilibrium dynamics is hindered by a
severe complex phase problem.

In light of these limitations, it is quite remarkable that a class of open quantum many-body models [12] can
be solved without approximations. This is of particular interest since open quantum systems with engineered
couplings to an environment [ 13] have been proposed recently for the preparation of quantum states [ 14—18],
quantum simulation [19-21], as well as quantum computing [14, 22—24]. Typically, the nonequilibrium steady
state (NESS) of the engineered dissipative process, which defines a unique fixed point for the dynamics, is known

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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by construction’; examples include condensates of bosons or 7 states of fermions [25, 26], condensates of
quantum spins or hardcore bosons [27], d-wave pairing states of fermions [28, 29], and various topologically
ordered states [30-33]. So far, for most of these systems the real-time evolution leading to the final state is less
well understood. It is known, however, that the dissipative contributions to the dynamics might in fact close the
hierarchy of n-particle correlation functions such that a semi-analytic solution of interacting quantum systems
becomes feasible. This observation has been exploited in a number of works [34—40] and general closure
conditions for the hierarchy of correlation functions have been derived for bosonic and fermionic models [41].
In recent work [42], we investigated a protocol for the dissipative generation of a Bose—Einstein condensate
(BEC) [25-27]. In particular, we considered a macroscopic system of N spin-1/2 particles, where the time
evolution of the reduced density matrix p is governed by a Markovian quantum master equation [12, 43, 44]

4= Lp=—ilH, ol + S Lp, M
dt y

A=1,..., dfv — 1, where dy = 2N denotes the dimension of the N-particle Hilbert space, and 7 = 1inthe
following. The Lindbladian £ = —i[H, - ] + Y, £, isalinear map on the set of mixed states and the
commutator part defines the system Hamiltonian H, which is Hermitian. The dissipative coupling to the
environment is described by the non-commutator part 3, £, of L. Written in Lindblad form, the action of its
constituents £, on pis expressed in terms of jump operators Ly

1
Lrp = (LAPL; - E{L)TL)\) P}), ()

where the rate parameters 7, > 0 characterize the relative strength of the dissipative couplings. Equation (1)
represents an effective description of the system where the environment has been integrated out, yielding
operators /7, L, thatare expressed in terms of the local spin degrees of freedom s;', where a = 1, 2, 3 denotes
the spin index and x labels distinct particles. Specifically, in [42] only a single class of non-Hermitian jump
operators was considered, which acts on pairs of particles, i.e., Ly, = %(sj + s; V(s — s, ), where

s& = s! & is2. In the absence of a Hamiltonian contribution (H = 0), we were able to show that this process

yields a closed hierarchy of correlations, thereby allowing us to solve for the full real-time evolution of spin—spin
correlation functions. Thus, the dynamics of dissipative Bose—Einstein condensation could be followed explicitly
by studying the relaxation towards the final state ppes = |BEC) (BEC|, satisfying L pypss = 0.

Here, we go beyond this first exploratory work and establish the generality of our approach, which allows us
to investigate the susceptibility of the considered quantum Markov process to unitary and nonunitary
perturbations. Specifically, we consider operators L, that act locally on particles at site x, as well as bilocal jump
operators L., that act on pairs of particles (, y), both in the presence and absence of a uniform magnetic field.
While multilocal operators Ly, ..., with n > 2, are conceivable and have been studied theoretically, e.g., in the
context of steady states with nontrivial topology [45—48], local and bilocal operators appear to be sufficient to
describe the phenomenology of engineered dissipative quantum spin-1/2 systems for BEC generation [27, 49].

The outline of this paper is as follows: in section 2 we derive the closure conditions for hierarchies of
correlation functions of quantum spin systems in the s = 1/2 representation in the case of open Markovian
dynamics that is governed by local and bilocal jump operators. In section 3 we discuss the dynamics of an
engineered dissipative process that drives the system into a mixture of totally symmetric superposition states.
We describe the growth of long-range correlations in real time and consider the finite-size scaling of the
dissipative gap. In section 4 we investigate the same dissipative process in the presence of thermal noise and a
uniform magnetic field. Our results are summarized in the NESS phase diagram for the coupled model. We
conclude with an outlook on applications and possible further developments of this work.

2. Closed hierarchies for correlation functions

Throughout this work we consider quantum spin-1,/2 systems on a regular d-dimensional lattice. The spin
degrees of freedom sg* = %ag are expressed in terms of Pauli matrices 0 defined locally at site x, while the total
spin operator is given by §* = 3__s¢". The assumption of an underlying regular lattice structure is not essential,
however, it allows us to exploit the symmetries of the lattice to simplify the problem and to solve for the
dynamics of correlation functions of macroscopic quantum many-body systems.

In the following, we consider the dynamics of n-point correlation functions O, ,,...,, = tr{p O,,..., },in
particular, products of spin operators O, ,,...., = [ <<, S (Where spinindices c; are omitted). Using
equation (1) we derive the equation of motion

% More complicated examples might be possible, e.g., where the late-time asymptotic behavior is characterized by a limit cycle.
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Figure 1. Graphical illustration of terms that contribute to the purely dissipative (H = 0) time evolution of correlation functions ona
square lattice (with coordination number 7, = 2d) for (a) local jump operators L, and (b)-(d) bilocal jump operators L. (a) To
determine the contributions to any n-point function O,s,...,, we sum over all insertions of L, (red) atlattice sites zy, 2, ..., 2, and
evaluate the trace (see equation (3)). This is illustrated above for the example of the two-point function O,, ,, for which we show only
the nonvanishing contributions. (b) To evaluate the time evolution of the local magnetization tr { p s} we attach n.operators L, (red)
to the lattice site z (see equation (13)). (c) For spin—spin correlation functions (0,,,,, where z; and z, are nearest-neighbor sites, we
attach one bilocal jump operator that connects both sites (blue) while 1. — 1 jump operators are assigned separately to z; and z, (red);

see equation (17). (d) In the case of correlation functions O,,,, with nonadjacent sites z; and z,, we attach . bilocal jump operators to
each site.

d

EOZIZZWZ” =tr{pLO,.,..,)

=1 tr{p [H, Ozlzz-»-zy,] }
1 .
+ 2 2P [Oaz 2 bl + L], Oaoz, 1L, ©)
A

where we have introduced the dual (or adjoint) map £* = i[H, - ] + ¥, L',i corresponding to the Lindbladian
L. In general, equation (3) does not close, i.e., the commutators on the right-hand side typically induce operators
of higher order. This leads to an infinite hierarchy of correlation functions which cannot be solved without
truncating the coupled set of equations. Here, we seek conditions under which the opposite is true. That is, we
derive conditions under which the hierarchy of correlation functions closes for a purely dissipative quantum
Markov process (H = 0) defined in terms of local (section 2.1) or bilocal jump operators (section 2.2). We
discuss possible solutions to these conditions and return to the effect of unitary perturbations in section 2.3.

2.1.Local jump operators
We start with the discussion of local operators /3, L (7, > 0) to illustrate the derivation of closure conditions.
Anylocal jump operator can be expressed in the form

L, = 191 + Y00, @

where the coefficients I and I, & = 1, 2, 3, are defined up to an overall phase factor, which we may use to set

I € Rand [ € C.Since Ly acts locally and spin operators at different sites commute, we observe that the
commutator terms in equation (3) only contribute when x = z;,i = 1, ...,n (see figure 1(a)). Thus, the equation
of motion for n-point correlation functions can be written as

d " " *
Oz, = Yoy o[ T s |Clse s )
i=1

j=i
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with the dual superoperator Ei =1,/2 (L[~ L] + [L], - 1L,), which maps the spin s at site z= x onto the
complete basis of the local spin-1/2 operator algebra, {1, s, 52, s>}, and to zero otherwise (z = x). We may
express its action in the following form:

1 3
— L5t = |mel+ > ms] |6, (6)
x B

where the additional factor 1/+, is introduced to render the right-hand side dimensionless. The coefficients m®
and m®? are obtained by using the parametrization of the local jump operator (see equation (4)) to evaluate the
action of £,; we find

me — lzfaﬁv Im[l_‘gl“’], (7a)
By
m*? = %[Re[zaw] - 6‘“3Z|l”’|2) + 10 e Im ], )
ol Y

and thebar, e.g., I® denotes complex conjugation. We observe that the equation of motion closes, i.e., the
equations of motion for n-point correlation functions do not couple to higher order correlations, independent
of the particular form of the local jump operators L,. This does not hold true for generic jump operators that act
on multiple sites, as we illustrate in the next section.

2.2. Bilocal jump operators

Alarge number of suggested protocols for dissipative state generation rely on Lindblad dynamics induced by
jump operators that act on pairs of particles (see, e.g. [32]). It is therefore interesting to ask under what
conditions the real-time dynamics can be solved either exactly or semi-analytically. Here, we restrict ourselves to
bilocal operators /7, Ly, (7, > 0) thatactisotropically on adjacent lattice sites xand y (which we denote by

(x,y)). Although the assumptions of isotropy and nearest-neighbor couplings are both reasonable, they are not
necessary for the following derivations. They serve merely to make the following arguments more transparent
and to simplify the discussion.

For isotropic systems, any jump operator L, is either symmetric (L,, = L) or antisymmetric
(Ly, = —L,,) under the interchange of x and y. By making use of this fact, we may reduce the number of
coefficients that parametrize any bilocal operator L,, and thereby provide explicit closure conditions for such
operators.

2.2.1. Symmetric jump operators
We employ the following parametrization for symmetric operators

Ly =114+ iy 102 + s) + Y 1@s2s), ®)

« a3

where we have defined the symmetrization of indices by I[(®? = % (1°5 + 177 and the coefficients can be chosen

asl® € Rand %, 1% € C.The factor of i is introduced for later convenience. Specific examples for symmetric
jump operators, whose purely dissipative dynamics has been investigated recently via a novel Monte Carlo
method [50-52], are the singlet projection operator

1 ,
Py, = —1— ) s0s), ©)
4 «
and triplet projection operator

3
Py =214 Y, (10)
o

respectively.

2.2.2. Antisymmetric jump operators
In the case of antisymmetric operators, we may choose the following parametrization

Ly = 1) J*(sy — ;) + Zl[“meSf, (11
« o,

where 101 = % (%% — [5) and the parameters [* and [*? are complex valued in general but due to the phase
ambiguity, we may choose any one of these parameters to be real. The non-Hermitian operator

4
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Q= S+ 5005 =5, (12)

which provides a mechanism for dissipative cooling into a BEC [25-27, 42] falls into this class of operators.

2.2.3. Closure conditions
Before we go on to discuss the closure conditions for #n-point spin correlation functions, we derive the equation
of motion for the local magnetization O, = tr{ps,} and investigate under which conditions it decouples from
higher order correlation functions.

Evaluating equation (3) for n = 1 we find that the commutator terms on the right-hand side contribute only
when jump operators L, are attached to the site z (see figure 1(b)). In fact, these contributions have to be
summed over all nearest-neighbor pairs (y,z), so that

iOZ: Z tr{p[,;zsz}. (13)
dt y1(2)

The dual map Eiy is defined in terms of bilocal operators, i.e., E::y =Yy / 2(L;y [ L] + [L;y, ‘]L,,)andits

action on single spin operators can be expressed in the form

LL:}, st =|m1+ > [m%sP + m;‘dsf] + Zmaﬂ"’sfs;’ (652 + 6y2). (14)
ey B Bry
Note that [,;;, is invariant under the interchange of sites xand y.

Clearly, the equation of motion for the one-point function closes only when the contributions ~s,s, in
equation (14) vanish. Hence, to derive the closure conditions for bilocal operators L, we require that
m®? = 0, whichyields a set of 27 equations. Due to the distinct parametrization of the symmetric and
antisymmetric jump operators, we discuss both cases separately:

(1) We obtain the following set of closure conditions for symmetric jump operators (see equation (8))

Im[l“a"] = —%(Im[l_“aﬂ] + Im[I%a"] + Im[I°p"] + Im[I"B%]), o = B =7, (15a)
Im[I°1°] = izgaﬁv(lm[l‘”’aa] + Im[17a%] — Im[I°b%] — Im[I"b"]), (15b)
"
Im[a®a’] = 23 e (Im[I°b*] + Im[I"bP)), (15¢)
n
Im[a°b%] = =23 e Im[[°b7] — 603 e (Im[[°a] + Im[I"b%)), (15d)
"/ ’)/’6
Im[b°bP] = Zfaﬂ"r"(lm[l_"’a“] + Im[17a@%] + Im[I°0%] + Im[I”b2]), (15¢e)
N
PIm[a®] = — = o Im (1%, (15f)
2 By
1°Im[b*] = fi S e (Im[I%a?) — Im[I"p7)), (159)
By

where we have introduced the coefficients a® = 19¢, with o = 1, 2, 3, aswellas b* = 1@ p2 = |G and
b* = 112, From these relations we see that a 10-parameter family of symmetric jump operators can be found
(with I 19, a®, b® € R), for which the above conditions are fulfilled and the local magnetization decouples
from the higher order n-point correlation functions (n > 2). Both the singlet and triplet projection
operators Py, and P, belong to this class of operators.

(2) For the antisymmetric jump operators (see equation (11)) we obtain
Im[I“k’] = Im[I“1"] = Im[k“k"] = 0, (16)

where k! = [12%], k> = [BY,and k* = [1?]. We find a 6-parameter family of antisymmetric operators L,
(with [%, k* € R) for which the equation of motion of the one-point function closes. Clearly, the non-
Hermitian operator Q,, belongs to this class.

It remains to be shown that equations (154)—-(15g) and equation (16) are sufficient to close the hierarchy for
arbitrary n-point correlation functions. In the following we demonstrate this explicitly for two-point functions,
but similar arguments also apply to correlation functions of higher order. The equation of motion for
O,., = tr{ps, s, }isgiven by
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d 2 . .
EOMZ = Z |<Z >tr{p£'yz[(5z1 522)} + 5(z1,zz> tr{p[’zlzz(szl 522)}) (17)
=1V 1 \)Zi
)’izjti

where ¢, .,) is equal to 1 only if z; and z; are nearest-neighbor sites. Note that the contributions on the right-
hand side can be simplified by using, e.g.

L), (5555 = (1 = 8,)s2 L, 520+ 8y £, (557529, (18)

2122
Imposing the closure conditions for the local magnetization, i.e., equations (15a)—(15g) for symmetric and
equation (16) for antisymmetric jump operators, respectively, we observe that the right-hand side of
equation (18) can be expressed in terms of either single spin or pairs of spin operators. As a consequence, the
equation of motion for the two-point function O, ,, (see equation (17)) decouples from higher order correlation
functions. We have therefore shown that the closure conditions for one-point functions are indeed sufficient to
close the equation of motion for two-point correlation functions. These arguments can be trivially generalized to

arbitrary n-point correlation functions.

2.3. Hamiltonian contributions
We briefly comment on the situation when H = 0, inquiring under what conditions the hierarchy for n-point
correlation functions closes. To this end, we assume a general Hamiltonian that takes the following form

H= ZZh(‘s + ZD“ﬁsas (19)

(oy)a

with real-valued coefficients h®, J* = JB We evaluate the first term on the right-hand side in equation (3),
which yields

i[H, s Zfa”h” T DD DT ey (20)

¥ 1 (>x)B7,6

Calculating the ensemble average, we see that the second term on the right-hand side will induce a dependence
on higher order correlation functions. Thus, to close the hierarchy we require that J*? = 0. Accordingly, we will
only allow for local Hamiltonian contributions in the following.

3. Dissipative cooling into a BEC

In previous work [42], we studied the purely dissipative dynamics of a many-body quantum spin system on a
hypercubic d-dimensional lattice with periodic boundary conditions. The considered dissipative process is
distinguished by non-Hermitian jump operators that lead to the growth of correlations and the generation of
macroscopic order in the final state. We discussed the dependence of the dissipative gap on the system size and
found a novel nontrivial scaling behavior as a function of the system size N = L%, where L denotes the linear
extent. In this section, we briefly summarize our main results and comment on the universality of this process
with respect to the chosen lattice structure and boundary conditions of the problem. In section 4, we augment
this investigation by including the effect of thermal noise and studying the stability of the dissipative process.

3.1. Non-Hermitian jump operator and NESS
We consider a quantum Markov system of spin-1,/2 particles that is driven uniformly on the lattice by the
application of non-Hermitian operators ./ Q,,, where

1 _ _ 1 .
Qy = E(s;r + )0 —5,) = 5(53 —5)) +i(sys) — s¢5))s 21

which acts on adjacent lattice sites (x,y). The associated dissipative coupling, denoted by 7, is independent of the
particular pair of particles (x,y). The operator Q,, maps any two-particle spin-singlet state to the spin-triplet,
while conserving the total spin projection S> = 3" _s? along the quantization axis, and annihilates the spin-
triplet state, i.e., Qxy =

The final state pyggg of the time evolution is determined by the fixed point of the dynamic map

Lpygss = 0. (22)

This state is unique for a given initial state and corresponds to an ensemble of totally symmetric superposition
states [25]. By virtue of the quantum spin-1,/2 to hardcore boson mapping [53], this dissipative process can also
be seen as a symmetric delocalization of hardcore bosons over adjacent sites, with a BEC of hardcore bosons as
the resulting final state.
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3.2. Evolution equations for correlation functions

In section 2.2 we have seen that the hierarchy of correlation functions closes for the non-Hermitian jump
operator Q,,. Here, we derive the explicit form for the equations of motion of one- and two-point functions
when the dynamics is governed only by the dissipative process /7 Q,, on nearest-neighbor sites, neglecting the
effect of Hamiltonian contributions.

3.2.1. Local magnetization
We begin with the time evolution equation for the local magnetization S§ = tr{ps;'}. To derive the equation of
motion, we use the relation

Q)58 Qo] + [Ql £1Qy = 555 = 0, (23)

and sum over all nearest-neighbor pairs (x,y), keeping x fixed. Calculating the trace over the density matrix p
(using equation (3)) we obtain the diffusion equation

d 1
-
The dimensionless time variable 7 = ~t is introduced for later convenience, as well as the discretized Laplacian
Ay e, Agdy, = Zz: 10+ pyy — 265 + 6x—pyy), where the lattice constant is set to 1, and /i denotes the unit
vector in the y-direction on the regular spatial lattice.

3.2.2. Spin—spin correlation functions

To follow the growth of long-range correlations we consider the ensemble average of bilocal spin operators s;* sf .
In particular, we consider C,, = s s, + s sj and D,, = 5] sf , for which we define the expectation values

Cy = tr{pCy}and D,, = tr{pD,,}. Note that similar to the local magnetization, we will use calligraphic fonts
to denote ensemble-averaged quantities in the following. The adjoint map £, corresponding to the non-

Hermitian jump operator Q,, maps the operators C,, and Dy, (x = y)to

QLICy, Qul + [QL, CylQy = %(1 — 6,.)(Cyz — Cxy) + 6, (Coe — 2Cy, — 4Dy, (25a)
& & 1
QL [Dy» Qul + [QL, DylQy, = S - 6,2)(Dy, — Dy), (25b)

while the diagonal elements C,, = 4D,, = 1 are mapped to zero. The time evolution equation for the
expectation values Cy, and D,, are obtained by summing over all nearest-neighbor pairs of x and y, and averaging
over p (see equation (17)). For x = y, we obtain

d 1 1
Ecxy = Z(Ax + Ay)cxy - E&x,y) (ny + 4ny): (26a)
d 1 1

Eny = Z(Ax + Ay)ny + E(S(x,y)(pxy — D), (2617)

while the diagonal terms C,, = 4D,, = lare constant in time. Given initial data for the two-point correlation
functions, the above first-order system of differential equations

o))
dr ny ny
can be solved explicitly via matrix diagonalization, where M denotes the linear differential operator thatis
determined by equations (26a) and (26b). Its solutions can be expressed in terms of a linear combination of
exponential functions, whose characteristic decay rates are determined by the nonvanishing eigenvalues of M
(see section 3.3).

We exploit spatial translation invariance in the following to explicitly solve the linear system of

equations (27). Accordingly, we may characterize the time evolution of spin—spin correlation functions in
momentum space, e.g.

1 i _
Cp = F Zelzltp/‘(x Pu CX}” (28)
Xy
with p, = 2mn, /Landn, € {0,...,L — 1}. The zero-momentum component C,_, corresponds to the
condensate fraction, which indicates the buildup of long-range correlations in the system.

7



10P Publishing

NewJ. Phys. 18 (2016) 073015 S Caspar et al

10°: (b)

)

[=]

L 0.1 10%;
o) T

5 o
= § 10
£ 0.01 o

2 -1 2

X 5 10%: = A= 02N

3 =

2 S
S = o A} ~0.14Nlog,o(N)
g1 03 100+

S v A3 L'i ~(0.33N

RIS s e e e 10 7 3 3
0.01 1 100 10* 10° 108 100 1000 10 10 10
time T particle number N

Figure 2. (a) Time evolution of the condensate fraction C,_o(7) for a fixed system size N = 4096 onad = 1 (dotted), d = 2 square
(dashed),and d = 3 primitive cubic (solid) lattice. The dashed horizontal line denotes the exact asymptotic value
C;O:o = (N + 1)/(2N). (b) Inverse dissipative gap A~! evaluated on a regular lattice with periodic boundary conditionsind = 1
(squares), d = 2 (dots),and d = 3 (triangles) dimensions as a function of the system size N, see also figure 2 in [42].

3.3. Dynamics of purely dissipative cooling
As an example, we illustrate the time evolution starting from an incoherent thermal ensemble at infinite
temperature

p(0) = dy'lL (29)
For this initial state, the spin—spin correlation functions are easily evaluated, i.e.
ny(o) = 4ny(0) = by, (30)

indicating the absence of long-range correlations in the system. Also the final state can be found explicitly

N
. _ N
lim p(r) = dNIZ(H)|D(N, m) (DN, )], 31)
Too n=0
which is expressed in terms of totally symmetric Dicke states, [D (N, n)) = [N/2, —N/2 4 n),which are
simultaneous eigenstates of 3", (5%)? and %, respectively. Using equation (31) we determine the asymptotic
values for the correlation functions

. 1
. 1
Dy, = Th_)n;c Dy (1) = Zéxy. (32b)

To solve for the full real-time evolution we diagonalize equation (27) numerically. Our results are shown in
figure 2(a), where we display the time evolution of the condensate fraction C,—(7). The timescale on which the
asymptotic regime is reached, i.e., C,—g > CpZ4e™, 0 < ¢ < 1, depends strongly on dimension. We may
understand this behavior by inspecting the spectrum of the linear operator M (see equation (27)). The
corresponding eigenvalues A € Spec(M) take only nonpositive values and the mode corresponding to the
eigenvalue

A = —maxRe\ > 0, (33)
A

which is denoted as dissipative gap in the following, dominates the asymptotic approach towards the final steady
state. Interestingly, we find by numerically diagonalizing the full Lindbladian £ on small system sizes that the
value of the smallest negative eigenvalue of the linear operator M is identical to the dissipative gap of the
Lindbladian L. It seems that the spin—spin correlation functions capture the slowest mode of the full
Lindbladian L for the system under consideration.

For the purely dissipative process governed by the jump operators Q,,, the coupling y can be scaled out, so
that the total number of particles N = L provides the only scale in the problem. Thus, the dissipative gap is a
function of the system size and we may inquire about its asymptotic scaling properties, i.e., A ~ L™, for
sufficiently large L. We remark that the finite-size scaling of A has been studied in detail for various one-
dimensional bosonic and fermionic systems [34, 35, 37-39, 41, 54-56, 59]. However, here we observe that the
considered purely dissipative quantum spin system exhibits a highly nontrivial scaling behavior that depends
strongly on dimension [42]. The asymptotic finite-size scaling is given by
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Figure 3. (a) Inverse gap A! for differentd = 2 dimensional lattice geometries, i.e., square (O), triangular (V), and honeycomb (O),
with fixed (periodic) boundary conditions as a function of the system size N. (b) Inverse gap A™! forad = 2 dimensional square lattice
with open (dots) and periodic (squares) boundary conditions as a function of the system size N.

L2, d=1,
A~q L 2ogl)yt, d=2, (34)
L3, d=3,

which is illustrated in figure 2(b) for the d = 1,d = 2 (square), and d = 3 (primitive cubic) lattice geometries.

3.4. Universality of the dissipative cooling process

The observed nontrivial finite-size scaling of the dissipative gap for different dimensions d is remarkable. This
concerns in particular the logarithmic correction in d = 2. One might speculate whether this behavior is due to
the presence of topological defects (e.g., vortices) in the system. The deeper mathematical reason for this scaling
behavior and its relation to the properties of M has not been fully elucidated yet. Consequently, we checked that
this scaling behavior is not an artifact of the lattice structure or the boundary conditions of the problem.

In figure 3(a), we display the scaling of A for d = 2 dimensions upon changing the lattice geometry for fixed
(periodic) boundary conditions. Specifically, we consider three different regular tilings of the plane,
corresponding to a square (O), triangular (V), and honeycomb (0O) lattice geometry, respectively, and clearly
observe the A™! ~ N log N scaling for large N'in all cases. However, note that the numerical values of A(N)
differ. Empirically, we find that Ay > Ap > Ag (see figure 3(a)), which can be attributed to the decrease of
coordination number, i.e., n. v > #.0 > 1.0o-

Finally, we also investigated how the choice of boundary condition influences the finite-size scaling of the
dissipative gap A. In figure 3(b), we consider ad = 2 system on a square lattice with either open or periodic
boundary conditions. Note that we are restricted to comparatively small lattice sizes when translation invariance
is not imposed on the system. Nevertheless, we clearly observe that the above scaling is not altered by the choice
of boundary conditions and we find Apgc > Appc. Summarizing, our results indicate that the dynamics of the
purely dissipative cooling process for d = 2 is rather insensitive to the lattice structure or boundary conditions,
and we expect a similar behavior ford = landd = 3.

4. Dissipative dynamics in the presence of competing unitary and nonunitary processes

Here, we supplement the purely dissipative cooling process considered in section 3 by competing unitary and
nonunitary processes. We restrict ourselves to Hamiltonians that include only a coupling to a uniform magnetic
field, which is a necessary requirement to close the hierarchy of correlation functions. Moreover, we study the
effect of thermally induced spin flips via an additional nonunitary process.

4.1. Competing unitary dynamics in the presence of a magnetic field
We consider the effect of an external field that points in the 1-direction, as described by

H=h) s, (35)

with & > 0 without loss of generality. Note that in terms of hardcore bosons, this Hamiltonian describes the
equally probable creation and annihilation of particles. Unlike the cooling operator Q,,, this Hamiltonian does
not conserve the total spin projection S°. The equations of motion for correlation functions receive additional
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contributions from the Hamiltonian part in equation (3), for which we need to calculate the following
commutators
[I_Il) ny] =2 [Hla Ecy] =-2 [Hl) ny] = ZIhExya (360)
[H), Exy] = 2ih (ny - Ecy): (36b)

3 sy2 and F,, = s? sy2 have been introduced, in addition to C,, and D, to close

where the operators E,, = s? sy3 + 55

the set of evolution equations. The dissipative contributions that arise from the action of the adjoint map L), are
proportional to

N 1
sz [Exy: sz] + [Q;z: Exy]sz = E(l - 6yz)(Eyz - Exy)) (37{1)
+ 1 1
sz [Fx > sz] + [Q;p ny] sz = E(l - 6}/2)(Fyz - Ecy) + 6)/2 (Fxx - ny - Ecxy)- (37b)
Proceeding along the same lines as in the previous section, we obtain the full set of evolution equations
d 1 1
—Cxy = —(Ax + A))Cay — —01x,)(Cxy + 4Dyy) — 21 &y, (38a)
dr 4 2
d 1 1
_ny = _(Ax + Ay)ny + _6<x,y>(ny — Do) + n gx > (3817)
dr 4 2
d 1 1
_gxy = _(Ax + Ay)gxy + _6<x,y> gxy + zn(-ﬁcy - ny)) (38¢)
dr 4 2
d 1 1
Efxy = Z(Ax + Ay)]:xy + Z(S(x,y)(z‘}-xy - 2ny - ny) -7 gxy) (38d)

where 17 = h/~ is the dimensionless magnetic field variable, rescaled by the dissipative coupling 7. The diagonal
elements are constant in time, C,, = 4Dy, = 4F, = 1, & = 0, and the system of first-order differential
equations (384)—(38d) can be solved via diagonalization of the corresponding linear differential operator M,,.
We assume an incoherent thermal ensemble at infinite temperature as the initial state, such that

Cy(0) = 4D, (0) = 4F,,(0) = by, and £,,(0) = 0.

We first investigate the asymptotic behavior of the system by studying the spectrum of the linear differential
operator M,,, which is defined by the system of equations (384)-(38d). For = 0, the four largest eigenvalues
of M, (in decreasing order of their respective real part) are givenby Ay = A, = A3 = 0and A, = —A <0,
where the dissipative gap A = A, _is determined in section 3.3. Switching on the external magnetic field »,
two of the zero eigenvalues pick up an imaginary part, by which the spectrum is modified as follows: \; = 0,
A3 = +2in,and Ay = —A. This behavior has immediate consequences. First, the longest timescale in the
system, which is determined by the dissipative gap, is not changed in the presence of an external magnetic field.
On the other hand, the imaginary eigenvalues 4-2ir indicate that the system does not converge to a unique final
steady state. The correlations are rather seen to exhibit oscillations with frequency 27 around an average
asymptotic value—the system is asymptotically characterized by a limit cycle. We determine the late-time
behavior analytically for 7 >> 1/A from equations (38a)—(384):

3 + 54
Coy(T>1/A) = Ty +2(1 = 6)g (1, N)cos(2nT — o), (39a)
1 + 36,
Dy(r > 1/A) = ?y — (1 — &4)g(m, N)cos2nr — o), (39b)
Egy(T> 1/A) = 2(1 — by)g (), N)sin(2nT — ¢), (39)
14 36,
Fo(r>1/A) = BETE + (1 — bx)g (1, N)cos(2nT — o). (394)

Here @is an irrelevant phase offset and the function g (1, N) describes the oscillation amplitude at late times. In
figure 4 we display the time evolution of the various two-point correlation functions, which clearly exhibits the
oscillatory behavior at late times. Moreover, we numerically determine g (1, N) for which we observe a
monotonic decay with increasing magnetic field strength 1, where g (n — 0, N) = 1/16
and g(n — oo, N) = (8Nn)~L.

Finally, we display the time evolution of the condensate fraction C,_o(7) for different values of 1 in figure 5.
According to (39a), its late-time behavior is determined by

N+5 20N -
8N

In comparison to the purely dissipative cooling dynamics (7 = 0, see section 3) for which the steady-state
o0

condensate fraction C 0 =N+ 1) /(2N) is approached, we find that the presence of a nonvanishing

Coo(T > 1/A) = g (n, N)cos(2nr — ). (40)

10
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Figure 4. Time evolution of the two-point correlation functions C,, (1) (dotted—dashed), Dy, (1) (solid), £, (1) (dashed), F.,(T)
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Figure 5. Time evolution of the condensate fraction C,_o(7) for N = 4096 onad = 2 dimensional square lattice for different external
magnetic fields n = 0 (dotted), n = 1 (solid, black), n = 5 - 10~* (solid, purple), n = 10~ (dashed) and 1 = 107> (dotted—dashed).
The dashed horizontal lines indicate the asymptotic value C;_y = (N + 1)/(2N) as well as the late-time average

lim, o> Ail dr! Cpeo(!) = BN + 5)/(8N).

magnetic field substantially decreases the late-time average value

N S . 3N45
lim ~ fA A7 o) = (41)
4.1.1. Model two-spin system
To understand the main features of the dissipative real-time dynamics of equations (394) and (40), we may
consider a model system consisting of two particles for which the time evolution of the density matrix can be
easily calculated explicitly. To this end, we provide the initial density matrix
1
p(O) = (It (el + 1) (el + [to) {tol + 15) (s, (42)
with the tripletstates [t,) = [T1),]£.) = |11),[to) = (ITL) + 111))/~/2,as well as the singlet state
Is) = (IT1) — |1T))/~/2. For vanishing magnetic field, the time-dependent density matrix is given by
_ 1
p=0(r) = J Ul 1) (1 + @ — el (fo] + €77 1) (s, (43)

i.e., the singlet state |s) (s|is mapped to the triplet state |t, ) (¢, | while the other components remain invariant
under the time evolution. This picture changes in the presence of a nonvanishing magnetic field. While the
dissipative process of section 3 still eliminates the singlet component from the ensemble, the magnetic field
results in a mixing of the three triplet states

11
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SR a(r)
p(T) = 4e Is) (s| + —16(1 ) () (e + [e2) (D)

a(7) c3(7)
— T o) (to] + —=——(t )t | + |t )t ]
8(1+4772)|0><0| 1601+ 47) [t0) (e ] + 1) (24
icy (7)
— (It (o] 4 1) (tol — [t0) (£ — [to) (t-]), (44)
872 1 4n) [£1) (tol + 1£=) (ol — Ito) (] — Ito) (|
where the time-dependent coefficients are given by
a(t) = 5(1 + 4n?) — 4n%e™7 — cos(2nT) — 21 sin(2nT), (45a)
(1) =31 + 49%) — 2(1 + 2nHe ™ + cos(2nT) + 21 sin(2n7), (45b)
c3(1) =1 + 4n? — 4n%e™™ — cos(2nT) — 21 sin(2n7), (45¢)
cy(T) = —2ne" 7 + 2ncos(2nT) — sin(2nT). (45d)
Defining the two-particle operator C = s* ® s~ + s~ ® s*,weevaluate C |t,) = C |£_) = 0, C |ty) = |t0),
and C |s) = —|s). Thus, it is sufficient to consider only the diagonal elements of the density matrix, denoted by
Paiagy O calculate the expectation value C = tr{p C}. In fact, the time-averaged diagonal entries Piiag At late times
are given by
1 7 1
lim—f dr’ pl (7)) = — (G |ty) (ts] 4+ 5 [t-) (t_| + 6 [to) (to]). 46
qm= ) Plliag (7)) 16( |£:) (£4 le-) (t-| £0) (tol) (46)

This result should be compared to the NESS density matrix in the absence of an external field
. 1
Piess = E(‘} ) (el + 4 1e2) (e | + 8 [10) (1. (47)

Thus, the magnetic field generates an average spin rotation, which decreases the |ty ) (| contribution when
compared to the final state of the driven, purely dissipative system. As a consequence, the late-time average value
limTﬁooé f;l dr’ C'"(1") = 3/8 is smaller than the asymptotic value for the purely dissipative cooling dynamics
C"=% = 1/2.1t therefore appears that the phenomenology of the macroscopic N-particle system in the presence
of amagnetic field in the 1-direction is essentially captured by the corresponding two-spin model system.

4.2. Competing thermal noise
Here, we introduce the effect of an external magnetic field that points in the 3-direction

Hy=h3s, (48)

where we assume that ki > 0. In contrast to H,, the Hamiltonian H; commutes with Q,,, and therefore it does
notlead to an additional coupling to two-point operators (as we encountered in the previous section). Here,
however, we allow for local spin flips via additional jump processes that are accounted for by local operators

LE = sF[56-59]. In general, we may assign independent interaction rates fyj to both processes L. Assuming a
thermal occupation of the bath, however, the spin flip rates are related via the Boltzmann factor

2 2h
V—f = exp(——), (49)
~
where T denotes the bath temperature and we assume spatial homogeneity (*yf = ~1). This relation does not set
the overall interaction rate which we denote by x. We assign the following values to the ratios

+
K K

where ny = (e2/T — 1)~ !is the thermal occupation number. The equations of motion for correlation
functions (3) receive additional contributions from the spin flip processes L

LH 3 LE + (D, s 1LE = —252 £ 1, (51a)
LHCxp L1 + [LD), CylLy = —Cy, (51b)
(L [Dyy L] + [, Dy LT = —2Dyy * 5, (51c)

while the commutators [Hs, C,,] = [H;, Dy, ] = [H;, s7] = 0yield no additional terms. Accordingly, the closed
set of time evolution equations reads

igi = leSi ~ Znr + DS; — =, (52a)
dr 4 y 27y

12
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Figure 6. Comparison of the dissipative gap for purely dissipative cooling dynamics A with the three largest nonvanishing eigenvalues

A2 = —Ar, A; and A4 of the linear differential operator Mr on a double-logarithmic scale as a function of the system size N. The data
was obtained onad = 2 dimensional lattice with parameters x/y = 1077 and ny = 10.

d 1 1
_CX}/ = _(Ax + A)/)ny - _5<x,y>(cxy + 4ny) - E(271T + l)cxy) (52b)
dr 4 2 ¥
d 1 1 2K K 3 3
—Dy = — (A, + Ay)ny + _6<x,}’>(Dx)’ — Dy) — —(Q@2nr + I)DX)’ - _(Sx + SY)’ (52¢)
dr 4 2 ~ 27

while Cy, = 4D, = 1.

The behavior of this system, which is driven by the operators \/F L¥and J7 Qs can be fully characterized
in terms of two independent parameters—the ratio of couplings /- and the effective temperature T/h. To
understand the relevant modes that determine the late-time behavior, we inspect the spectrum of the linear
differential operator My as defined by the system of linear equations (52a)—(52¢). Again, we consider an
incoherent infinite-temperature ensemble as initial state, for which C,,(0) = 4D,,(0) = 4,, and S2(0) = 0.

The spectrum of My is real and nonpositive so that the asymptotic behavior is governed by the dissipative
gap Ar. Itis independent of the system size

Ar = E@np + 1), (53)
v

which is in stark contrast to purely dissipative cooling dynamics (x = 0), for which the dissipative gap A exhibits
anontrivial finite-size scaling. This means that the presence of a thermal bath dominates the asymptotic behavior
of the system. More specifically, for the purely dissipative process governed by the jump operators Q,,, the three
largest eigenvalues are given by A} = A\, = 0and \; = —A. The presence of thermal noise, however, lifts the
degeneracy of the zero eigenvalues such that \; = 0, A, = —Ag,and A\; < A,. In figure 6 we compare the
spectrum of a dissipative system in both cases—with and without thermal noise—and we display the scaling of
the largest eigenvalues as a function of N. We clearly observe that Ay is independent of the system size when
compared to A (with k¥ = 0), which exhibits the nontrivial A™! ~ N log N scalingind = 2 dimensions.

Owing to the fact that L does not conserve spin, [s2, L] = 0, we obtain a nonvanishing value both for the

X
asymptotic magnetization S> and for the two-point function D,

1

lim Si(1) = —————, 54
Ti»nolo x(T) 2(2711" + 1) ( )
lim Dy (r) = L[6, + 2 (55)
im Dy, (1) = —| Oy .
T—00 i 4 4 (27’[’1‘ + 1)2

While these values can be calculated easily by hand, to determine C3 we need to invert the linear differential
operator corresponding to the linear system equations (52a)—(52¢), which for large system sizes, can only be
done numerically. We observe that the correlation function C ; (k = 0) decays with the separation |x — y|in
the presence of a thermal coupling, as shown in figure 7. This is in contrast to the dissipative process governed by
the operator Q,,, for which the asymptotic value is given by C3) = 1/2, for x = y. We conclude that the
thermally induced spin flips counteract the cooling process and destroy the long-range order in the system,
thereby introducing a correlation length £ < L.

The asymptotic value of the zero mode C},_; strongly depends on the parameters v/« and T/h, as well as the
particle number N. Setting the number of particles to N = 4096, we calculate the NESS phase diagram, which is
shown in figure 8(a). In this case, we find that the thermal noise destroys the long-range order more or less
completely in the range v/x < (O(10%), independent of the temperature T. This means that the coupling of the
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cooling process y needs to be larger than that of the thermal bath by several orders of magnitude in order to
generate a macroscopically ordered state. On the other hand, for large values of -y /x, we observe an intriguing
dependence of C?f:o on the temperature T (see figure 8(a)). That s, for fixed v/ x and finite N, we find a non-
monotonous behavior of C ;OZO(T), where in the limiting cases limy_,oC ;":0( T) = limr_,,.C ;":0( T) =1/N.In
fact, these values corresponds to the lower bound for the zero mode C,,—. This can be understood in the
following way: in the limit T — 0, spin-flip operations s; are forbidden, such that the action of s, on all
possible sites aligns all spins along the negative 3-direction, see equation (54), hence destroying any long-range
order in the (1, 2)-plane. In the opposite limit T — oo, we have ¥* = 4~ — o0 such that the spin-flip
operators s, and s; completely dominate the dynamics and, hence, prohibit any long-range order. Between
these two limits, for any value of 7/, we observe that there exists an optimal value T, for which C}”  takes its
maximum value (see figure 8(b)), also indicated by the continuous line in figure 8(a). Thus, we may find a
distinct temperature region I} < T' < T, in which the engineered dissipation performs robustly even in the
presence of thermal noise.

This region depends on the ratio of couplings v/« and the system size N. As the number of particles N'is
increased, the nearest-neighbor symmetrizing action Q,, finds it more and more difficult to compete against the
thermal coupling that acts locally. Thus, we expect that in the thermodynamic limit N — oo, single spin flips
eventually destroy any long-range order and therefore dominate for any finite value of v/ . In contrast, for a
small number of particles N the value of v/ thatis required to generate long-range order decreases as well (see
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figure 8(b)). In view of experimental realizations [27], our findings indicate that thermal fluctuations are not too
prohibitive for generating long-range order via engineered dissipation, at least for not too large systems.

5. Conclusions

In this work we have studied the time evolution of correlations in the context of an open Markovian quantum
many-body system, which was originally proposed for the dissipative cooling into a BEC [25-27]. In a previous
publication [42] we showed that the corresponding purely dissipative process governed by the single non-
Hermitian quantum jump operator Q,,, = %(sx+ + s; )(sy — s, ) allows for a semi-analytic solution of spin—
spin correlation functions. Here, we have extended these results by studying the universality of the dissipative
process.

We have established that the novel finite-size scaling behavior of the dissipative gap is in fact insensitive to
the choice of lattice discretization as, e.g., provided by the lattice geometry or boundary conditions.
Furthermore, we have studied the stability of the dissipative cooling process with respect to unitary and
nonunitary perturbations. To this end, we derived conditions under which additional perturbations can be
considered within the framework of a closed hierarchy of correlation functions, thereby admitting a closed
analytic solution to the nonequilibrium dynamics. In particular, we allowed for the presence of a uniform
magnetic field, as well as a coupling to a thermal bath «, while the system is driven by the dissipative cooling
process with a uniform rate . We calculated the NESS phase diagram and found that for any finite particle
number N, above a certain threshold value for the coupling ratio 7/, the system allows for a final state pges
with long-range order. However, the efficiency of the dissipative cooling mechanism decreases with the system
size N'and the correlation length eventually becomes zero in the thermodynamic limit N — co. We provided
concrete numerical bounds for the dissipative couplings v and «, as well as the system size N in order for the
dissipative process to perform robustly.

The following picture appears with regard to experiments: it seems that the finite system size Nis crucial for
the dissipative cooling protocol to generate macroscopic order in the presence of a nonvanishing coupling to a
thermal bath. That is, our results indicate that the driving with jump operators Q,, can be competitive only for
small N, where the necessary ratio of dissipative couplings v/ to achieve long-range correlations is small. These
results are consistent with a recent experimental realization of the dissipative cooling protocol usingup to N = 4
particles [27] and it is reasonable to expect that similar proposals for dissipative state generation might face the
same limiting constraints with respect to system size.

Itis a natural question whether our discussion of closed hierarchies for s = 1/2 quantum spin systems can
be generalized to arbitrary spin representations. This would provide a unique means of studying the classical
limit (s — o0) of driven open quantum spin systems and possibly other types of dissipative dynamics with
distinct properties of the final state. Additional information on the asymptotic dynamics for quantum
dissipative processes can be obtained by investigating the linear response [60] in the vicinity of the NESS. This
would allow us to inquire about the presence of generalized fluctuation—dissipation relations (see, e.g., [61-63])
in the general setting of open Markovian quantum dynamics. We hope to address these questions in future work.
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