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Abstract
We investigate the real-time dynamics of open quantum spin-1/2 or hardcore boson systems on a
spatial lattice, which are governed by aMarkovian quantummaster equation.Wederive general
conditions underwhich the hierarchy of correlation functions closes such that their time evolution
can be computed semi-analytically. Expanding our previouswork (2016 Phys. Rev. A 93 021602)we
demonstrate the universality of a purely dissipative quantumMarkov process that drives the systemof
spin-1/2 particles into a totally symmetric superposition state, corresponding to a Bose–Einstein
condensate of hardcore bosons. In particular, we show that the finite-size scaling behavior of the
dissipative gap is independent of the chosen boundary conditions and the underlying lattice structure.
In addition, we consider the effect of a uniformmagnetic field as well as a coupling to a thermal bath to
investigate the susceptibility of the engineered dissipative process to unitary and nonunitary
perturbations.We establish the nonequilibrium steady-state phase diagram as a function of
temperature and dissipative coupling strength. For a small number of particlesN, we identify a
parameter region inwhich the engineered symmetrizing dissipative process performs robustly, while
in the thermodynamic limit  ¥N , the coupling to the thermal bath destroys any long-range order.

1. Introduction

With the advent of ultracold gases and trapped ions as tunable quantum simulators, experiments are now in the
position to investigate the real-time evolution of quantummany-body systems directly with engineeredmodel
Hamiltonians [1–3]. Recent years have seen tremendous progress that promises new insights at the intersection
of condensedmatter physics, high energy physics, and beyond [4, 5].While experiments have been very
successful in probing the dynamics of quantummany-body systems, it is fair to say that to date our theoretical
understanding remains incomplete. Thus,many important problems regarding nonequilibriumquantum
dynamics as, e.g., the characterization of steady states or the calculation of transport properties far from
equilibrium are still beyond our reach. There are several reasons for this disparity.While exact diagonalization
provides uswith rigorous results it is limited to systems consisting of a small number of particles. The density
matrix renormalization group [6, 7] allows for the efficient simulation of real-time dynamics for a large variety of
one-dimensional gapped quantummany-body systems [8–11]. Nevertheless, its applicability remains largely
limited to short times due to the growth of entanglement. QuantumMonteCarlomethods are not limited by
macroscopic quantum correlations, however, their application to nonequilibriumdynamics is hindered by a
severe complex phase problem.

In light of these limitations, it is quite remarkable that a class of open quantummany-bodymodels [12] can
be solvedwithout approximations. This is of particular interest since open quantum systemswith engineered
couplings to an environment [13] have been proposed recently for the preparation of quantum states [14–18],
quantum simulation [19–21], as well as quantum computing [14, 22–24]. Typically, the nonequilibrium steady
state (NESS) of the engineered dissipative process, which defines a unique fixed point for the dynamics, is known
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by construction2; examples include condensates of bosons or η states of fermions [25, 26], condensates of
quantum spins or hardcore bosons [27], d-wave pairing states of fermions [28, 29], and various topologically
ordered states [30–33]. So far, formost of these systems the real-time evolution leading to the final state is less
well understood. It is known, however, that the dissipative contributions to the dynamicsmight in fact close the
hierarchy of n-particle correlation functions such that a semi-analytic solution of interacting quantum systems
becomes feasible. This observation has been exploited in a number of works [34–40] and general closure
conditions for the hierarchy of correlation functions have been derived for bosonic and fermionicmodels [41].

In recent work [42], we investigated a protocol for the dissipative generation of a Bose–Einstein condensate
(BEC) [25–27]. In particular, we considered amacroscopic systemofN spin-1/2 particles, where the time
evolution of the reduced densitymatrix ρ is governed by aMarkovian quantummaster equation [12, 43, 44]

[ ] ( ) år r r r= = - +
l

l
t

H
d

d
i , , 1

l = ¼ -d1, , 1N
2 , where =d 2N

N denotes the dimension of theN-particleHilbert space, and  = 1 in the
following. The Lindbladian [ · ] = - + ål lHi , is a linearmap on the set ofmixed states and the
commutator part defines the systemHamiltonianH, which isHermitian. The dissipative coupling to the
environment is described by the non-commutator part ål l of.Written in Lindblad form, the action of its
constituentsl on ρ is expressed in terms of jumpoperators lL

{ } ( )† † r g r r= -l l l l l l⎜ ⎟⎛
⎝

⎞
⎠L L L L

1

2
, , 2

where the rate parameters gl 0 characterize the relative strength of the dissipative couplings. Equation (1)
represents an effective description of the systemwhere the environment has been integrated out, yielding
operators gl lL that are expressed in terms of the local spin degrees of freedom asx , where a = 1, 2, 3denotes
the spin index and x labels distinct particles. Specifically, in [42] only a single class of non-Hermitian jump
operators was considered, which acts on pairs of particles, i.e., ( )( )= + -+ + - -L s s s sxy x y x y

1

2
, where

= s s six x x
1 2. In the absence of aHamiltonian contribution (H=0), wewere able to show that this process

yields a closed hierarchy of correlations, thereby allowing us to solve for the full real-time evolution of spin–spin
correlation functions. Thus, the dynamics of dissipative Bose–Einstein condensation could be followed explicitly
by studying the relaxation towards thefinal state ∣ ∣r = ñáBEC BECNESS , satisfyingr = 0NESS .

Here, we go beyond thisfirst exploratory work and establish the generality of our approach, which allows us
to investigate the susceptibility of the considered quantumMarkov process to unitary and nonunitary
perturbations. Specifically, we consider operators Lx that act locally on particles at site x, as well as bilocal jump
operators Lxy that act on pairs of particles (x, y), both in the presence and absence of a uniformmagnetic field.
Whilemultilocal operators Lx x xn1 2

, with >n 2, are conceivable and have been studied theoretically, e.g., in the
context of steady states with nontrivial topology [45–48], local and bilocal operators appear to be sufficient to
describe the phenomenology of engineered dissipative quantum spin-1/2 systems for BEC generation [27, 49].

The outline of this paper is as follows: in section 2we derive the closure conditions for hierarchies of
correlation functions of quantum spin systems in the =s 1 2 representation in the case of openMarkovian
dynamics that is governed by local and bilocal jumpoperators. In section 3we discuss the dynamics of an
engineered dissipative process that drives the system into amixture of totally symmetric superposition states.
We describe the growth of long-range correlations in real time and consider the finite-size scaling of the
dissipative gap. In section 4we investigate the same dissipative process in the presence of thermal noise and a
uniformmagnetic field. Our results are summarized in theNESS phase diagram for the coupledmodel.We
concludewith an outlook on applications and possible further developments of this work.

2. Closed hierarchies for correlation functions

Throughout this workwe consider quantum spin-1/2 systems on a regular d-dimensional lattice. The spin
degrees of freedom s=a asx x

1

2
are expressed in terms of Paulimatrices sa defined locally at site x, while the total

spin operator is given by = åa aS sx x . The assumption of an underlying regular lattice structure is not essential,
however, it allows us to exploit the symmetries of the lattice to simplify the problem and to solve for the
dynamics of correlation functions ofmacroscopic quantummany-body systems.

In the following, we consider the dynamics of n-point correlation functions { }  r= Otrz z z z z zn n1 2 1 2
, in

particular, products of spin operators   = O sz z z i n z1n i1 2
(where spin indices ai are omitted). Using

equation (1)wederive the equation ofmotion

2
More complicated examplesmight be possible, e.g., where the late-time asymptotic behavior is characterized by a limit cycle.

2
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wherewe have introduced the dual (or adjoint)map [ · ]* * = + ål lHi , corresponding to the Lindbladian
. In general, equation (3)does not close, i.e., the commutators on the right-hand side typically induce operators
of higher order. This leads to an infinite hierarchy of correlation functionswhich cannot be solvedwithout
truncating the coupled set of equations.Here, we seek conditions under which the opposite is true. That is, we
derive conditions underwhich the hierarchy of correlation functions closes for a purely dissipative quantum
Markov process (H = 0) defined in terms of local (section 2.1) or bilocal jump operators (section 2.2).We
discuss possible solutions to these conditions and return to the effect of unitary perturbations in section 2.3.

2.1. Local jumpoperators
We start with the discussion of local operators g Lx x (g > 0x ) to illustrate the derivation of closure conditions.
Any local jumpoperator can be expressed in the form

( )å= +
a

a aL l l s , 4x x
0

where the coefficients l0 and al , a = 1, 2, 3, are defined up to an overall phase factor, whichwemay use to set
Îl0 and Îal . Since Lx acts locally and spin operators at different sites commute, we observe that the

commutator terms in equation (3) only contribute when =x zi, = ¼i n1, , (see figure 1(a)). Thus, the equation
ofmotion for n-point correlation functions can bewritten as

( )
* å r=

= ¹

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭t

s s
d

d
tr , 5z z z

i

n

j i

n

z z z
1

n j i i1 2

Figure 1.Graphical illustration of terms that contribute to the purely dissipative (H = 0) time evolution of correlation functions on a
square lattice (with coordination number =n d2c ) for (a) local jumpoperators Lx and (b)–(d) bilocal jumpoperators Lxy. (a)To
determine the contributions to any n-point function z z zn1 2 , we sumover all insertions of Lzi (red) at lattice sites z1, z2,K, zn and
evaluate the trace (see equation (3)). This is illustrated above for the example of the two-point functionz z1 2 forwhichwe showonly
the nonvanishing contributions. (b)To evaluate the time evolution of the localmagnetization { }r str z we attach nc operators Lyz (red)
to the lattice site z (see equation (13)). (c) For spin–spin correlation functionsz z1 2, where z1 and z2 are nearest-neighbor sites, we
attach one bilocal jumpoperator that connects both sites (blue)while -n 1c jumpoperators are assigned separately to z1 and z2 (red);
see equation (17). (d) In the case of correlation functionsz z1 2 with nonadjacent sites z1 and z2, we attachnc bilocal jumpoperators to
each site.
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with the dual superoperator ( [ · ] [ · ] )† †* g= +L L L L2 , ,x x x x x x , whichmaps the spin asz at site z= x onto the
complete basis of the local spin-1/2 operator algebra, { } s s s, , ,z z z

1 2 3 , and to zero otherwise ( ¹z x).Wemay
express its action in the following form:

( )* åg
d= +a a

b

ab b
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s m m s

1
, 6

x
x z z xz

where the additional factor g1 x is introduced to render the right-hand side dimensionless. The coefficients am
and abm are obtained by using the parametrization of the local jumpoperator (see equation (4)) to evaluate the
action of * ;x we find

[¯ ] ( )å=a

b g

abg b gm l l a
1

4
Im , 7

,

[¯ ] ∣ ∣ [ ] ( )å åd= - +ab a b ab

g

g

g

abg g
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟m l l l l l b

1

2
Re Im , 72 0

and the bar, e.g., ¯al , denotes complex conjugation.We observe that the equation ofmotion closes, i.e., the
equations ofmotion for n-point correlation functions do not couple to higher order correlations, independent
of the particular formof the local jump operators Lx. This does not hold true for generic jumpoperators that act
onmultiple sites, as we illustrate in the next section.

2.2. Bilocal jumpoperators
A large number of suggested protocols for dissipative state generation rely on Lindblad dynamics induced by
jumpoperators that act on pairs of particles (see, e.g. [32]). It is therefore interesting to ask under what
conditions the real-time dynamics can be solved either exactly or semi-analytically. Here, we restrict ourselves to
bilocal operators g Lxy xy (g > 0xy ) that act isotropically on adjacent lattice sites x and y (whichwe denote by

á ñx y, ). Although the assumptions of isotropy and nearest-neighbor couplings are both reasonable, they are not
necessary for the following derivations. They servemerely tomake the following argumentsmore transparent
and to simplify the discussion.

For isotropic systems, any jump operator Lxy is either symmetric ( =L Lxy yx) or antisymmetric
( = -L Lxy yx) under the interchange of x and y. Bymaking use of this fact, wemay reduce the number of
coefficients that parametrize any bilocal operator Lxy and thereby provide explicit closure conditions for such
operators.

2.2.1. Symmetric jump operators
Weemploy the following parametrization for symmetric operators

( ) ( )( )å å= + + +
a

a a a

a b

ab a bL l l s s l s si , 8xy x y x y
0

,

wherewe have defined the symmetrization of indices by ( )( ) = +ab ab bal l l1

2
and the coefficients can be chosen

as Îl0 and al , Îabl . The factor of i is introduced for later convenience. Specific examples for symmetric
jumpoperators, whose purely dissipative dynamics has been investigated recently via a novelMonte Carlo
method [50–52], are the singlet projection operator

( )å= -
a

a aP s s
1

4
, 9xy x y

s

and triplet projection operator

( )å= +
a

a aP s s
3

4
, 10xy x y

tr

respectively.

2.2.2. Antisymmetric jump operators
In the case of antisymmetric operators, wemay choose the following parametrization

( ) ( )[ ]å å= - +
a

a a a

a b

ab a bL l s s l s si , 11xy x y x y
,

where ( )[ ] = -ab ab bal l l1

2
and the parameters al and abl are complex valued in general but due to the phase

ambiguity, wemay choose any one of these parameters to be real. The non-Hermitian operator

4
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( )( ) ( )= + -+ + - -Q s s s s
1

2
, 12xy x y x y

which provides amechanism for dissipative cooling into a BEC [25–27, 42] falls into this class of operators.

2.2.3. Closure conditions
Beforewe go on to discuss the closure conditions for n-point spin correlation functions, we derive the equation
ofmotion for the localmagnetization { } r= strz z and investigate under which conditions it decouples from
higher order correlation functions.

Evaluating equation (3) for n= 1wefind that the commutator terms on the right-hand side contribute only
when jumpoperators Lyz are attached to the site z (seefigure 1(b)). In fact, these contributions have to be
summed over all nearest-neighbor pairs á ñy z, , so that

{ } ( )
∣

* å r=
á ñt

s
d

d
tr . 13z

y y z
yz z

,

The dualmap *xy is defined in terms of bilocal operators, i.e., ( [· ] [ ·] )† †* g= +L L L L2 , ,xy xy xy xy xy xy and its
action on single spin operators can be expressed in the form

[ ] ( ) ( )* å åg
d d= + + + +a a

b

ab b ab b

b g

abg b g
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s m m s m s m s s

1
. 14

xy
xy z x x y y x y xz yz

,

Note that *xy is invariant under the interchange of sites x and y.
Clearly, the equation ofmotion for the one-point function closes only when the contributions~s sx y in

equation (14) vanish.Hence, to derive the closure conditions for bilocal operators Lxy, we require that
=abgm 0, which yields a set of 27 equations. Due to the distinct parametrization of the symmetric and

antisymmetric jumpoperators, we discuss both cases separately:

(1)Weobtain the following set of closure conditions for symmetric jump operators (see equation (8))

[¯ ] ( [¯ ] [¯ ] [¯ ] [¯ ]) ( )a b g= - + + + ¹ ¹a a a b a g b g g bl a l a l a l b l b aIm
1

2
Im Im Im Im , , 15

[¯ ] ( [¯ ] [¯ ] [¯ ] [¯ ]) ( )å= + - -a b

g

abg g a g b a b b al l l a l a l b l b bIm
1

4
Im Im Im Im , 15

[ ¯ ] ( [¯ ] [¯ ]) ( )å= +a b

g

abg a a b ba a l b l b cIm 2 Im Im , 15

[ ¯ ] [¯ ] ( [¯ ] [¯ ]) ( ) å åd= - - +a b

g

abg a g ab

g d

agd a g g da b l b l a l b dIm 2 Im Im Im , 15
,

[ ¯ ] ( [¯ ] [¯ ] [¯ ] [¯ ]) ( )å= + + +a b

g

abg g a g b a b b ab b l a l a l b l b eIm Im Im Im Im , 15

[ ] [¯ ] ( )å= -a

b g

abg b bl a l b fIm
1

2
Im , 150

,

[ ] ( [¯ ] [¯ ]) ( )å= - -a

b g

abg a b b gl b l a l b gIm
1

4
Im Im , 150

,

wherewe have introduced the coefficients =a aaa l , with a = 1, 2, 3, as well as ( )=b l1 23 , ( )=b l2 31 , and
( )=b l3 12 . From these relationswe see that a 10-parameter family of symmetric jump operators can be found

(with l0, al , aa , Îab ), for which the above conditions are fulfilled and the localmagnetization decouples
from the higher order n-point correlation functions ( n 2). Both the singlet and triplet projection
operators Pxy

s and Pxy
tr belong to this class of operators.

(2) For the antisymmetric jumpoperators (see equation (11))we obtain

[¯ ] [¯ ] [ ¯ ] ( )= = =a b a b a bl k l l k kIm Im Im 0, 16

where [ ]=k l1 23 , [ ]=k l2 31 , and [ ]=k l3 12 .Wefind a 6-parameter family of antisymmetric operators Lxy
(with al , Îak ) for which the equation ofmotion of the one-point function closes. Clearly, the non-
Hermitian operatorQxy belongs to this class.

It remains to be shown that equations (15a)–(15g) and equation (16) are sufficient to close the hierarchy for
arbitrary n-point correlation functions. In the followingwe demonstrate this explicitly for two-point functions,
but similar arguments also apply to correlation functions of higher order. The equation ofmotion for

{ } r= s strz z z z1 2 1 2
is given by

5
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{ ( )} { ( )} ( )
∣

* *  å å r d r= +
= á ñ

¹

á ñ

¹

t
s s s s

d

d
tr tr , 17z z

i y y z
y z

yz z z z z z z z z
1

2

,
,

i

j i

i1 2 1 2 1 2 1 2 1 2

where dáz z,1 2
is equal to 1 only if z1 and z2 are nearest-neighbor sites. Note that the contributions on the right-

hand side can be simplified by using, e.g.

( ) ( ) ( ) ( )* * *  d d= - +a a a a a as s s s s s1 . 18yz z z yz z yz z yz z z z z1 1
1

2
2

2 2
2

1 1
1

2 1 2 1
1

2
2

Imposing the closure conditions for the localmagnetization, i.e., equations (15a)–(15g) for symmetric and
equation (16) for antisymmetric jumpoperators, respectively, we observe that the right-hand side of
equation (18) can be expressed in terms of either single spin or pairs of spin operators. As a consequence, the
equation ofmotion for the two-point functionz z1 2

(see equation (17)) decouples fromhigher order correlation
functions.We have therefore shown that the closure conditions for one-point functions are indeed sufficient to
close the equation ofmotion for two-point correlation functions. These arguments can be trivially generalized to
arbitrary n-point correlation functions.

2.3.Hamiltonian contributions
Webriefly comment on the situationwhen ¹H 0, inquiring under what conditions the hierarchy for n-point
correlation functions closes. To this end, we assume a generalHamiltonian that takes the following form

( )åå åå= +
a

a a

a b

ab a b

á ñ

H h s J s s , 19
x

x
x y

x y
, ,

with real-valued coefficients ah , =ab baJ J .We evaluate the first termon the right-hand side in equation (3),
which yields

[ ] ( )
∣

 å å å= +a

b g

abg b g

b g d

abd bg g d

á ñ

H s h s J s si , . 20x x
y y x

y x
, , , ,

Calculating the ensemble average, we see that the second termon the right-hand sidewill induce a dependence
on higher order correlation functions. Thus, to close the hierarchywe require that =abJ 0. Accordingly, wewill
only allow for localHamiltonian contributions in the following.

3.Dissipative cooling into aBEC

In previouswork [42], we studied the purely dissipative dynamics of amany-body quantum spin systemon a
hypercubic d-dimensional lattice with periodic boundary conditions. The considered dissipative process is
distinguished by non-Hermitian jumpoperators that lead to the growth of correlations and the generation of
macroscopic order in the final state.We discussed the dependence of the dissipative gap on the system size and
found a novel nontrivial scaling behavior as a function of the system size =N Ld, where Ldenotes the linear
extent. In this section, we briefly summarize ourmain results and comment on the universality of this process
with respect to the chosen lattice structure and boundary conditions of the problem. In section 4, we augment
this investigation by including the effect of thermal noise and studying the stability of the dissipative process.

3.1. Non-Hermitian jumpoperator andNESS
Weconsider a quantumMarkov systemof spin-1/2 particles that is driven uniformly on the lattice by the
application of non-Hermitian operators gQxy , where

( )( ) ( ) ( ) ( )= + - = - + -+ + - -Q s s s s s s s s s s
1

2

1

2
i , 21xy x y x y x y x y x y

3 3 1 2 2 1

which acts on adjacent lattice sites á ñx y, . The associated dissipative coupling, denoted by γ, is independent of the
particular pair of particles á ñx y, . The operatorQxymaps any two-particle spin-singlet state to the spin-triplet,
while conserving the total spin projection = åS sx x

3 3 along the quantization axis, and annihilates the spin-
triplet state, i.e., =Q 0xy

2 .
Thefinal state rNESS of the time evolution is determined by the fixed point of the dynamicmap

( )r = 0. 22NESS

This state is unique for a given initial state and corresponds to an ensemble of totally symmetric superposition
states [25]. By virtue of the quantum spin-1/2 to hardcore bosonmapping [53], this dissipative process can also
be seen as a symmetric delocalization of hardcore bosons over adjacent sites, with a BECof hardcore bosons as
the resultingfinal state.

6
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3.2. Evolution equations for correlation functions
In section 2.2we have seen that the hierarchy of correlation functions closes for the non-Hermitian jump
operatorQxy. Here, we derive the explicit form for the equations ofmotion of one- and two-point functions
when the dynamics is governed only by the dissipative process gQxy on nearest-neighbor sites, neglecting the
effect ofHamiltonian contributions.

3.2.1. Local magnetization
Webeginwith the time evolution equation for the localmagnetization { } r=a astrx x . To derive the equation of
motion, we use the relation

[ ] [ ] ( ) ( )† †+ = -a a a aQ s Q Q s Q s s, ,
1

2
, 23xy x xy xy x xy y x

and sumover all nearest-neighbor pairs á ñx y, , keeping xfixed. Calculating the trace over the densitymatrix ρ
(using equation (3))we obtain the diffusion equation

( ) 
t

= Da ad

d

1

4
. 24x x x

The dimensionless time variable t g= t is introduced for later convenience, as well as the discretized Laplacian
Dx, i.e., ( )( ˆ ) ( ˆ )d d d dD = å - +m m m= + -2x xy

d
x y xy x y1 , where the lattice constant is set to 1, and m̂ denotes the unit

vector in theμ-direction on the regular spatial lattice.

3.2.2. Spin–spin correlation functions
To follow the growth of long-range correlationswe consider the ensemble average of bilocal spin operators a bs sx y .

In particular, we consider = ++ - - +C s s s sxy x y x y and =D s sxy x y
3 3, for whichwe define the expectation values

{ } r= Ctrxy xy and { } r= Dtrxy xy . Note that similar to the localmagnetization, wewill use calligraphic fonts

to denote ensemble-averaged quantities in the following. The adjointmap *xz corresponding to the non-
Hermitian jump operatorQxzmaps the operatorsCxy andDxy ( ¹x y) to

[ ] [ ] ( )( ) ( ) ( )† † d d+ = - - + - -Q C Q Q C Q C C C C D a, ,
1

2
1 2 4 , 25xz xy xz xz xy xz yz yz xy yz xx xy xy

[ ] [ ] ( )( ) ( )† † d+ = - -Q D Q Q D Q D D b, ,
1

2
1 , 25xz xy xz xz xy xz yz yz xy

while the diagonal elements = = C D4xx xx aremapped to zero. The time evolution equation for the
expectation values xy and xy are obtained by summing over all nearest-neighbor pairs of x and y, and averaging
over ρ (see equation (17)). For ¹x y , we obtain

( ) ( ) ( )   
t

d= D + D - +á ñ a
d

d

1

4

1

2
4 , 26xy x y xy x y xy xy,

( ) ( ) ( )   
t

d= D + D + -á ñ b
d

d

1

4

1

2
, 26xy x y xy x y xy xx,

while the diagonal terms  = =4 1xx xx are constant in time.Given initial data for the two-point correlation
functions, the abovefirst-order systemof differential equations

( )







t
=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d

d
, 27

xy

xy

xy

xy

can be solved explicitly viamatrix diagonalization, wheredenotes the linear differential operator that is
determined by equations (26a) and (26b). Its solutions can be expressed in terms of a linear combination of
exponential functions, whose characteristic decay rates are determined by the nonvanishing eigenvalues of
(see section 3.3).

We exploit spatial translation invariance in the following to explicitly solve the linear systemof
equations (27). Accordingly, wemay characterize the time evolution of spin–spin correlation functions in
momentum space, e.g.

( )( ) å= å -m m m

N

1
e , 28p

x y

p x y
xy2

,

i

with p=m mp n L2 and { }Î ¼ -mn L0, , 1 . The zero-momentum component  =p 0 corresponds to the
condensate fraction, which indicates the buildup of long-range correlations in the system.
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3.3.Dynamics of purely dissipative cooling
As an example, we illustrate the time evolution starting from an incoherent thermal ensemble at infinite
temperature

( ) ( )r = - d0 . 29N
1

For this initial state, the spin–spin correlation functions are easily evaluated, i.e.

( ) ( ) ( )  d= =0 4 0 , 30xy xy xy

indicating the absence of long-range correlations in the system. Also the final state can be found explicitly

( ) ∣ ( ) ( )∣ ( )år t = ñá
t¥

-

=

⎜ ⎟⎛
⎝

⎞
⎠d

N

n
D N n D N nlim , , , 31N

n

N
1

0

which is expressed in terms of totally symmetricDicke states, ∣ ( ) ∣ñ = - + ñD N n N N n, 2, 2 , which are
simultaneous eigenstates of ( )åa

aS 2 and S3, respectively. Using equation (31)wedetermine the asymptotic
values for the correlation functions

( ) ( ) ( )  t d= = +
t

¥

¥
alim

1

2
1 , 32xy xy xy

( ) ( )  t d= =
t

¥

¥
blim

1

4
. 32xy xy xy

To solve for the full real-time evolutionwe diagonalize equation (27)numerically. Our results are shown in
figure 2(a), wherewe display the time evolution of the condensate fraction ( ) t=p 0 . The timescale onwhich the
asymptotic regime is reached, i.e.,   >= =

¥ -ep p0 0 , <0 1, depends strongly on dimension.Wemay
understand this behavior by inspecting the spectrumof the linear operator (see equation (27)). The
corresponding eigenvalues ( )l Î Spec take only nonpositive values and themode corresponding to the
eigenvalue

( )lD = - >
l

max Re 0, 33

which is denoted as dissipative gap in the following, dominates the asymptotic approach towards the final steady
state. Interestingly, wefind by numerically diagonalizing the full Lindbladian on small system sizes that the
value of the smallest negative eigenvalue of the linear operator is identical to the dissipative gap of the
Lindbladian. It seems that the spin–spin correlation functions capture the slowestmode of the full
Lindbladian for the systemunder consideration.

For the purely dissipative process governed by the jump operatorsQxy, the coupling γ can be scaled out, so
that the total number of particles =N Ld provides the only scale in the problem. Thus, the dissipative gap is a
function of the system size andwemay inquire about its asymptotic scaling properties, i.e.,D ~ -L z , for
sufficiently large L.We remark that the finite-size scaling ofΔ has been studied in detail for various one-
dimensional bosonic and fermionic systems [34, 35, 37–39, 41, 54–56, 59]. However, here we observe that the
considered purely dissipative quantum spin system exhibits a highly nontrivial scaling behavior that depends
strongly on dimension [42]. The asymptotic finite-size scaling is given by

Figure 2. (a)Time evolution of the condensate fraction ( ) t=p 0 for afixed system sizeN=4096 on a d=1 (dotted), d=2 square
(dashed), and d=3 primitive cubic (solid) lattice. The dashed horizontal line denotes the exact asymptotic value

( ) ( ) = +=
¥ N N1 2p 0 . (b) Inverse dissipative gapD-1 evaluated on a regular latticewith periodic boundary conditions in d=1

(squares), d=2 (dots), and d=3 (triangles)dimensions as a function of the system sizeN, see alsofigure 2 in [42].
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( ) ( )D ~
=
=
=

-

- -

-

⎧
⎨⎪
⎩⎪

L d

L L d

L d

, 1,

log , 2,

, 3,

34

2

2 1

3

which is illustrated infigure 2(b) for the d=1, d=2 (square), and d=3 (primitive cubic) lattice geometries.

3.4. Universality of the dissipative cooling process
The observed nontrivial finite-size scaling of the dissipative gap for different dimensions d is remarkable. This
concerns in particular the logarithmic correction in d=2.Onemight speculate whether this behavior is due to
the presence of topological defects (e.g., vortices) in the system. The deepermathematical reason for this scaling
behavior and its relation to the properties ofhas not been fully elucidated yet. Consequently, we checked that
this scaling behavior is not an artifact of the lattice structure or the boundary conditions of the problem.

Infigure 3(a), we display the scaling ofΔ for d=2 dimensions upon changing the lattice geometry forfixed
(periodic) boundary conditions. Specifically, we consider three different regular tilings of the plane,
corresponding to a square (), triangular (▿), and honeycomb (⎔) lattice geometry, respectively, and clearly
observe theD ~- N Nlog1 scaling for largeN in all cases. However, note that the numerical values of ( )D N
differ. Empirically, wefind that ▿ ⎔D > D > D (see figure 3(a)), which can be attributed to the decrease of
coordination number, i.e., ▿ ⎔> >n n nc c c, , , .

Finally, we also investigated how the choice of boundary condition influences thefinite-size scaling of the
dissipative gapΔ. Infigure 3(b), we consider a d=2 systemon a square lattice with either open or periodic
boundary conditions. Note that we are restricted to comparatively small lattice sizes when translation invariance
is not imposed on the system.Nevertheless, we clearly observe that the above scaling is not altered by the choice
of boundary conditions andwefindD > DPBC OBC. Summarizing, our results indicate that the dynamics of the
purely dissipative cooling process for d=2 is rather insensitive to the lattice structure or boundary conditions,
andwe expect a similar behavior for d=1 and d=3.

4.Dissipative dynamics in the presence of competing unitary andnonunitary processes

Here, we supplement the purely dissipative cooling process considered in section 3 by competing unitary and
nonunitary processes.We restrict ourselves toHamiltonians that include only a coupling to a uniformmagnetic
field, which is a necessary requirement to close the hierarchy of correlation functions.Moreover, we study the
effect of thermally induced spin flips via an additional nonunitary process.

4.1. Competing unitary dynamics in the presence of amagneticfield
Weconsider the effect of an external field that points in the 1-direction, as described by

( )å=H h s , 35
x

x1
1

with >h 0without loss of generality. Note that in terms of hardcore bosons, thisHamiltonian describes the
equally probable creation and annihilation of particles. Unlike the cooling operatorQxy, thisHamiltonian does
not conserve the total spin projection S3. The equations ofmotion for correlation functions receive additional

Figure 3. (a) Inverse gap D-1 for different d=2 dimensional lattice geometries, i.e., square (), triangular (▿), and honeycomb (⎔),
with fixed (periodic) boundary conditions as a function of the system sizeN. (b) Inverse gapD-1 for a d=2 dimensional square lattice
with open (dots) and periodic (squares) boundary conditions as a function of the system sizeN.
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contributions from theHamiltonian part in equation (3), for whichwe need to calculate the following
commutators

[ ] [ ] [ ] ( )= = - =H C H F H D hE a, 2 , 2 , 2i , 36xy xy xy xy1 1 1

[ ] ( ) ( )= -H E h D F b, 2i , 36xy xy xy1

where the operators = +E s s s sxy x y x y
2 3 3 2 and =F s sxy x y

2 2 have been introduced, in addition toCxy andDxy to close

the set of evolution equations. The dissipative contributions that arise from the action of the adjointmap *xz are
proportional to

[ ] [ ] ( )( ) ( )† † d+ = - -Q E Q Q E Q E E a, ,
1

2
1 , 37xz xy xz xz xy xz yz yz xy

[ ] [ ] ( )( ) ( )† † d d+ = - - + - -⎜ ⎟⎛
⎝

⎞
⎠Q F Q Q F Q F F F D C b, ,

1

2
1

1

2
. 37xz xy xz xz xy xz yz yz xy yz xx xy xy

Proceeding along the same lines as in the previous section, we obtain the full set of evolution equations

( ) ( ) ( )    
t

d h= D + D - + -á ñ a
d

d

1

4

1

2
4 2 , 38xy x y xy x y xy xy xy,

( ) ( ) ( )    
t

d h= D + D + - +á ñ b
d

d

1

4

1

2
, 38xy x y xy x y xy xx xy,

( ) ( ) ( )    
t

d h= D + D + + -á ñ c
d

d

1

4

1

2
2 , 38xy x y xy x y xy xy xy,

( ) ( ) ( )     
t

d h= D + D + - - -á ñ d
d

d

1

4

1

4
2 2 , 38xy x y xy x y xy xy xy xy,

where h g= h is the dimensionlessmagnetic field variable, rescaled by the dissipative coupling γ. The diagonal
elements are constant in time,   = = =4 4 1xx xx xx ,  = 0xx , and the systemoffirst-order differential
equations (38a)–(38d) can be solved via diagonalization of the corresponding linear differential operatorh.
We assume an incoherent thermal ensemble at infinite temperature as the initial state, such that

( ) ( ) ( )   d= = =0 4 0 4 0xy xy xy xy and ( ) =0 0xy .
Wefirst investigate the asymptotic behavior of the systemby studying the spectrumof the linear differential

operatorh, which is defined by the systemof equations (38a)–(38d). For h = 0, the four largest eigenvalues
ofh (in decreasing order of their respective real part) are given by l l l= = = 01 2 3 and l = -D < 04 ,
where the dissipative gapD º Dh=0 is determined in section 3.3. Switching on the externalmagnetic field η,
two of the zero eigenvalues pick up an imaginary part, bywhich the spectrum ismodified as follows: l = 01 ,
l h= 2i2,3 , and l = -D4 . This behavior has immediate consequences. First, the longest timescale in the
system,which is determined by the dissipative gap, is not changed in the presence of an externalmagnetic field.
On the other hand, the imaginary eigenvalues h2i indicate that the systemdoes not converge to a unique final
steady state. The correlations are rather seen to exhibit oscillations with frequency h2 around an average
asymptotic value—the system is asymptotically characterized by a limit cycle.We determine the late-time
behavior analytically for t D1 from equations (38a)–(38d):

( ) ( ) ( ) ( ) ( ) t
d

d h ht jD =
+

+ - -g N a1
3 5

8
2 1 , cos 2 , 39xy

xy
xy

( ) ( ) ( ) ( ) ( ) t
d

d h ht jD =
+

- - -g N b1
1 3

16
1 , cos 2 , 39xy

xy
xy

( ) ( ) ( ) ( ) ( ) t d h ht jD = - -g N c1 2 1 , sin 2 , 39xy xy

( ) ( ) ( ) ( ) ( ) t
d

d h ht jD =
+

+ - -g N d1
1 3

16
1 , cos 2 . 39xy

xy
xy

Herej is an irrelevant phase offset and the function ( )hg N, describes the oscillation amplitude at late times. In
figure 4we display the time evolution of the various two-point correlation functions, which clearly exhibits the
oscillatory behavior at late times.Moreover, we numerically determine ( )hg N, for whichwe observe a
monotonic decaywith increasingmagnetic field strength η, where ( )h  =g N0, 1 16
and ( ) ( )h h ¥ = -g N N, 8 1.

Finally, we display the time evolution of the condensate fraction ( ) t=p 0 for different values of η in figure 5.
According to (39a), its late-time behavior is determined by

( ) ( ) ( ) ( ) ( ) t h ht jD =
+

+
-

-=
N

N

N

N
g N1

3 5

8

2 1
, cos 2 . 40p 0

In comparison to the purely dissipative cooling dynamics (h = 0, see section 3) for which the steady-state
condensate fraction ( ) ( ) = +=

¥ N N1 2p 0 is approached, wefind that the presence of a nonvanishing
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magnetic field substantially decreases the late-time average value

( ) ( )òt
t t¢ ¢ =

+
t

t

¥ D
=-

N

N
lim

1
d

3 5

8
. 41p 0

1

4.1.1.Model two-spin system
Tounderstand themain features of the dissipative real-time dynamics of equations (39a) and (40), wemay
consider amodel system consisting of two particles for which the time evolution of the densitymatrix can be
easily calculated explicitly. To this end, we provide the initial densitymatrix

( ) (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )r = ñá + ñá + ñá + ñá+ + - -t t t t t t s s0
1

4
, 420 0

with the triplet states ∣ ∣ñ = ñ+t , ∣ ∣ñ = ñ-t , ∣ (∣ ∣ )ñ = ñ + ñt 20 , as well as the singlet state
∣ (∣ ∣ )ñ = ñ - ñs 2 . For vanishingmagnetic field, the time-dependent densitymatrix is given by

( ) (∣ ∣ ∣ ∣ ( )∣ ∣ ∣ ∣) ( )r t = ñá + ñá + - ñá + ñáh t t=
+ + - -

- -t t t t t t s s
1

4
2 e e , 430

0 0

i.e., the singlet state ∣ ∣ñás s ismapped to the triplet state ∣ ∣ñát t0 0 while the other components remain invariant
under the time evolution. This picture changes in the presence of a nonvanishingmagnetic field.While the
dissipative process of section 3 still eliminates the singlet component from the ensemble, themagnetic field
results in amixing of the three triplet states

Figure 4.Time evolution of the two-point correlation functions ( ) txy (dotted–dashed), ( ) txy (solid), ( ) txy (dashed), ( ) txy

(dotted) for adjacent sites á ñx y, on a d=2 dimensional square lattice forN=4096 and h = -10 3. The dashed horizontal lines denote
late-time averages. The gray region indicates the time region for which t < D1 .

Figure 5.Time evolution of the condensate fraction ( ) t=p 0 forN=4096 on a d=2 dimensional square lattice for different external
magnetic fields h = 0 (dotted), h = 1 (solid, black), ·h = -5 10 4 (solid, purple), h = -10 4 (dashed) and h = -10 5 (dotted–dashed).
The dashed horizontal lines indicate the asymptotic value ( ) ( ) = +=

¥ N N1 2p 0 aswell as the late-time average

( ) ( ) ( )ò t t¢ ¢ = +t t

t
¥ D =- N Nlim d 3 5 8p

1
01 .
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( ) ∣ ∣ ( )
( )

(∣ ∣ ∣ ∣)

( )
( )

∣ ∣ ( )
( )

(∣ ∣ ∣ ∣)

( )
( )

(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )

r t
t

h
t
h

t
h

t
h

= ñá +
+

ñá + ñá

+
+

ñá +
+

ñá + ñá

+
+

ñá + ñá - ñá - ñá

h t-
+ + - -

+ - - +

+ - + -

s s
c

t t t t

c
t t

c
t t t t

c
t t t t t t t t

1

4
e

16 1 4

8 1 4 16 1 4

i

8 2 1 4
, 44

1
2

2
2 0 0

3
2

4

2 0 0 0 0

where the time-dependent coefficients are given by

( ) ( ) ( ) ( ) ( )t h h ht h ht= + - - -t-c a5 1 4 4 e cos 2 2 sin 2 , 451
2 2

( ) ( ) ( ) ( ) ( ) ( )t h h ht h ht= + - + + +t-c b3 1 4 2 1 2 e cos 2 2 sin 2 , 452
2 2

( ) ( ) ( ) ( )t h h ht h ht= + - - -t-c c1 4 4 e cos 2 2 sin 2 , 453
2 2

( ) ( ) ( ) ( )t h h ht ht= - + -t-c d2 e 2 cos 2 sin 2 . 454

Defining the two-particle operator = Ä + Ä+ - - +C s s s s , we evaluate ∣ ∣ñ = ñ =+ -C t C t 0, ∣ ∣ñ = ñC t t0 0 ,
and ∣ ∣ñ = - ñC s s . Thus, it is sufficient to consider only the diagonal elements of the densitymatrix, denoted by
rdiag , to calculate the expectation value { } r= Ctr . In fact, the time-averaged diagonal entries rdiag at late times
are given by

( ) ( ∣ ∣ ∣ ∣ ∣ ∣) ( )òt
t r t¢ ¢ = ñá + ñá + ñá

t

t
h

¥ D
+ + - --

t t t t t tlim
1

d
1

16
5 5 6 . 46diag 0 0

1

This result should be compared to theNESS densitymatrix in the absence of an external field

( ∣ ∣ ∣ ∣ ∣ ∣) ( )r = ñá + ñá + ñáh=
+ + - -t t t t t t

1

16
4 4 8 . 47NESS

0
0 0

Thus, themagnetic field generates an average spin rotation, which decreases the ∣ ∣ñát t0 0 contributionwhen
compared to thefinal state of the driven, purely dissipative system. As a consequence, the late-time average value

( )ò t t¢ ¢ =t t

t h
¥ D-lim d 3 81

1 is smaller than the asymptotic value for the purely dissipative cooling dynamics

 =h= 1 20 . It therefore appears that the phenomenology of themacroscopicN-particle system in the presence
of amagnetic field in the 1-direction is essentially captured by the corresponding two-spinmodel system.

4.2. Competing thermal noise
Here, we introduce the effect of an externalmagnetic field that points in the 3-direction

( )å=H h s , 48
x

x3
3

wherewe assume that >h 0. In contrast toH1, theHamiltonianH3 commutes withQxy and therefore it does
not lead to an additional coupling to two-point operators (aswe encountered in the previous section). Here,
however, we allow for local spin flips via additional jump processes that are accounted for by local operators

= L sx x [56–59]. In general, wemay assign independent interaction rates g
x
to both processes Lx . Assuming a

thermal occupation of the bath, however, the spinflip rates are related via the Boltzmann factor

( )g
g

= -
+

-
⎜ ⎟⎛
⎝

⎞
⎠

h

T
exp

2
, 49

whereT denotes the bath temperature andwe assume spatial homogeneity (g g= 
x ). This relation does not set

the overall interaction ratewhichwe denote byκ.We assign the following values to the ratios

( )g
k

g
k

= = +
+ -

n n, 1, 50T T

where ( )º - -n e 1T
h T2 1 is the thermal occupation number. The equations ofmotion for correlation

functions (3) receive additional contributions from the spinflip processes Lx :

( ) [ ] [( ) ] ( )† †+ = -     L s L L s L s a, , 2 , 51x x x x x x x
3 3 3

( ) [ ] [( ) ] ( )† †+ = -   L C L L C L C b, , , 51x xy x x xy x xy

( ) [ ] [( ) ] ( )† †+ = -    L D L L D L D s c, , 2 , 51x xy x x xy x xy y
3

while the commutators [ ] [ ] [ ]= = =H C H D H s, , , 0xy xy x3 3 3
3 yield no additional terms. Accordingly, the closed

set of time evolution equations reads

( ) ( )  
t

k
g

k
g

= D - + -n a
d

d

1

4
2 1

2
, 52x x x T x

3 3 3
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( ) ( ) ( ) ( )    
t

d
k
g

= D + D - + - +á ñ n b
d

d

1

4

1

2
4 2 1 , 52xy x y xy x y xy xy T xy,

( ) ( ) ( ) ( ) ( )      
t

d
k
g

k
g

= D + D + - - + - +á ñ n c
d

d

1

4

1

2

2
2 1

2
, 52xy x y xy x y xy xx T xy x y,

3 3

while  = =4 1xx xx .

The behavior of this system, which is driven by the operators g Lx and gQxy can be fully characterized
in terms of two independent parameters—the ratio of couplings k g and the effective temperatureT/h. To
understand the relevantmodes that determine the late-time behavior, we inspect the spectrumof the linear
differential operatorT as defined by the systemof linear equations (52a)–(52c). Again, we consider an
incoherent infinite-temperature ensemble as initial state, for which ( ) ( )  d= =0 4 0xy xy xy and ( ) =0 0x

3 .
The spectrumofT is real and nonpositive so that the asymptotic behavior is governed by the dissipative

gapDT . It is independent of the system size

( ) ( )k
g

D = +n2 1 , 53T T

which is in stark contrast to purely dissipative cooling dynamics (k = 0), for which the dissipative gapΔ exhibits
a nontrivialfinite-size scaling. Thismeans that the presence of a thermal bath dominates the asymptotic behavior
of the system.More specifically, for the purely dissipative process governed by the jump operatorsQxy, the three
largest eigenvalues are given by l l= = 01 2 and l = -D3 . The presence of thermal noise, however, lifts the
degeneracy of the zero eigenvalues such that l = 01 , l = -DT2 , and l l<3 2. Infigure 6we compare the
spectrumof a dissipative system in both cases—with andwithout thermal noise—andwe display the scaling of
the largest eigenvalues as a function ofN.We clearly observe thatDT is independent of the system size when
compared toΔ (with k = 0), which exhibits the nontrivialD ~- N Nlog1 scaling in d=2 dimensions.

Owing to the fact that Lx does not conserve spin, [ ] ¹s L, 0x x
3 , we obtain a nonvanishing value both for the

asymptoticmagnetization  x
3 and for the two-point function xy:

( )
( )

( ) t = -
+t¥ n

lim
1

2 2 1
, 54x

T

3

( )
( )

( ) t d
d

= +
-

+t¥

⎛
⎝⎜

⎞
⎠⎟n

lim
1

4

1

2 1
. 55xy xy

xy

T
2

While these values can be calculated easily by hand, to determine ¥xy weneed to invert the linear differential
operator corresponding to the linear system equations (52a)–(52c), which for large system sizes, can only be
done numerically.We observe that the correlation function ¥xy (k ¹ 0) decays with the separation ∣ ∣-x y in
the presence of a thermal coupling, as shown infigure 7. This is in contrast to the dissipative process governed by
the operatorQxy, for which the asymptotic value is given by  =¥ 1 2xy , for ¹x y .We conclude that the
thermally induced spin flips counteract the cooling process and destroy the long-range order in the system,
thereby introducing a correlation length x L.

The asymptotic value of the zeromode  =
¥
p 0 strongly depends on the parameters g k andT/h, as well as the

particle numberN. Setting the number of particles toN=4096, we calculate theNESS phase diagram,which is
shown infigure 8(a). In this case, we find that the thermal noise destroys the long-range ordermore or less
completely in the range ( )g k 103 , independent of the temperatureT. Thismeans that the coupling of the

Figure 6.Comparison of the dissipative gap for purely dissipative cooling dynamicsΔwith the three largest nonvanishing eigenvalues
l = -DT2 , l3 and l4 of the linear differential operatorT on a double-logarithmic scale as a function of the system sizeN. The data
was obtained on a d=2 dimensional lattice with parameters k g = -10 7 and =n 10T

2.
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cooling process γneeds to be larger than that of the thermal bathκ by several orders ofmagnitude in order to
generate amacroscopically ordered state. On the other hand, for large values of g k, we observe an intriguing
dependence of  =

¥
p 0 on the temperatureT (seefigure 8(a)). That is, forfixed g k andfiniteN, wefind a non-

monotonous behavior of ( ) =
¥ Tp 0 , where in the limiting cases ( ) ( ) = = =

¥
¥ =

¥T T Nlim lim 1T p T p0 0 0 . In
fact, these values corresponds to the lower bound for the zeromode  =p 0. This can be understood in the

followingway: in the limit T 0, spin-flip operations +sx are forbidden, such that the action of -sx on all
possible sites aligns all spins along the negative 3-direction, see equation (54), hence destroying any long-range
order in the ( )1, 2 -plane. In the opposite limit  ¥T , we have g g=  ¥+ - such that the spin-flip
operators +sx and -sx completely dominate the dynamics and, hence, prohibit any long-range order. Between
these two limits, for any value of g k, we observe that there exists an optimal valueTopt for which  =

¥
p 0 takes its

maximumvalue (see figure 8(b)), also indicated by the continuous line infigure 8(a). Thus, wemay find a
distinct temperature region < <T T T1 2 inwhich the engineered dissipation performs robustly even in the
presence of thermal noise.

This region depends on the ratio of couplings g k and the system sizeN. As the number of particlesN is
increased, the nearest-neighbor symmetrizing actionQxyfinds itmore andmore difficult to compete against the
thermal coupling that acts locally. Thus, we expect that in the thermodynamic limit  ¥N , single spin flips
eventually destroy any long-range order and therefore dominate for anyfinite value of g k. In contrast, for a
small number of particlesN the value of g k that is required to generate long-range order decreases aswell (see

Figure 7. Spatial dependence of the correlation function ¥xy forN=4096 particles on a d=2 dimensional lattice for k g = -10 5

and nT=10. The abscissa denotes the distance in the 1-direction ∣ ∣-x y1 1 while the different curves correspond to different values of
the separation ∣ ∣= -z x y2 2 . The dashed horizontal line denotes the asymptotic value for dissipative coolingwithout thermal noise,
 =¥ 1 2xy , for ¹x y .

Figure 8. (a)Asymptotic condensate fraction  =
¥
p 0 forN=4096 particles on a d=2 dimensional lattice as a function of g k and

T/h. The gray line indicates the location of themaximumvalue of  =
¥
p 0 for given g k. (b)Maximumvalue of  =

¥
p 0 as a function of

the ratio g k forN=9216 (solid),N=2304 (dashed) andN=256 (dotted).
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figure 8(b)). In view of experimental realizations [27], our findings indicate that thermal fluctuations are not too
prohibitive for generating long-range order via engineered dissipation, at least for not too large systems.

5. Conclusions

In this workwe have studied the time evolution of correlations in the context of an openMarkovian quantum
many-body system, whichwas originally proposed for the dissipative cooling into a BEC [25–27]. In a previous
publication [42]we showed that the corresponding purely dissipative process governed by the single non-
Hermitian quantum jumpoperator ( )( )= + -+ + - -Q s s s sxy x y x y

1

2
allows for a semi-analytic solution of spin–

spin correlation functions. Here, we have extended these results by studying the universality of the dissipative
process.

We have established that the novel finite-size scaling behavior of the dissipative gap is in fact insensitive to
the choice of lattice discretization as, e.g., provided by the lattice geometry or boundary conditions.
Furthermore, we have studied the stability of the dissipative cooling process with respect to unitary and
nonunitary perturbations. To this end, we derived conditions under which additional perturbations can be
consideredwithin the framework of a closed hierarchy of correlation functions, thereby admitting a closed
analytic solution to the nonequilibriumdynamics. In particular, we allowed for the presence of a uniform
magnetic field, as well as a coupling to a thermal bathκ, while the system is driven by the dissipative cooling
process with a uniform rate γ.We calculated theNESS phase diagram and found that for anyfinite particle
numberN, above a certain threshold value for the coupling ratio g k, the system allows for afinal state rNESS

with long-range order. However, the efficiency of the dissipative coolingmechanismdecreases with the system
sizeN and the correlation length eventually becomes zero in the thermodynamic limit  ¥N .We provided
concrete numerical bounds for the dissipative couplings γ andκ, as well as the system sizeN in order for the
dissipative process to perform robustly.

The following picture appears with regard to experiments: it seems that thefinite system sizeN is crucial for
the dissipative cooling protocol to generatemacroscopic order in the presence of a nonvanishing coupling to a
thermal bath. That is, our results indicate that the drivingwith jumpoperatorsQxy can be competitive only for
smallN, where the necessary ratio of dissipative couplings g k to achieve long-range correlations is small. These
results are consistent with a recent experimental realization of the dissipative cooling protocol using up toN=4
particles [27] and it is reasonable to expect that similar proposals for dissipative state generationmight face the
same limiting constraints with respect to system size.

It is a natural questionwhether our discussion of closed hierarchies for =s 1 2 quantum spin systems can
be generalized to arbitrary spin representations. This would provide a uniquemeans of studying the classical
limit ( ) ¥s of driven open quantum spin systems and possibly other types of dissipative dynamics with
distinct properties of thefinal state. Additional information on the asymptotic dynamics for quantum
dissipative processes can be obtained by investigating the linear response [60] in the vicinity of theNESS. This
would allow us to inquire about the presence of generalized fluctuation–dissipation relations (see, e.g., [61–63])
in the general setting of openMarkovian quantumdynamics.We hope to address these questions in future work.
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