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The 2d CP(N−1) models share a number of features with QCD, like asymptotic freedom, a dy-
namically generated mass gap and topological sectors. They have been formulated and analysed
successfully in the framework of the so-called D-theory, which provides a smooth access to the
continuum limit. In that framework, we propose an experimental set-up for the quantum simula-
tion of the CP(2) model. It is based on ultra-cold Alkaline-Earth Atoms (AEAs) located on the
sites of an optical lattice, where the nuclear spins represent the relevant degrees of freedom. We
present numerical results for the correlation length and for the real time decay of a false vacuum,
to be compared with such a future experiment. The latter could also enable the exploration of
θ -vacua and of the phase diagram at finite chemical potentials, since it does not suffer from any
sign problem.
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Quantum Simulation of the CP(2) Model Wolfgang Bietenholz

1. Motivation

Lattice simulations of models in quantum field theory employing a quantum system — i.e.
analog quantum computing — could overcome the notorious sign problem that usually occurs if
the Euclidean action is complex; in this approach, the phase factor is naturally incorporated (for
recent reviews, see Refs. [1]). A prominent long-term goal of this concept is the exploration of
the QCD phase diagram at finite baryon density, or a finite vacuum angle θ . In fact, within the
Standard Model of particle physics, this is one of the major issues that remain mysterious; so far,
the sign problem has prevented reliable numerical studies.

As a step towards that goal, we present a proposal for the quantum simulation of the 2d CP(2)
model, by means of ultra-cold Alkaline Earth Atoms (AEAs) trapped in an optical lattice. Un-
like previous suggestions for quantum simulations of lattice field theory, our proposal involves an
automatic extrapolation to the continuum limit, taking advantage of asymptotic freedom.

2. CP(N−1) models

The 2d CP(N− 1) models [2] are popular toy models for QCD. They can be considered as
complex analogues of the O(N) spin models, with a covariant derivative, as we see from the action
in a continuous Euclidean plane,

S[~z] =
∫

d2x (Dµ~z)† ·Dµ~z− iθQ[~z] , ~z(x)∈CN , |~z(x)|= 1, Dµ = ∂µ +
1
2
(∂µ~z† ·~z−~z† ·∂µ~z) ,

(2.1)
where Q ∈ Z is the topological charge, and N = 2,3,4 . . . .

As a remarkable property, there is a local U(1) symmetry, in addition to the global SU(N)

symmetry. In an alternative notation, we can write the fields as N×N Hermitian projection matri-
ces,

P(x) = |~z(x)〉〈~z(x)| , TrP(x) = 1, P(x) = P(x)2 = P(x)† . (2.2)

The case N = 2 corresponds to the O(3) model. For higher N, all 2d CP(N − 1) models have
topological sectors too (in contrast to the higher 2d O(N) models). Therefore it is natural to include
a θ -term, as it has been done in eq. (2.1). As further properties in common with QCD, all the 2d
CP(N−1) models are asymptotically free, and they display a dynamically generated mass gap.

2.1 D-theory formulation

In D-theory, asymptotically free models are formulated in a space with an additional dimen-
sion; in the weak coupling extrapolation towards the continuum limit, this additional direction is
suppressed by dimensional reduction [3].

In particular, the D-theory formulation of 2d CP(N− 1) models starts with 2d layers, where
SU(N) quantum spins are located on a “ladder”, i.e. on a L× L′ lattice with L� L′ [4]. Hence
each layer contains a set of L′ long quantum spin chains. These layers are embedded in a 3d space,
which includes an additional β -direction. The Hamiltonian can be written as

H =−J ∑
〈xy〉

N2−1

∑
a=1

T a
x T a∗

y , (2.3)

2
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where T a
x (T a∗

y ) are spin operators in the (anti-)fundamental representation of SU(N), such that
[T a

x ,T
b

y ] = iδxy f abcT c
x (with the SU(N) structure constants f abc). Here we deal with a positive

coupling constant, J > 0, which corresponds to an anti-ferromagnetic system.
For N = 3 and 4, Ref. [5] pointed out that (in the limit of zero temperature and infinite volume)

this system undergoes spontaneous symmetry breaking SU(N)→U(N−1), which generates 2(N−
1) Nambu-Goldstone bosons. They are accommodated in the coset space of the complex projection,
CP(N− 1) = SU(N)/U(N− 1), such that the low energy effective description coincides with the
CP(N−1) model.

In the notation (2.2), the D-theory continuum action takes the form

S[P] =
1
g2

∫
β

0
dx3

∫
d2x Tr

[ 2

∑
i=1

∂iP∂iP+
1
c2 ∂3P∂3P

]
− iθ Q[P] ,

iθQ[P] =
1
π

∫
β

0
dx3

∫
d2x Tr [P∂1P∂3P] , g2 =

c
ρs L′

, (2.4)

where c is the spin wave velocity, and ρs the spin stiffness.
If we return to a finite L×L′ lattice on the spatial layers, asymptotic freedom implies that the

(spatial) correlation length ξ (the inverse mass of the quasi Nambu-Goldstone bosons) diverges
exponentially when L′ becomes large,

ξ ∝ econst. L′ , (2.5)

where we assume L′ � L, β . This divergence leads to dimensional reduction; ironically, as L′

grows, it becomes negligible, since ξ � L′. Thus we recover the 2d CP(2) or CP(3) model, with
θ = L′π [4] (since the integrand of the expression for Q[P] is constant in x2).

In view of the prospects to implement the SU(N) quantum spin system experimentally [6], to
be discussed in the next section, it is important to explore this exponential grow explicitly. Figure

 1

 10

 100

 1000

 0  5  10  15  20

ξ

L′

no defects
0.1 % defects

Figure 1: The correlation length ξ as a function of L′, for an SU(3) quantum spin model on a β ×L×L′

lattice, at L = 1500 and βJ = 1000. The red crosses (blue asterisks) refer to the setting when all sites
are occupied (with 0.1% of random distributed empty sites). Error bars are included, but hardly visible.
The results for ξ and for the second moment correlation length ξ2 agree up to tiny differences, which are
not visible either. With or without defect sites, ξ grows exponentially in L′, which confirms eq. (2.5) and
therefore asymptotic freedom; we further see that a moderate L′ ≈ 10 is sufficient for dimensional reduction.

1 shows simulation results, which were obtained with a loop cluster algorithm [7] at L = 1500 and
βJ = 1000. The boundary conditions are open in the (short) L′-direction, as in the experiment, and
periodic in the long directions (where it hardly matters). We obtain const.= 0.270784, and observe
that L′ ≈ 10 is sufficient for the dimensional reduction to set in, essentially. In fact, such a number
of coupled quantum spin chains is experimentally realistic.

3
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In an experiment it may happen that a few sites in the optical lattice remain unoccupied.
Frequent repetition of this experiment restores translation invariance statistically, but the correlation
length is enhanced. Numerical data for this setting, with 0.1% of such defect sites are also shown in
Figure 1. Again there is clear evidence that ξ grows exponentially in L′ (as long as finite size effects
are small), in accordance with relation (2.5), which reflects asymptotic freedom. Dimensional
reduction sets is even earlier in this case.

3. Experimental set-up

The goal is to implement the Hamiltonian (2.3) by ultra-cold fermionic AEAs on the sites of an
optical lattice. The latter is formed by the nodes of superimposed standing laser waves, as sketched
in Figure 2, with a spacing in the µm magnitude. The temperature is of the order of nK, which

Figure 2: Illustration of optical lattices, where the sites correspond to the nodes of standing laser waves.

keeps the atoms in their electronic ground state. For fermionic AEAs, the electron and nuclear spins
decouple almost completely in the ground state manifold, which excludes spin changing collisions.
Moreover, in an external magnetic field, the interactions between the Zeeman states are SU(N)

symmetric, where N ≤ 2I+1 and I is the nuclear spin [8], and the total spin is conserved. This can
be implemented up to N = 10, e.g. with 87Sr atoms [8].

Next we re-write the spin operators in terms of fermionic bilinears, composed of dx and d†
x ,

T a
x = d†

xmλ
a
mm′dxm′ , −T a ∗

x =−d†
xmλ

a ∗
mm′dxm′ , (3.1)

where m, m′= 1 . . .N label the states, and λ a are generalised Gell-Mann matrices, Tr [λ a,λ b] = δ ab.
Now the Hamiltonian is split into a hopping term and a potential,

H = Ht +HU , Ht =−t ∑
〈xy〉,m

(
c†

xmcym + c†
ymcxm

)
, HU =

U
2 ∑

x
nx(nx−1)+V ∑

x∈A
nx , (3.2)

where the operator cxm annihilates the nuclear spin level m ∈ {−I . . . I} at site x, t is the hopping
parameter, U the on-site interaction, nx = ∑m c†

xmcxm the occupation number, and V is the energy
offset between two staggered sub-lattices, which we denote as A and B. This system is illustrated in
Figure 3, and the caption explains the relation between the operators cxm and dxm. The initial state
should be prepared with one AEA on each site of sub-lattice A, which corresponds to one fermion;
on each site of sub-lattice B there are N−1 AEAs, corresponding to N−1 fermions, or one hole.

The hopping parameter t fixes the coupling constant J, to be tuned by varying the energy
offset V . At strong coupling, t � U,V , the system is essentially in the eigenstates of HU , with
virtual tunnelling due to the SU(N) exchange terms in Ht . A hopping parameter expansion up to
O((t/U)2) reproduces the form of H in eq. (2.3) [9], with

J =
t2U

[−V +U(N−3)] [V −U(N−1)]
. (3.3)

4
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L

L’

↔

Figure 3: An illustration of the experimental set-up: a) SU(N) spins on a bipartite L′×L lattice, L� L′. b)
The N ≤ 2I + 1 hyperfine states of an AEA, in an external magnetic field which induces Zeeman splitting.
c) On sub-lattice A the SU(N) quantum spins are in the fundamental representation, and we identify cx =

d†
x . On sub-lattice B they are in the anti-fundamental representation, and cx = dx. Hence the exchange of

the staggered sub-lattices A↔ B corresponds to a particle-hole transformation. d) The nearest-neighbour
interactions between T a

x∈A and −T b
y∈B.

The preparation of the initial state proceeds as follows: first one fills each site with N AEAs,
where each level m is occupied once1 (this can be achieved by optical pumping [10]). Then each site
is split adiabatically into a double-well, forming the sub-lattices A and B, cf. Figure 3. The barrier
is tuned to match the quantum dynamics according to the Hamiltonian H; this has already been
realized for bosonic alkaline atoms [11]. Based on experimental experience, we expect this to be
feasible up to large L = O(1000) and L′ ≈ 12; according to our results in Figure 1, this is sufficient
for dimensional reduction to set in. The results for the correlation length ξ can be confronted with
experimental measurements by means of Bragg spectroscopy or noise correlation [12].

4. Phase transition at θ = π and false vacuum decay

An odd number L′ implies θ = π , where a first order phase transition and the spontaneous
breaking of the C (charge conjugation) symmetry is expected [13]; Refs. [4] provide numerical
evidence for this scenario.

In the experiment, a C transformation corresponds to a shift in the L-direction by one lattice
spacing. If x (x + 1̂) belongs to sub-lattice A (B), then this shift transforms T a

x → −T a ∗
x+1̂

, and
−T a

x → T a ∗
x+1̂

. The order parameter for C symmetry [14],

D = ∑
x∈A
〈T a

x T a ∗
x+1̂−T a

x T a ∗
x−1̂〉 , (4.1)

1A non-uniform occupation of the Zeeman states may also be intended, since it captures the CP(N− 1) model at
finite density.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
1
1

Quantum Simulation of the CP(2) Model Wolfgang Bietenholz

detects dimerisation. At θ = 0, C invariance holds, and D = 0. It breaks at θ = π , where there
are two degenerate ground states with ±D, which we denote as |±〉. These ground states may be
distinguished by bonds between nearest-neighbour sites, which can be set in two ways, as shown in
Figure 4. For ultra-cold atoms, the singlets that contribute to D can be measured by spin changing
collisions [12, 15].

Figure 4: An illustration of the two degenerate ground states at θ = π . In this case, there is dimerisation (in
an ambiguous way), and C symmetry is broken.

At last we consider a dynamical process for a single spin chain of even length L: starting from
total dimerisation, one turns on the hopping parameter t adiabatically. We describe the gradual
modification by a parameter τ , which increases from 0 to 1, such that the dynamics is driven by the
Hamiltonian

H(τ) = τH− (1− τ) J ∑
x∈A

T a
x T a ∗

x+1̂ . (4.2)

Numerical results for the evolution of the first two energy eigenvalues, E0 and E1, are shown in
Figure 5 on the left. Their evaluation also reveals the time dependent dimerisation D(t). The latter
is shown in the right panel of Figure 5, along with a dimerisation map in the state |−〉. The evolution
turns it into a false vacuum, which performs an (incomplete) decay towards the true vacuum |+〉,
such that D(t) decreases in an oscillatory manner. For a similar study of the real time dynamics of
coupled bosonic spin chains, we refer to Ref. [16].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: The time evolution of the first two energy eigenvalues, E0/J and E1/J (on the left), and of the
dimerisation D(t) (on the right), if one starts from total dimerisation and switches on the hopping parameter
t adiabatically. Then the Hamiltonian (4.2) drives the dynamics, turning the initial vacuum state |−〉 into a
false vacuum, which decays such that D(t) decreases and oscillates, as shown on the right.

This time evolution has been computed by the exact diagonalisation of H(τ) at L = 14. It
corresponds to the real time evolution of a false vacuum in the CP(2) model, which cannot be
obtained with classical Monte Carlo simulations, due to the sign problem. The experimental set-up
described here should enable a quantum simulation, which can be compared to the results in Figure
5, and which can be extended to large L.

6
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5. Summary

We have described a proposal for the quantum simulation of CP(N − 1) models by ultra-
cold AEAs trapped in an optical lattice. They represent a model of SU(N) quantum spins, with
N ≤ 2I+1, where I is the nuclear spin. This system corresponds to the 3d D-theory formulation of
the CP(N−1) model, where dimensional reduction leads directly to the continuum limit of the 2d
model, thanks to asymptotic freedom. Our results for the correlation length at N = 3 show that for
a realistic system size, dimensional reduction leads to the 2d continuum CP(2) model.

Experimental tools for the ground state preparation in such systems, and also for its adiabatic
modification, do already exist [8,10–12,15]. We discussed the dynamics of C symmetry restoration,
which corresponds to a real time evolution in the CP(2) model. For small systems it was evaluated
by the diagonalisation of the Hamiltonian; for larger systems it can be measured by the experiment,
which acts as an analog quantum computer.
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