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1. Introduction

Functionals that depend on measures naturally appear in many
areas of science. In this paper we give a few examples mainly
from statistics and probability including construction of optimal
designs, finding mixture distribution and optimising functionals
of Poisson point processes whose distributions are determined
by the corresponding intensity measure. Such point processes
naturally appear in approximation problems for sets and func-
tions (McClure and Vitale 1975, Schneider 1988) and optimising
complex networks (Okabe et al. 2000) with nodes or resource
allocations determined by a measure.

Given a functional f (µ) of a measure, in most cases it is not
feasible to find an analytical expression for a measure µ that
minimises it over a given family of measures. This calls for
use of numerical algorithms producing a sequence of measures
whose accumulating point solves the underlying minimisation
problem. This paper develops algorithms of steepest descent
type applicable for a general differentiable functional f and for
families of measures that satisfy general linear constraints. Note
that linear programming problems in the space of measures for
a linear functional f was considered in Kellerer (1988) and Lai
and Wu (1994).

Specific features of gradient algorithms for optimisation on
the family M of (non-negative) measures are explained by the
fact that M does not form a linear space, but is a cone in the linear
space M̃ of all signed measures. This immediately renders inad-
missible many descent directions that lead out of M. A kind of
projected (or conditional) gradient method is therefore required

that should also be suitable to deal with typical constraints that
are imposed on measures, like keeping the total mass fixed or
preserving the centre of gravity (expectation), etc.

The structure of the paper is as follows. In Section 2 we de-
scribe a general optimisation on measures framework and for-
mulate a first-order necessary condition for extremum. Section 3
contains motivation examples of optimisation problems on mea-
sures on which our numeric algorithms will be tested later in
Section 7. Section 4 provides characterisation of the steepest de-
scent direction leading to the algorithms described in Sections 5
and 6.

2. Optimisation in the space of measures

Let f (µ) be a numerical functional defined on measures µ ∈ M,
where M is the family of all non-negative finite measures on
a Polish space X with its Borel σ -algebra. In many cases
f can be naturally extended to a functional on the space
M̃ of all signed measures with bounded total variation. The
Jordan decomposition of a signed measure µ ∈ M̃ is denoted
by

µ = µ+ − µ−,

and ‖µ‖ = µ+(X ) + µ−(X ) is the total variation of µ. In nu-
merical implementation X becomes a grid in a Euclidean space
R

d and µ ∈ M is a non-negative array indexed by the grid’s
nodes.

0960-3174 C© 2002 Kluwer Academic Publishers
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Consider the following optimisation problem:

f (µ) → inf, µ ∈ M, H (µ) ∈ C, (2.1)

where C is a closed convex subset of R
k, f : M̃ �→ R and

H : M̃ �→ R
k are Fréchet differentiable functions. Remember

that f is said to be Fréchet differentiable (Hille and Phillips
1957) if

f (µ + η) = D f (µ)[η] + o(‖η‖) as ‖η‖ → 0.

Here D f (µ)[η] is a bounded linear functional on η ∈ M̃ which
determines the directional derivative of f in the direction of η.
This directional derivative is equal to

D f (µ)[η] = lim
t↓0

t−1( f (µ + tη) − f (µ)) .

Theorem 2.1 below focuses on a common case of finitely many
differentiable constraints of the equality and inequality types:{

Hi (µ) = 0, i = 1, . . . , m;

Hj (µ) ≤ 0, j = m + 1, . . . , k.
(2.2)

These constraints correspond to (2.1) with H = (H1, . . . , Hk) :
M̃ �→ R

k and C = {0}m × (−∞, 0]k−m .
Most differentiable functionals of measures met in practice

have derivatives which can be represented in the integral form.
In this paper we will assume that there exist measurable real-
valued functions d f (x, µ) and hi (x, µ), i = 1, . . . , k, such that
for all η ∈ M̃

D f (µ)[η] =
∫

d f (x, µ)η(dx) and

(2.3)

DH (µ)[η] =
∫

h(x, µ)η(dx),

where h = (h1, . . . , hk). Note that all integrals are over X unless
specified otherwise. The function d f (x, µ) is called the gradient.

In addition, it is always assumed that the solution of
Problem (2.1) is regular, i.e. it satisfies Robinson’s regularity
condition (Robinson 1976, Theorem 1) which guarantees the
existence and boundedness of the Lagrange multipliers (see,
Zowe and Kurcyusz 1979). In case of constraints (2.2) satisfying
(2.3), Robinson’s regularity condition means the linear indepen-
dence of the functions h1(·, µ), . . . , hm(·, µ) and the existence
of η ∈ M̃ such that


∫

hi (x, µ)η(dx) = 0 for all i = 1, . . . , m,∫
h j (x, µ)η(dx) < 0 for all j ∈ {m + 1, . . . , k}

verifying Hj (µ) = 0.

(2.4)

Without the inequality constraints (2.4) trivially holds with
η taken to be the zero measure. The following theorem is a
particular case of (Molchanov and Zuyev 2000a, Theorem 4.1).

Theorem 2.1. Let µ be a regular local minimum of f subject to
(2.2). Then there exists u = (u1, . . . , uk) with u j ≤ 0 if Hj (µ) =

0 and u j = 0 if Hj (µ) < 0 for j ∈ {m + 1, . . . , k}, such that{
d f (x, µ) = u h(x, µ)� µ-almost everywhere,

d f (x, µ) ≥ u h(x, µ)� for all x ∈ X.
(2.5)

Example 2.1. An important example concerns minimisation of
f (µ) assuming that the total mass of µ is fixed at a value a. In
the above framework, this corresponds to the case when k = 1
and the only constraint is H1(µ) = ∫

µ(dx) − a = 0. Then (2.5)
turns into the following necessary condition for a minimum in
the fixed total mass problem:{

d f (x, µ) = u µ-almost everywhere,

d f (x, µ) ≥ u for all x ∈ X.
(2.6)

3. Examples of optimisation problems

3.1. Optimal experimental design

The basic problem in the theory of linear optimal design con-
cerns the best choice of design (or observation) points xi in the
following regression model:

yi =
k∑

j=1

β j f j (xi ) + εi = f (xi )β
� + εi , i = 1, . . . , n,

(3.1)

where x belongs to a design space X, β = (β1, . . . , βk) is a vec-
tor of unknown parameters, f (x) = ( f1(x), . . . , fk(x)) is a row
of linearly independent functions on X and ε1, . . . , εn are i.i.d.
uncorrelated centred errors with the variance σ 2. The theory of
experimental design addresses the problem of choosing the ob-
servation points x1, . . . , xn in order to achieve better properties
of the least squares estimator β̂.

Let µ(dx) be a probability distribution on X describing
the frequency of taking x as an observation point. Then the
covariance matrix ‖cov(β̂ i , β̂ j )‖ equals σ 2 M(µ)−1, where

M(µ) =
∫

f (x)� f (x) µ(dx)

is the information matrix, see, e.g., Atkinson and Donev (1992)
for details. The measure µ that maximises det M(µ) or, equiva-
lently, minimises

f (µ) = − log det M(µ)

is called D-optimal design measure (taking logarithm makes
it a convex minimisation problem). The gradient d f (x, µ) =
− f (x)M−1(µ) f �(x) then becomes the standardised variance of
the predicted response at point x (Atkinson and Donev 1992),
also called the sensitivity function (Fedorov and Hackl 1997).
Typically, the only constraint is that µ is a probability measure,
while further constraints can be naturally incorporated if such
need arises. For example, let X = R

d and ei , i = 1, . . . , d be the
unit coordinate vectors. Assume that along with the constraint
on the total mass µ(X ) = 1 the expectation of µ, which is a
vector m = ∫

xµ(dx), is fixed. These constraints can be written
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as H (µ) = (m, 0), where H (µ) is a (d + 1)-dimensional vec-
tor function with the components Hi (µ) = ∫ 〈x, ei 〉µ(dx) for
i = 1, . . . , d and Hd+1(µ) = µ(X ) − 1. Clearly, DH (µ)[η] =∫

h(x)η(dx) for h(x) = (x, 1), x ∈ R
d .

3.2. Mixtures

Let {px (·) : x ∈ X} be a parametric family of probability densities
with respect to some σ -finite measure on X (in usual for the
literature on mixtures notation, θ replaces x and � replaces X ).
Define the function

pµ( y) =
∫

px ( y)µ(dx)

to be the mixture density corresponding to mixing distribution µ.
Given a random sample y1, . . . , yn , the objective will be to esti-
mate the mixing distribution µ that maximises the log-likelihood

f (µ) =
n∑

i=1

log pµ( yi ).

This is a concave objective function in a maximisation problem.
The gradient function (that also can be interpreted as a score
function) can be easily calculated as

d f (x, µ) =
n∑

i=1

px ( yi )∫
px ( y)µ(dx)

.

A rich source of examples of functionals on measures is
provided by expectations of functionals on the corresponding
Poisson processes. Two of such examples are considered below.
Recall that a finite measure µ on X gives rise to a Poisson point
process on X with µ being its intensity measure, so that the
number of points in any set K ⊂ X is Poisson with mean µ(K )
and the numbers of points in disjoint sets are independent.

3.3. P-means

Given a set of observation points Y = {yi }, the k-means is the
set of k points Z = {z1, . . . , zk} minimising∑

yi ∈Y

ρ( yi , Z )β

for β = 2, where ρ( yi , Z ) = min{‖yi −z j‖ : z j ∈ Z}. The chosen
norm is Euclidean, but, in general, it may be any other norm on
the space that contains observation points. If β = 1, one obtains
the k-medians of the sample (see, Hartigan 1975). The problem
of finding k-means (or medians) is a non-convex optimisation
problem and the algorithms proposed up to now for its solution
do not guarantee to find the global minimum (see, Hartigan and
Wong 1979). Typically, such algorithms require a reasonable
initial guess of k-means that is subsequently improved using
descent methods.

The Poisson mean (or P-mean) is the ‘randomised’ variant
of the k-means where Z is a realization of a Poisson process
with intensity measure µ and the total mass k (so that the mean

number of Poisson points is k). The P-mean of Y is a measure
µ that minimises

f (µ) = Eµ

∑
yi ∈Y

ρ( yi , Z )β

=
∑
yi ∈Y

Eµρ( yi , Z )β

=
∑
yi ∈Y

∫ uβ

0
exp{−µ(Bt1/β ( yi ))} dt, (3.2)

where Eµ is the expectation with respect to Poisson process’
distribution with intensity measure µ, Br (x) is a ball of radius
r centred at x , and u is a certain fixed (large) number that is
used to replace ρ( yi , Z ) if Z is empty. Now (3.2) is a con-
vex functional of µ, so that its global minimum can be found
using gradient descent algorithms. Apart from being of inter-
est on its own, the P-mean µ can be used to sample k points
from µ that may be subsequently taken as a sensible start-
ing configuration for the standard k-means search algorithms.
It follows from Molchanov and Zuyev (2000b, Theorem 2.1)
that

d f (x, µ) = Eµ

[ ∑
yi ∈Y

ρ( yi , Z ∪ {x})β −
∑
yi ∈Y

ρ( yi , Z )β
]
,

meaning that the gradient is the expected difference between
the values of the objective function on the configuration Z with
the point {x} added and on Z itself. Direct computations now
show that the gradient of the functional (3.2) can be expressed
as

d f (x, µ) = −
∑
yi ∈Y

∫ uβ

ρ(x,yi )β
exp{−µ(Bt1/β ( yi ))} dt.

The functionals of type (3.2) also arise in many other sit-
uations, for instance, in locational optimisation (Okabe et al.
2000), and telecommunications modelling (Molchanov and
Zuyev 2000b).

3.4. Maximisation of the covered volume
in a Boolean model

Let again Z = {z1, z2, . . .} be a Poisson point process in X ⊂ R
d

with a finite intensity measure µ. If Br (x) is a ball of radius r
centred at x , then

� =
⋃
zi ∈Z

Br (zi )

is called a Boolean model (see, Molchanov 1997). The set Br (0)
is called the typical grain. It is easy to see that

P{x /∈ �} = exp{−µ(Br (x))}.
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By Fubini’s theorem, the expected area left uncovered by � can
be written as

f (µ) =
∫

X
P{x /∈ �} dx =

∫
X

exp{−µ(Br (x))} dx .

Minimisation of f (µ) corresponds to maximisation of the
volume covered by �. One readily obtains that the gradient of
f (µ) is

d f (x, µ) = −
∫

Br (x)
exp{−µ(Br (z))} dz.

The gradient can be interpreted as the expected increment of the
covered area if a ball centred at x is being added to the Boolean
model.

Note that all arguments above can be easily generalised
to a random typical grain with a rather general shape and
size.

4. Gradient methods

Algorithms of the steepest descent type and their various mod-
ifications are widely known in the optimisation literature (see,
e.g., Polak 1997). As before, it is assumed that f (µ) is Fréchet
differentiable and its derivative is representable in the integral
form (2.3). The most basic method of the gradient descent type
suggests moving from µn (the approximate solution on step n)
to µn+1 = µn + ηn , where η = ηn minimises

D f (µn)[η] =
∫

d f (x, µn)η(dx) (4.1)

over all measures η ∈ M̃ with the total variation εn , the latter
being the size of step n. At every step it is important to ensure
that the µn + ηn is a non-negative measure that satisfies the
imposed constraints.

Explicit determination of the steepest direction ηn is generally
a difficult problem. Theorem 4.1 below describes the steepest
descent direction for optimisation over positive measures under
several linear equality constraints

Hi (µ) =
∫

hi (x)µ(dx) = ai , i = 1, . . . , k, (4.2)

where a1, . . . , ak are given real numbers. In vector form,
H (µ) = ∫

h(x)µ(dx) = A, where H = (H1, . . . , Hk), h = (h1,

. . . , hk) and A = (a1, . . . , ak). Then DH (µ)[η] = ∫
h(x)η(dx).

For µ ∈ M, denote by ϒµ the family of all signed mea-
sures η ∈ M̃ such that µ + η ∈ M and µ + η satisfies the con-
straints (4.2). The family ϒµ represents admissible directions of
descent. Let µ|B denote the restriction of a measure µ onto a
Borel set B, i.e.

µ|B ( •) = µ( • ∩ B).

Further, ε denotes a positive constant that controls the size of the
step, i.e. the total variation of η. Recall that vectors w1, . . . , wk+1

are called affinely independent if w2 − w1, . . . , wk+1 − w1 are
linearly independent.

Theorem 4.1. The minimum of D f (µ)[η] over all η ∈ ϒµ with
‖η‖ ≤ ε is achieved on a signed measure η = η+ −η− such that
η+ has at most k atoms, η− = ∑k+1

i=1 ti µ | Bi for some 0 ≤ ti ≤ 1
with t1 + · · · + tk+1 = 1 and some measurable sets Bi such that
vectors H (µ|Bi ), i = 1, . . . , k + 1, are affinely independent.

Proof: Let η0 minimise D f (µ)[η] with respect to η ∈ ϒµ and
µ + η0 satisfy the required conditions (4.2). By Winkler (1988,
Theorem 2.1), there exists a measure η+ with at most k atoms
such that

H (η+) = H (η+
0 ) and D f (µ)[η+] = D f (µ)[η+

0 ].

Next, the set Aµ = {ν ∈ M : µ − ν ∈ M} is a convex linearly
compact subset of M and H is a linear map from M to R

k .
By Winkler (1988, Proposition 2.1) the extreme points of the
set G = Aµ ∩ H−1(η−

0 ) are contained in the convex com-
binations of the type

∑k+1
i=1 ti µ|Bi with affinely independent

H (µ|Bi ), i = 1, . . . , k + 1. Therefore, the maximum of a linear
functional D f (µ)[ν] over all ν ∈ G is attained at one of such
measures which can then be taken to replace η−

0 . Therefore,
η+ − η− can be taken instead of η0 without altering the value of
the derivative D f (µ)[η] = D f (µ)[η0]. �

Corollary 4.2. If the only constraint is µ(X ) = a, then the
minimum of D f (µ)[η] over all η ∈ ϒµ with ‖η‖ ≤ ε is achieved
on a signed measure η such that η+ is the positive measure of
total mass ε/2 concentrated on the points of the global minima
of d f (x, µ) and η− = µ|M(tε) + δµ|M(sε)\M(tε), where

M(p) = {x ∈ X : d f (x, µ) ≥ p},

and

tε = inf {p : µ(M(p)) < ε/2}, (4.3)

sε = sup{p : µ(M(p)) ≥ ε/2}. (4.4)

The factor δ is chosen in such a way that µ(M(tε))+δµ(M(sε)\
M(tε)) = ε/2.

Proof: By Theorem 4.1, we can search the optimal η among all
signed measures with η+ concentrated at a single point x0. The
contribution of this positive part to the gradient of f at direction
µ is provided by (ε/2)d f (x0, µ) and is minimised if x0 is a point
of the set of global minima of d f (x, µ).

The negative part η− should be chosen to maximise
q(η−) = ∫

d f (x, µ)η−(dx) among all measures η− dominated
by µ; note that Theorem 4.1 implies that η− = cµ|B1 +(1−c)µ|B2

is a convex combination of µ restricted onto two sets B1 and B2.
A necessary condition for minimum of a functional defined on
a family of dominated measures (Molchanov and Zuyev 2000a,
Theorem 5.1(ii)) implies that η = µ|B , where B should consist
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of the points where d f (x, B) is as large as possible. Therefore,
if the decreasing function µ(M(p)) takes the value ε/2 for some
p = tε, then tε = sε and η− = µ|M(tε) provides the maximum. If
µ(M(p)) is discontinuous at the point tε then µ|M(tε) has to-
tal mass smaller than ε/2 and the rest of the mass is provided
by δµ|M(sε)\M(tε), leading to η− = µ|M(tε) + δµ|M(sε)\M(tε). Both
cases correspond to the form of η− given by Theorem 4.1 with
B0 = M(tε), B1 = M(sε)\M(tε) and t0 = 1, t1 = 0 in the first case
and t0 = (1 − δ), t1 = δ in the second. �

It is interesting to note that, without constraint ‖η‖ ≤ ε on
the total variation norm of the increment measure, the steepest
direction η ∈ ϒµ that preserves the total mass a is the mea-
sure η = aδx0 − µ, where x0 is a global minimum point of
d f (x, µ).

5. Steepest descent algorithm for fixed total
mass problem

Corollary 4.2 that describes the steepest descent direction in
the minimisation problem with a fixed total mass, gives rise to
the following algorithm.

Procedure go.steep

Data. Initial measure µ.

Step 0. Compute f ← f (µ).

Step 1. Compute g ← d f (x, µ). If is.optim (µ, g), stop.
Otherwise, choose the step size ε.

Step 2. Compute µ1 ← take.step(ε, µ, g).

Step 3. If f1 ← f (µ1) < f , then µ ← µ1; f ← f1; and go to
Step 2. Otherwise, go to Step 1.

The necessary condition for the optimum (2.6) used as a
stopping rule in Step 1 means that the function g(x) = d f (x, µ)
is constant on the support of an optimal µ and takes its minimal
value there. Although the support of µ on the discrete space
X is the set S = {x ∈ X : µ(x) > 0}, in practice one may wish
to ignore the atoms of mass less than a certain small threshold
supp.tol. The boolean procedure is.optim has the following
structure.

Procedure is.optim

Data. Measure µ, gradient function g(x), tolerance tol, toler-
ance of the support supp.tol.

Step 1. Compute support S of µ up to tolerance supp.tol.

Step 2. If maxx∈S g(x)−min g(x) <tol return TRUE, otherwise
return FALSE.

The proceduretake.step returns the updated measure µ+η,
where η is the steepest direction increment measure with total
mass 0 and total variation ε given by Corollary 4.2.

Procedure take.step

Data. Step size ε, measure µ, gradient function g(x).

Step 0. Assign to each point x ∈ X the mass µ({x}).
Step 1. Find the points of global minimum of g(x) and add the

total mass ε/2 to one of these points or spread it uniformly
(or in any other manner) over these points.

Step 2. Find tε and sε from (4.3) and (4.4) and assign mass 0
to all the points of the set M(tε), decrease the total mass of
the points from M(sε)\M(tε) by value ε/2 − µ(M(tε)) and
return the obtained measure.

The described algorithm surely leads to a global minimum
when applied to convex objective functions. In the general case
it may stuck in a local minimum, the feature common for gradient
algorithms applied in the context of global optimisation.

There are many possible methods suitable to choose the step
size ε in Step 1 of procedure go.steep. Many aspects can be
taken into consideration: the previous step size and/or difference
between the supremum and infimum of d f (x, µ) over the support
of µ.

We mention two common methods widely used for general
gradient descent algorithms (see, Polak 1997). The first one takes
into account the number of steps taken along the previously
computed gradient. Namely, if k is the number of times Step 2
in go.steep was taken before passing to Step 1, then the new
value of the step size is decreased by a factor 0 < β < 1, if k = 0;
and taken to be kε, if k ≥ 1.

The second one is Armijo method (see, Polak 1997,
Section 1.3.2). It defines the new step size to be βmε, the in-
teger m is such that

f (µ + ηm) − f (µ) ≤ α

∫
d f (x, µ)ηm(dx),

f (µ + ηm−1) − f (µ) > α

∫
d f (x, µ)ηm−1(dx),

where 0 < α < 1 and ηm is the steepest descent measure with the
total variation βmε described in Corollary 4.2.

Both variants are realised in Splus/R library mefista (for
MEasures with FIxed mass STeepest Ascent/descent) that can
be obtained from the author’s web-pages.

6. Descent algorithm for optimisation
with many constraints

Although the steepest direction for optimisation with many lin-
ear constraints (4.2) is characterised in Theorem 4.1, its prac-
tical determination becomes a difficult problem. Indeed, it is
easy to see that for a discrete space X (used in numerical meth-
ods) minimisation of D f (µ)[η] over all signed measures η ∈ ϒµ

with ‖η‖ = ε is a linear programming problem of dimension
equal to the cardinality of X . Therefore, in the presence of many
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constraints, it might be computationally more efficient to use an
approximation to the exact steepest direction.

One possible approach is to fix the negative component of the
increment η at every step to be proportional to the current mea-
sure µ and to choose its positive part η+ in an optimal way. Due to
Theorem 4.1, the positive part ν = η+ of the steepest increment
measure consists of at most k atoms. We, therefore, propose to
move from the current measure µ to µ + η, where η = ν − γµ

for some γ > 0. The new measure is thus a renormalised
measure c(µ+ν ′) with c = (1−γ ) and ν ′ = c−1ν. The locations
x1, . . . , xk and the corresponding masses p1, . . . , pk of k atoms
of ν are chosen to minimise the directional derivative D f (µ)[η]
(or, equivalently, D f (µ)[ν]) and to maintain the imposed con-
straints (4.2). The value of γ characterises the size of the step,
although not necessarily equals the total variation of η.

Since H is linear, the constraints H (µ + ν − γµ) =
A = (a1, . . . , ak) are satisfied if

H (ν) =
k∑

j=1

p j h(x j ) = γ A,

that can be written in a matrix form as

H(x1, . . . , xk)p� = γ A�

with p = (p1, . . . , pk) and H(x1, . . . , xk) = [hi (x j )]k
i, j=1. By the

regularity condition (2.4) the matrix H is invertible implying
that

p� = γ H(x1, . . . , xk)−1 A�. (6.1)

Since η = ν − γµ, the directional derivative D f (µ)[η] is min-
imised if ν minimises

D f (µ)[ν] =
k∑

j=1

p j d f (x j , µ)
(6.2)

= γ d(x1, . . . , xk)H(x1, . . . , xk)−1 A�,

where d(x1, . . . , xk) = (d f (x1, µ), . . . , d f (xk, µ)). The right-
hand side of (6.2) is a function of k variables x1, . . . , xk that
should be minimised to find the ‘best’ locations for the atoms.
Their masses p1, . . . , pk are then obtained from (6.1). Note
that the minimisation here is restricted to only those k-tuples
x1, . . . , xk that provide p� with all non-negative components.

In the case of a single constraint on the total mass the described
approach turns into a conventional method widely used in the
optimal design literature (see, e.g., Wynn 1970). In this case
D f (µ)[ν] is minimised for ν having a single atom placed at a
point of global minimum of d f (·, µ). Since this descent differs
from the steepest descent given in Corollary 4.2, an additional
analysis is necessary to ensure that the algorithm of the described
kind does converge to the desired solution (see, e.g., Wu and
Wynn 1978).

The descent algorithm below is based on the arguments above
and have been programmed in the SPLUS and R languages. The
corresponding librarymedea (for MEasure DEscent/Ascent) can
be obtained from the authors’ web-pages.

Procedure go.renorm

Data. Initial measure µ.

Step 0. Compute f ← f (µ) and for each k-tuple (x1, . . . , xk)
compute H(x1, . . . , xk)−1 A�.

Step 1. Compute g ← d f (x, µ). If is.optim.renorm (µ, g),
stop. Otherwise, choose the step size ε.

Step 2. Compute µ1 ← take.step.renorm (ε, µ, g).

Step 3. If f1 ← f (µ1) < f , then µ ← µ1; f ← f1; and go to
Step 2. Otherwise, go to Step 1.

The most resource consuming part here is the pre-calculation
of the inverse of the matrix H in Step 0 since there are O(|X |k)
values to store, where |X | is the cardinality of X . This elimi-
nates repeating the same operations at each step. However, if
the calculation time is not critical but the memory requirements
are, this part may be omitted with H(x1, . . . , xk)−1 A� calculated
each time its value is required.

By (2.5) the function d f (x, µ) at the optimal µ should be a
linear combination

L(x) = L(x, u1, . . . , uk) =
k∑

i=1

ukhi (x)

of the functions hi (x) defining the constraints (4.2) on the sup-
port of µ and not less then this combination in other points. The
corresponding estimates û1, . . . , ûk can be found by minimising

∑
x∈supp µ

(L(x, u1, . . . , uk) − d f (x, µ))2 (6.3)

and the value of (6.3) used in the stopping rule for go.renorm
algorithm.

Procedure is.optim.renorm

Data. Measure µ, gradient function g(x), tolerance tol, toler-
ance of the support supp.tol.

Step 1. Compute support S of µ up to tolerance supp.tol.

Step 2. Find the vector L̂ of u1, . . . , uk minimising (6.3).

Step 3. Calculate ĝ ← (g − L̂ − min(g − L̂)). If
∑

x : ĝ>tol

µ(x) < supp.tol return TRUE, otherwise return FALSE.

Step 2 above can be easily realised in Splus/R with the
help of glm procedure. If C denotes the matrix of constraints
C = [h j (xi )]xi ∈X,1≤ j≤k calculated at all the points of X , then
u1, . . . , uk are the regression coefficients returned by glm after
fitting the model g∼C-1 (to use the columns of C as regres-
sors with no intercept fitted) over all the rows that correspond to
S ⊂ X .

The procedure take.step.renorm returns the updated
renormalised measure µ + ν − γµ, where ν contains at most k
atoms found to minimise (6.2).
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Fig. 1. (a) the optimal design measure and (b) the corresponding gradient d f (x, µ) as functions of x; (c) and (d) the corresponding results for the
problem with the fixed barycentre

Procedure take.step.renorm

Data. Step size γ , measure µ, gradient function g(x), the
k-tuples Q(x1, . . . , xk) = H(x1, . . . , xk)−1 A� computed for
each k-tuple (x1, . . . , xk) ∈ X .

Step 0. Assign to each point x ∈ X the mass µ({x}).
Step 1. Find points x1, . . . , xk minimising

∑k
i=1 g(xi ) Qi (x1,

. . . , xk), where Qi is the i-th component of Q, over all
k-tuples x1, . . . , xk such that Q(x1, . . . , xk) contains only
non-negative components.

Step 2. Find p = (p1, . . . , pk) ← γ Q(x1, . . . , xk).

Step 3. Assign the value µ′({xi }) ← (1 − γ )µ({xi }) + pi to
every xi , 1 ≤ i ≤ k. Assign µ′({x}) ← (1 − γ )µ({x}) to all
other x ∈ X . Return values µ′({x}), x ∈ X .

It is clear that the initial measure must satisfy all the imposed
constraints. But even finding such a measure in the presence of
many constraints could be itself a time consuming task. There-
fore, if the initial measure is not given, the procedurego.renorm
in medea library will find one and start the descent from it.

7. Numerical examples

7.1. Optimal design

Consider the polynomial regression problem of order 4 with
X = [0, 1]. For computational purposes, we discretise X with
mesh size 0.01. Starting with the initial measure uniformly
distributed over the grid points, go.steep algorithm arrives
at the measure shown in Fig. 1(a). The gradient func-
tion shown in Fig. 1(b) clearly satisfies the optimality cri-
terion 2.6 in the fixed total mass problem as the gradi-
ent is minimal and constant on the support of the obtained
measure.

Consider now the same problem with an additional constraint
being the fixed barycentre,

∫
xµ(dx) = 0.7. The go.renorm al-

gorithm yields the results shown in Fig. 1(c) and (d) that satisfies
the optimality condition given by Theorem 2.1 as the gradient

is affine at the support of the optimal measure. The initial mea-
sure was chosen automatically by the programme to satisfy the
imposed constraints.

Detailed discussion of our algorithm in comparison with other
descent algorithms suggested in the optimal design literature can
be found in Molchanov and Zuyev (2000c). Further results re-
lated to constrained optimal design can be found, e.g., in Fedorov
and Hackl (1997) and Pukelsheim (1983).

7.2. Mixtures

A descent algorithm for maximum likelihood estimation of the
mixing distribution was described in Lindsay (1983). However,
it uses only an approximation to the steepest descent direction
by choosing the negative increment on each step proportional
to the current value of the measure. Consider the problem of
fitting a mixture of normal distributions with a known standard
deviation to a given set of sample points.

Fig. 2. (a) the optimal mixing distribution. The observed points are
shown as dots on the top line. (b) The corresponding gradient d f (x, µ)
as functions of x
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Fig. 3. A sample of points superimposed with contour plots of the corresponding P-mean for the total mass a; (a) a = 1; (b) a = 5; (c) a = 25;
(d) a = 100

Let px (·) be the normal density with mean x ∈ X = [0, 1] and
the standard deviation σ . We will fit the optimal mixing dis-
tribution for a sample 30 observations, among them one third
comes from the normal distribution with mean 0.4 and two other
thirds from the normal distributions with mean 0.6. The standard
deviation of all distributions is σ = 0.1. Figure 2 shows the op-
timal mixing distribution and the mixing measure for this case.
In theory, the number of atoms in the optimal measure could
be as large as the number of observation points. The obtained
solution µ, however, has 15 atoms which are seen to concen-

Fig. 4. Optimal measures in the coverage problem; (a) radius r = 0.2 fixed; (b) exponentially distributed radius with mean 0.2

trate around the true positions at 0.4 and 0.6. The total mass
of µ in the neighbourhood of 0.4 is 0.3017 and 0.666 in the
neighbourhood of 0.6. Observe also an artefact atom of mass
0.0323 appearing in 0.859 due to an outlier observation point
at 0.892.

7.3. P-means

Consider a sample of n = 69 points in the unit square X = [0, 1]2

shown in Fig. 3. These points have been sampled from 5 clusters,
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each having bivariate normal distribution. As one can see, the
P-mean µ with a small total mass a results in a fewer peaks
of the measure density than the number of points, while if a
increases substantially, the pattern of peaks of the optimal µ

tends to concentrate on the point sample. It has been observed
that the P-mean with the total mass equal to about the half of
the sample size grasps the clustering pattern in the best way, the
fact supported by Fig. 3(c).

7.4. Maximisation of the covered volume
in a Boolean model

Let X be the unit square [0, 1]2 discretised by a square grid with
mesh size 0.05. The total mass of µ is fixed to 10. Figure 4
shows perspective plots of optimal measures on the grid for the
Boolean model with a fixed radius r = 0.2 and exponentially
distributed radius with mean 0.2. The initial measure was taken
uniform. In both cases the optimal measure µ has a number of
peaks, more explicit in the case of the exponentially distributed
radii.

Other examples of functionals on Boolean models and corre-
sponding optimisation problems are considered in Molchanov,
Chiu and Zuyev (2000).
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