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significantly reduced infarct size (from 61.0  8  12.0% of the 
ischemic area at risk to 39.4  8  17.0%), plasma creatine kinase, 
local complement deposition and tissue factor upregula-
tion, without affecting systemic coagulation. Protection was 
associated with significantly reduced myocardial neutrophil 
extravasation and translated into a significant improvement 
of ejection fraction and left ventricular enddiastolic pres-
sure.  Conclusions:  sTyr-PAA protected significantly against 
myocardial I/R injury without substantially affecting system-
ic coagulation. Local intravascular sTyr-PAA administration 
may prove advantageous in situations where bleeding com-
plications are likely or are to be avoided at all costs. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Activation of the complement and coagulation sys-
tems is implicated in initiating endothelial cell activation 
and subsequently leads to tissue injury following isch-
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 Abstract 

  Objectives:  Intracoronary administration of glycosamino-
glycan analogs, including the complement inhibitor dextran 
sulfate, attenuates myocardial ischemia/reperfusion injury 
(I/R injury). However, dextran sulfate has a distinct antico-
agulatory effect, possibly limiting its use in specific situa-
tions in vivo. We therefore developed multimeric tyrosine 
sulfate (sTyr-PAA), a novel, minimally anticoagulatory, fully 
synthetic non-carbohydrate-containing polyacrylamide 
conjugate, for in vivo testing in an acute closed-chest por-
cine model of acute myocardial infarction.  Methods:  Follow-
ing balloon occlusion of the left anterior descending artery 
just after the first diagonal branch (60-minute ischemia), 
sTyr-PAA (approx. 10 mg/kg bodyweight, fraction with stron-
gest complement-inhibitory and minimal anticoagulatory 
properties, n = 11) or phosphate-buffered saline (controls,
n = 9) was administered intracoronarily into ischemic myo-
cardium prior to 120 min of reperfusion.  Results:  sTyr-PAA 
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emia and reperfusion  [1, 2] . Damage to endothelial integ-
rity leads to a loss of thrombo- and immune-regulatory 
function within the intravascular space  [3] , with upregu-
lation of endothelial tissue factor (TF), vascular adhesion 
molecules and cytokine production  [2, 4, 5] . We previ-
ously developed and described the use of a non-carbohy-
drate-containing polyacrylamide conjugate of  O -sulfoty-
rosine (sTyr-PAA, 80% mol of sTyr) as a potent blocker of 
P-selectin in vitro and neutrophil extravasation in a rat 
peritonitis model in vivo    [6] . Further studies in vitro re-
vealed that sTyr-PAA compounds, in particular those 
with a 40% substitution rate (meaning that 40% of all 
available substitution sites of the polymer-backbone are 
occupied by tyrosine sulfate), were potent inhibitors of 
all three pathways of complement activation  [7]  – all of 
which have been implicated in ischemia/reperfusion 
(I/R) injury. In addition to complement inhibition, sTyr-
PAA binds to damaged endothelium denuded of its pro-
tective heparan sulfate proteoglycan surface layer and 
prevents human serum-mediated cytotoxicity towards 
porcine cells  [7] . Preceding work in our laboratory has 
shown that the glycosaminoglycan analog dextran sul-
fate [DXS; molecular weight (MW) 5,000 Da] significant-
ly ameliorated reperfusion injury in acute myocardial in-
farction in pigs through association with damaged endo-
thelium and site-specific complement inhibition  [8] . Yet 
DXS, like certain other glycosaminoglycan analogs, in-
cluding heparin, not only efficiently inhibits complement 
activation  [9–11] , but also primary and secondary hemo-
stasis  [12–14] . However, in specific clinical situations, in-
cluding myocardial infarction and cerebral reperfusion 
injury, (secondary) hemorrhage upon reperfusion may 
have detrimental consequences. Therefore, as part of our 
ongoing efforts to develop and characterize novel cyto-
protectants, we focused on investigating the potential of 
sTyr-PAA to associate with damaged endothelium and to 
reduce the extent of myocardial necrosis in an in vivo pig 
model of myocardial infarction.

  Materials and Methods 

 Synthesis of sTyr-PAA 
 All PAA-based conjugates were synthesized by the methods 

described previously  [15, 16] . Briefly, for synthesis of sTyr(40%)-
PAA, sTyr powder and triethylamine were added to a solution of 
poly(4-nitrophenyl acrylate) in dimethyl sulfoxide (DMSO). Fol-
lowing the addition of ethanolamine, the resulting conjugate was 
purified by gel filtration on a Sephadex LH-20 (3  !  50 cm) col-
umn eluted with 1:   1 acetonitrile-water. Fractions containing the 
target conjugate were concentrated in vacuo and divided into four 
fractions by gel filtration on a Sephadex G-25 (7  !  49.5 cm) col-

umn (elution with water): fraction 1 (the heaviest, 2.6%, eluted 
after the free volume of column), fraction 2 (28.8%), fraction 3 
(40.2%) and fraction 4 (‘tail’, 13.0%). Fraction 4 was not evaluated 
further. The apparent molecular weights of fractions 1–3 ( table 1 ) 
were estimated by HPLC on TSK gel G2000SW (TOSOH, Japan, 
10  � m, 7.5  !  300 mm) column preliminarily calibrated using a 
standard kit of poly(acrylic acids), M n 1,250–28,000 Da (elution 
with 0.2  M  NaCl in H 2 O, 1 ml/min, at room temperature).

  Synthesis of sTyr-PAA-Fluo 
 For the synthesis of fluorescein-labeled sTyr-PAA (sTyr-PAA-

Fluo) 5-[(5-aminopentyl)thioureidyl]fluorescein, dihydrobro-
mide salt, sTyr powder, and triethylamine were added to poly(4-
nitrophenyl acrylate) in DMSO. Following the addition of etha-
nolamine, the resulting conjugate was purified by gel filtration on 
a Sephadex LH-20 (2  !  35 cm) column eluted with 1:   1 acetoni-
trile-water. Fractions containing the target conjugate were con-
centrated in vacuo, dissolved in water, and lyophilized to yield the 
sTyr-PAA-Fluo.

  Complement and Coagulation Markers in vitro 
 Fractions 1–3 of sTyr-PAA with different MWs ( table 1 ), as well 

as DXS of a low MW (Fluka Chemie Buchs, Switzerland) used as 
a control, were tested for the inhibition of classic pathway comple-
ment activity, determined by standard CH50 assay as previously 
described  [17] . Hemolysis of antibody-sensitized sheep erythro-
cytes (Biomerieux, Marcy l’Etoile, France, coated with rabbit an-
ti-sheep red cell stroma antiserum, Sigma) by human serum was 
determined after 60-min incubation at 37   °   C with or without the 
addition of sTyr-PAA.

  Standard activated partial thromboplastin time (aPTT) tests, 
measured using Dade Actin FS reagent, were performed using in-
creasing concentrations of sTyr-PAA diluted in veronal-buffered 
saline.

  In vivo Model of Myocardial Infarction in Pigs 
 Care and use of animals in this study were in compliance with 

the Guide for the Care and Use of Laboratory Animals (NIH pub-
lication N0 85-23, revised 1996) as well as the relevant Swiss laws 
and regulations and were approved by the locally appointed ani-
mal experimentation committee.

  sTyr-PAA fraction 2 (most favorable in vitro data with respect 
to inhibition of the complement and coagulation systems) was 
further tested in a closed chest model of acute myocardial infarc-
tion in pigs. The animal experiments were performed as previ-
ously described  [8, 18] . In brief, 24 large white pigs (29  8  3 kg), 
premedicated with ketamine/xylazine, midazolam and atropine, 
were intubated and mechanically ventilated with a Draeger respi-
rator (O 2 /N 2 O 1:   3, isoflurane 1–1.5 vol%). After the introduction 
of central venous and arterial lines, a single bolus of unfraction-
ated heparin (2,500 IU) was administered intravenously to pre-
vent clotting after operative intravascular manipulation. Follow-
ing baseline recordings over 30 min, animals were subjected to 
1 h of myocardial ischemia within the area of the left anterior de-
scending coronary artery (LAD; after first diagonal branch) using 
an over-the-wire percutaneous coronary intervention catheter 
(diameter 2.5–3 mm, Concerto, Occam, The Netherlands) fol-
lowed by 2 h of reperfusion. Localization of the balloon and state 
of inflation was controlled angiographically on a regular basis.
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  Ten milliliters of fraction 2 of sTyr-PAA (25 mg/ml, equivalent 
to approx. 10 mg/kg, n = 11) or phosphate-buffered saline (PBS 
controls, n = 9) were injected intracoronary, through the tip of the 
catheter, into the ischemic area at risk (AAR) immediately prior 
to the 2-hour reperfusion phase. The area not at risk (ANR) was 
distinguished from the area at risk at the end of the experiment 
by negative demarcation with intravenous Evans Blue (60 ml, 2% 
wt/vol solution, Sigma) during reocclusion of the balloon, stain-
ing all but the AAR, thus essentially leaving a ‘negative imprint’ 
of the unstained ischemic area. Animals were sacrificed by intra-
venous potassium chloride (10 ml, 20 mmol) and the heart excised 
for further analysis. Viability within the ischemic AAR of the ex-
cised heart was determined by staining left myocardial ventricle 
tissue (3-mm slices) with triphenyl tetrazolium chloride (TTC, 
Sigma, pH 7.4, 1%) for 20 min at 37   °   C, as described previously 
 [19] . Myocardial tissue, which stained dark red due to the forma-
tion of a formazan complex formed in the presence of active de-
hydrogenases and cofactors, was defined as viable ischemic tissue 
(VIT). Unstained tissue, which corresponded to irreversibly dam-
aged myocardium, was defined as necrotic ischemic tissue (NIT). 
All three tissue sections (Evan’s Blue positive area not at risk, 
ANR; NIT and VIT) were dissected and weighed. Left ventricular 
mass (LVM, in grams), AAR in grams, AAR as a % of LVM, NIT 
in grams and NIT as a % of AAR were recorded.

  ECG and invasive arterial pressure were recorded with a 
Hewlett-Packard CMS patient monitor throughout the experi-
ment. Ejection fraction (EF) was determined angiographically 
and calculated using the area-length-method according to Dodge 
 [20] . Left ventricular enddiastolic pressure (LVEDP) was mea-
sured prior to ventriculography. In the case of ventricular fibril-
lation, a biphasic defibrillator (150 J) was used for defibrillation.

  The investigators were blinded to the treatment regimen. All 
animals were randomized into the 2 groups using a randomiza-
tion code with a random number generator (SAS, version 9.1.2, 
SAS Institute Inc., Cary, N.C., USA), prior to beginning the series. 
The 10-ml samples (PBS or sTyr-PAA fraction 2 in PBS) were pre-
pared according to the randomization output by an independent 
laboratory technician and stored at –80   °   C until use. Prior to pre-
medication of the animals, each vial was allocated to the corre-
sponding pig (sequential vial No. = sequential pig No.). Of the 24 
consecutively enlisted pigs, 1 died shortly after intubation due to 
unidentifiable respiratory problems and 3 died during the period 
of ischemia, prior to administration of PBS or sTyr-PAA following 
intractable ventricular fibrillation. The remaining 20 pigs were 
treated according to the above-described protocol. Sample size 
was determined in advance, estimated from previous work  [8, 21]  
and experience, i.e. not by formal sample-size calculations.

  Ischemic Markers in vivo 
 The levels of creatine kinase MB fraction (CKMB) were deter-

mined by enzyme immunoassays (AxSYM microparticle enzyme 
immunoassay platform, Abbott Laboratories, Abbott Park, Ill., 
USA). The ELISA was judged sensitive and specific for myocar-
dial injury in pigs.

  Measurement of Complement Markers: Plasma and Serum 
Samples 
 Blood samples from the central venous catheter access were 

collected (EDTA plasma/serum), kept on ice until centrifugation 
(1,750  g  for 10 min at 4   °   C) and stored at –80   °   C until further anal-

ysis. Soluble C3a was measured by sandwich ELISA technique. In 
brief, microtiter plates were coated with a monoclonal antibody 
(mouse IgG2b) against porcine C3a/C3a(desArg). After washing, 
plasma samples were incubated at a 1:   50 dilution for 2 h at room 
temperature. Biotinylated monoclonal anti-C3/C3a antibody fol-
lowed by streptavidin-alkaline phosphatase conjugate (Amer-
sham Pharmacia Biotech, Bucks, UK) and 4-nitrophenyl phos-
phate substrate (Sigma) were used to detect bound C3a. All non-
commercial antibodies were kindly provided by Prof. Otto 
Goetze, Georg-August University, Goettingen, Germany.

  In order to quantify the effect of sTyr-PAA on systemic classi-
cal pathway complement activity, CH50 values were measured 
from serum by a standard CH50 assay with antibody-coated 
sheep erythrocytes, as described for the initial in vitro screening 
of sTyr-PAA (see previous section).

  Histology and Immunostaining 
 Formaldehyde-fixed, paraffin-embedded myocardial tissue 

was cut into 3- � m sections. Neutrophil numbers were counted in 
10 randomly selected high-power viewing fields ( ! 40 objective, 
 ! 400 magnification, 0.57-mm field diameter) from tissue sam-
ples (4 samples per area per experiment) of each experiment. The 
intravascular/interstitial ratio was calculated for each section and 
experiment and averaged for all experiments in both groups. Five-
micrometer sections were cut from all snap-frozen tissue samples, 
air-dried, acetone-fixed, hydrated and labeled following an indi-
rect immunofluorescence technique. The following antibodies, 
cross-reactive for porcine antigens, were used: rabbit anti-human 
C1q, C3b/c and C4b/c (Dako) and mouse monoclonal anti-human 
C7 (Quidel, Santa Clara, Calif., USA). Secondary antibodies were 
goat anti-rabbit IgG(H+L)-FITC (Southern Biotechnology Asso-
ciated, Birmingham, Ala., USA) and rabbit anti-mouse Ig-FITC 
(Dako). Immunohistochemical staining for TF with polyclonal 
rabbit anti-TF antibody was carried out as previously described 
 [22, 23] . Binding of sTyr-PAA to the endothelium/myocardium 
was detected using sTyr-PAA-Fluo instead of the unlabeled sTyr-
PAA in 2 further experiments.

  Images of these stainings were analyzed using the ImageJ (ver-
sion 1.440) software package from the National Institutes of 
Health (http://rsb.info.nih.gov/ij/). Briefly, all images were adjust-
ed to fixed upper and lower threshold values in an appropriate 
color channel. Following threshold adjustment, positive areas 
were selected by the software as square pixels ( � m 2 ). The total 
signal per section was calculated using the ‘measure’ function, 
and the sum of the values of pixels calculated using the raw inte-
grated density. Each calculated average raw integrated density or 
area derived was from 4–6 independent experiments.

Table 1. M olecular weights of fractions 1–3 as estimated by HPLC 
on TSKgel G2000SW column

Amount, mg (%) Mn

Fraction 1 56 (2.6) approx. 16,000
Fraction 2 612 (28.8) approx. 4,000
Fraction 3 856 (40.2) approx. 2,500
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  Statistics 
 Nonlongitudinal data (TTC staining, neutrophil infiltration) 

were compared between groups by use of One-way analysis of 
variance (ANOVA). Comparison of longitudinal data of the re-
perfusion model between the groups (treatment vs. control) was 
performed by a mixed linear model (SAS proc mixed), which can 
be regarded as an extended form of ANOVA. This model assesses 
between group differences (independent of time), within-group 
differences (time effect) and the interaction of time effect and 
group effect (representing the effect of primary interest). It evalu-
ates whether changes over time are different between the 2 groups, 
corresponding to nonparallel lines in the figures. Presented p val-
ues correspond to the test for interaction of group and time. A 
mixed linear model was preferred over a repeated-measure ANO-
VA because the latter does not allow heteroscedasticity of data or 
missing data. A maximum of 7.1% of data (for LVEDP) was miss-
ing due to technical measurement issues and was assumed to be 
missing at random. Statistical significance was defined as p  !  
0.05. SAS version 9.1 (SAS Institute) was used for analyses. Im-
munostaining data were assessed by means of a 2-tailed unpaired 
Student t test. Data, unless otherwise specified, are presented as 
average  8  standard deviation in text and figures.

  Results 

 In vitro Inhibition of Complement and Coagulation 
 sTyr-PAA fractions 1 and 2 (particularly  1 500  � g/ml) 

inhibited coagulation more potently than fraction 3, 
which essentially did not affect coagulation ( fig. 1 ). Cor-
responding IC 50  values for fractions 1 and 2 were 636 and 

813  � g/ml, respectively. However, coagulation inhibition 
was still clearly less pronounced than by DXS, which was 
used as a control (IC 50  value of 182  � g/ml). Fractions 1 
and 2 also proved more potent inhibitors of the classic 
complement pathway compared to fraction 3 (IC 50  values 
of 5.4 and 4.9  � g/ml, respectively, vs. 91.1  � g/ml for frac-
tion 3). The IC 50  value for complement inhibition for DXS 
was 2.1  � g/ml.

  Myocardial Infarct Size – TTC Staining and CKMB 
 Evans Blue infusion was used to define the area at risk. 

In vivo application did not subsequently lead to leakage of 
Evans Blue dye upon tissue sectioning ex vivo. Equal areas 
at risk were observed in both experimental groups (mean 
 8  standard deviation/median: 39  8  8.0/35.5% of LVM 
for PBS controls, 35.4  8  8.9/36.2% for sTyr-PAA treat-
ment group, p = 0.239,  fig. 2 a). Administration of sTyr-
PAA fraction 2, however, significantly reduced the total 
area of necrosis (NIT as a % of the area at risk, measured 
by TTC staining, 61.0  8  12.0/66.5% in PBS controls, 39.4 
 8  17.0/32.8% in the sTyr-PAA group, p = 0.001,  fig. 2 a). 
This result correlated with significantly reduced levels of 
plasma creatine kinase (CKMB, p = 0.048,  fig. 2 b).

  Hemodynamic Variables 
 Mean heart rate did not differ significantly between 

the 2 groups at baseline, during LAD occlusion or reper-
fusion (p = 0.581,  fig. 3 a). Mean arterial pressure (MAP) 
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fractions of sTyr-PAA and DXS (MW 
5,000 Da, a potent inhibitor of comple-
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dropped during LAD occlusion from an average of 85  8  
12 mm Hg (PBS) and 82  8  10 mm Hg (sTyr-PAA) to 76 
 8  18 mm Hg and 74  8  14 mm Hg, respectively, after 
60-minute ischemia ( fig. 3 b). There was a slight trend to-
wards stabilization/recovery of MAP at the end of the 
2-hour reperfusion period, but differences between the 
groups were not significant at the end of reperfusion (p = 
0.461). In contrast, LVEDP ( fig. 3 c) increased markedly in 
both groups during LAD occlusion, dropping upon re-
perfusion. Recovery in the sTyr-PAA group showed a 
trend towards improvement within the observed 2-hour 
reperfusion phase (p = 0.073). EFs were similar in the 2 
experimental groups at baseline (58.1  8  0.4% in PBS con-
trols, 54.6  8  0.2% in the sTyr-PAA group). sTyr-PAA ad-
ministration lead to significantly improved EF at the end 
of the experiment compared to the PBS controls (p = 
0.024,  fig. 3 d)

  Arrhythmias 
 Of the 20 pigs included in the study, no fatalities oc-

curred due to arrhythmias following the administration 
of either PBS or sTyr-PAA. In total, there were 12 episodes 
of ventricular fibrillation in each of both groups, all suc-
cessfully treated with cardioconversion using a biphasic 
defibrillator (150 J). No significant differences in fre-
quency of ventricular fibrillation was noted between the 
groups (1.3 episodes/pig for PBS vs. 1.09/pig for sTyr-
PAA, n = 0.357).

  Complement and Coagulation Variables 
 sTyr-PAA did not significantly affect activity of the 

systemic classic complement pathway (CH50 test, p = 
0.584, PBS vs. sTyr-PAA group,  fig. 4 a). Systemic levels of 
C3a were not reduced following sTyr-PAA administra-
tion within the 2-hour reperfusion period (p = 0.150, 
 fig. 4 b). Surprisingly, for both the sTyr-PAA group as well 
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as the PBS controls, there was no significant increase in 
fluid-phase C5a levels in peripheral blood samples during 
the 2-hour reperfusion period and there were no signifi-
cant differences at the measured time points between the 
2 groups (results not shown).

  Systemic coagulation was not significantly altered by 
the intracoronary infusion of sTyr-PAA (aPTT, p  1  0.99, 
PBS vs. sTyr-PAA group,  fig. 4 c). The small increase in 
aPTT was observed in both groups in the first 20–30 min 
of LAD occlusion and is attributable to the initial intra-
venous administration of 2,500 IU to prevent clogging of 
central venous and arterial lines. However, despite its 
limited anticoagulant effect in the fluid phase, micro-
thrombi formation within the ischemic area, as evaluated 
in tissue sections, was not observed more frequently in 
sTyr-PAA-treated animals compared with the PBS con-
trols (not shown).

  Histology and Tissue Neutrophil Granulocytes 
 Reperfused, vital myocardial tissue samples (VIT, 

TTC red areas) showed focal, minimal signs of ischemic 
damage, including the presence of wavy fibers. Charac-
teristic signs of reperfusion damage including contrac-
tion bands and coagulation necrosis were observed in the 
infarcted area (NIT, TTC unstained areas) from both the 
sTyr-PAA PBS groups. No marked differences were ob-
served between the groups. Gross hemorrhage was de-
tected in one animal of the PBS group and 2 animals of 
the sTyr-PAA group. Foci of microscopic hemorrhage 
were equally detected (n = 2 in both groups) and ANR 
samples showed normal histological findings in both 
groups.

  The absolute numbers as well as intravascular/inter-
stitial ratios of neutrophils in tissue samples are shown 
in  table 2 . Evident neutrophil extravasation was particu-
larly blocked in the VIT following sTyr-PAA administra-
tion, as shown by the reduction in absolute numbers as 
well as the ratio of intravascular to interstitial neutrophil 
granulocytes (p = 0.008 for absolute numbers, ratio: 1.02 
 8  0.25, p = 0.013 vs. PBS). In the ANR and NIT, the ab-
solute numbers of intravascular or interstitial neutro-
phils and the ratios between the groups were not signifi-
cantly different (p = 0.420 ANR, p = 0.464 NIT for ra-
tios).

  Tissue Factor Staining 
 sTyr-PAA treatment markedly decreased TF expres-

sion in blood vessels within the NIT, as also confirmed 
by ImageJ software analysis ( fig. 5 , p = 0.0310). Upregula-
tion of TF within the injured vasculature (mainly endo-

thelial surface) in samples from PBS experiments was 
mainly associated with the infarct areas. Some weak focal 
TF staining was observed in certain vessels obtained 
from VIT and select vessels in the ANR (not shown, not 
significant). Minimal expression of TF was observed 
within the native cardiac vasculature of healthy pigs (not 
shown).

  Complement Staining 
 In the in vivo   model, the complement-inhibitory effect 

of sTyr-PAA fraction 2 translated to a significantly re-
duced complement deposition within the NIT compared 
to the PBS controls (immunofluorescence staining and 
results of analysis with ImageJ software) for C1q (p = 
0.0472), C3b/c (p = 0.0395), C4b/c (p = 0.0413) and C6
(p = 0.1655) (terminal complement complex,  fig.  6 a). 
Comparatively little complement deposition was ob-
served within the VIT in both experiments, without any 
significant differences being observed (not shown).

  Binding of sTyr-PAA 
 sTyr-PAA-Fluo was used to characterize binding of 

sTyr-PAA to myocardial tissue samples. Binding of sTyr-
PAA-Fluo was mainly localized to the inner lining of 
blood vessels within the myocardium as well as the outer 
layers of larger vessels, with occasional, focal binding to 
groups of cardiomyocytes ( fig. 6 b) with no binding ob-
served in distant organs (not shown).

Table 2.  Representation of absolute number and intravascular/
interstitial ratio of tissue neutrophils in myocardial samples

Group ANR VIT NIT

sTyr-PAA 7.482.2 iv
8.180.9 is

(0.9580.29)

8.781.3 iv
8.981.3 is

(1.0280.25)*

9.982.4 iv
36.982.3 is

(0.2780.01)

PBS 6.281.7 iv
6.480.9 is

(0.9980.24)

8.481.8 iv
11.381.3 is

(0.7480.24)

10.181.9 iv
38.582.3 is

(0.2680.03)

F our samples per area and experiment were examined and an 
average calculated from these. There were significantly more in-
terstitial extravasated neutrophils in the VIT of PBS controls ver-
sus the sTyr-PAA group. * p = 0.013. There were no significant 
differences in the ANR and NIT (p = 0.420 and p = 0.464). Results 
are mean 8 standard deviation (ratio in parentheses).

is = Interstitial extravasated neutrophils; iv = intravascular 
neutrophils.
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  Discussion 

 The results of this work reinforce the previously ob-
served beneficial effects of sTyr-PAA  [7]  in vitro and show 
that it also protects from reperfusion injury in vivo. The 
initial in vitro evaluation enabled choosing a fraction 
with minimal systemic anticoagulatory effects whilst re-
taining optimal complement inhibitory properties. Thus, 
the primary end point of reduced tissue damage (reduced 
NIT, reduced CKMB release) could be achieved with a 
single bolus administration of sTyr-PAA.

  The cytoprotective effect of sTyr-PAA correlates with 
binding of sTyr-PAA to the site of injury, visualized using 
sTyr-PAA-Fluo. Indeed, this localized binding of sTyr-
PAA – in part restoring an anti-inflammatory, comple-
ment-inhibitory local environment – was in itself paral-
leled by a clearcut reduction in local tissue-bound myo-
cardial complement deposition without systemically 
affecting circulating complement levels or activity, as re-
vealed by C3a and C5a ELISA (results not shown) as well 
as by CH50 assay. These results point towards a role for 
tissue-focused complement inhibition and underline the 

importance of complement-mediated damage in this I/R 
model, shown extensively in previous studies  [24, 25] . In 
our own previous study, cell surface- and locally-targeted 
complement inhibition with Mirococept, a membrane-
targeted complement inhibitor derived from human CR1, 
has already been shown to effectively reduce myocardial 
reperfusion injury in vivo  [18] .

  Of particular clinical relevance in this model is modu-
lation of the immediate postreperfusion phase – a time 
vital for tissue salvage, as has been shown in other postre-
perfusion strategies, such as postconditioning  [26]  or in-
tracoronary acid infusion as an alternative  [27] .

  The activated endothelial state induced during I/R in-
jury may directly contribute to postreperfusion complica-
tions, including plugging of the capillaries by polymorph 
nuclear cells as well as microvascular thrombosis, inevi-
table sequelae of the procoagulant endothelial surface af-
ter reperfusion. Therefore, systemic inhibition of the co-
agulation system routinely accompanies reperfusion of 
coronary arteries  [28] . In animal models, various antico-
agulants have provided tissue salvage  [5, 29] , partly 
through reducing inflammation. In our model, an initial 
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  Fig. 5.  Immunohistochemical staining for (endothelial) TF on 
myocardial tissue sections in controls versus the sTyr-PAA-treat-
ed group (p = 0.0310).  a  Minimal staining for TF within the VIT 
(top panels). Increased staining (brown, indicated by the arrow) 
within the NIT in the PBS (lower left) but not the sTyr-PAA group 

(lower right). Scale bar represents 50  � m.  b  Staining of NIT was 
analyzed by ImageJ software. Results are shown in a simple graph 
where the y-axis represents staining intensity. Data are mean        8  
standard deviation.  *  p  !  0.05. 
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  Fig. 6.   a  Immunofluorescence staining for complement deposi-
tion (C1q, C4b/c, C3b/c and C6) in the NIT. Graphs: results of 
staining as analyzed by ImageJ software. White bar = PBS, black 
bar = sTyr-PAA, y-axis represents fluorescence (Fluo) intensity. 
Data are mean            8  standard deviation.  *  p  !  0.05. sTyr-PAA re-
duces complement binding within the NIT (C1q p = 0.0472; C4b/c 

p = 0.0413; C3b/c p = 0.0395; C5b-9 p = 0.1655).    b  sTyr-PAA frac-
tion 2 binding to myocardial tissue in vivo using fluorescein-la-
beled sTyr-PAA (sTyr-PAA-Fluo). Note sTyr-PAA binding to 
blood vessels within the myocardium and a certain background 
red fluorescence caused by Evans Blue dye bound to vessels in the 
ANR. Scale bars = 50  � m.   
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intravenous bolus of 2,500 IU heparin was administered 
in all animals – a minimal dose to prevent possible clot-
ting events following early surgical manipulation. Conse-
quently, however, the minimal (and not significant) sys-
temic effect of sTyr-PAA did not appear to confer disad-
vantages in this acute in vivo model. These data fit in with 
results from other studies, where the use of non-anticoag-
ulant heparin and sulodexide, a mixture of glycosamino-
glycans with limited anticoagulant activity, proved effec-
tive in minimizing tissue injury  [30, 31] . It is possible that 
direct endothelial association and localized complement 
inhibitory effect, rather than systemic anticoagulation, 
provided protection  [32] . Although no prominent system-
ic effect on coagulation was observed with sTyr-PAA, the 
local procoagulant intravascular environment during 
ischemia was importantly controlled, with a reduced ex-
pression of TF. As has been highlighted in a recent review 
by Mitroulis et al.  [33] , the beneficial effect of inhibiting 
TF, for instance in I/R injury, may derive from blocking 
its multivalent role in initiating procoagulatory and pro-
inflammatory events. Indeed, one mechanism of action of 
sTyr-PAA may be through the inhibition of TF upregula-
tion and ensuing neutrophil-mediated injury; increased 
TF activity has been shown to lead to such injury though 
thrombin-dependent signaling  [34] .

  This current in vivo data on sTyr-PAA fits in with ear-
lier work, which supports the observation that sTyr-PAA 
modifies neutrophil extravasation. Polymers bearing 
densely situated tyrosine-sulfate residues constitute po-
tent P-selectin inhibitors in vitro, and block neutrophil 
extravasation in vivo in a model of peritonitis  [6] . We also 
previously demonstrated that sTyr-PAA is a potent P-se-
lectin blocker  [7] . The interaction between polymorph 
nuclear cells and the endothelium critically contributes 
to tissue injury  [35] . In this model, it still has to be inves-
tigated in more detail whether alterations in P-selectin-
mediated neutrophil extravasation are of importance or 
whether the reduced neutrophil numbers are attributable 
to indirect effects via local complement inhibition, site-
specific reduction of activated complement proteins 
(such as C5a) within the ischemic tissue and the subse-
quent reduction of neutrophil numbers. The sTyr-PAA-
induced reduction in extravasated neutrophils was pri-
marily observed within the VIT myocardial area and not 
in the NIT. However, neutrophil numbers in the tissue in 
general were not very high, which may be attributable to 
the early postinfarct period in which the tissue samples 
were analyzed. sTyr-PAA also decreased thrombotic 
events within small intramyocardial blood vessels. Al-
though this reduction points towards ameliorated tissue 

perfusion and subsequently a potential for influencing 
the so-called no-reflow phenomenon  [36] , further exper-
iments are needed to investigate if adequately restored 
epicardial blood flow equated with improved microvas-
cular perfusion. Overall, results in this model point to-
wards the fact that the binding of sTyr-PAA to damaged 
endothelium and the local modulation of the proinflam-
matory and procoagulant environment were possibly 
more critical than systemic anticoagulation. However, in 
the clinical setting with frequent implantation of coro-
nary stents, additional systemic anticoagulation is clearly 
unavoidable and is part of the current standard of care in 
the longer postinfarction course; whether its application 
could be reduced in favor of local regulatory strategies is 
still to be investigated.

  sTyr-PAA did not have a negative impact upon basic 
hemodynamic variables following its administration. 
Within the short observed period of reperfusion, it im-
proved EF significantly and showed a trend towards a re-
duction of LVEDP after ischemia. Whilst this improve-
ment within such a limited phase of reperfusion is very 
encouraging, it is unclear whether it is of prognostic val-
ue, as clinical studies indicate that early functional anal-
ysis following Q-wave myocardial infarction has only a 
very limited competence to predict the recovery of car-
diac function. Owing to the limited 2 h of reperfusion, 
further follow-up studies are needed to investigate wheth-
er sTyr-PAA administration favorably improves perfor-
mance in the period no longer affected by myocardial 
stunning. Furthermore, in subsequent studies sTyr-PAA 
may be used intravenously in addition to local application 
in an effort to further improve functional outcome.

  Limitations of the Model 
 The precise extent of vascular plugging and no reflow 

within the myocardial tissue was not evaluated in detail. 
However, our main aim was to establish whether sTyr-
PAA would be suitable as a candidate substance for local 
administration to reduce myocardial I/R injury with only 
limited systemic effects on coagulation. The key message 
lies in the clear reduction of infarct size in the sTyr-PAA-
treated group. Although TTC staining to discriminate 
between VIT and NIT may require a certain period of 
reperfusion  [37] , it does allow for sensitive and specific 
determination of infarct size  [38] . We and other authors 
have previously shown the validity of TTC staining in 
this and other models  [18, 39, 40] . Isoflurane is known to 
have a protective effect in terms of preconditioning  [25] . 
However, the animals of both groups were treated ac-
cording to the same anesthetic regime. Any precondi-
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tioning, subsequent reduction of reperfusion injury and 
of associated complement activation would therefore be 
expected to occur equally in both groups.

  The results of complement inhibition in clinical trials 
are currently equivocal. In the COMMA trial, pexelizu-
mab, a monoclonal anti-C5 antibody, did not measurably 
influence infarct size, but significantly reduced 90-day 
mortality  [41] ; in the COMPLY trial, it blocked comple-
ment activity but neither reduced infarct size nor adverse 
clinical outcomes  [42] . The reasons for the partly disap-
pointing results in clinical trials are diverse. Reperfusion 
injury is complex and complement activation only repre-
sents one mechanism of tissue damage. To some extent, 
thrombolytic agents, used for the noninterventional treat-
ment of myocardial infarction, activate complement 
themselves. Indeed, recently published important reviews 
discuss the problems of the translation of bench to bedside 
in I/R research in general, including in some cases the in-
adequacy of the models used and the difficulties in setting 
up and implementing an appropriate study design  [43] . It 
therefore remains to be confirmed how the results ob-
tained in animal models can be translated into successful 
use of the reagents in the complex clinical setting.

  In summary, the use of sTyr-PAA fraction 2 in the cur-
rent dose of up to 10mg/kg is safe and effective in vivo to 
reduce myocardial I/R injury. Clearly, further studies 
with an increased observational period after ischemia will 
be needed to confirm the promising short-term effects. 
Whilst previous studies have focused on a more systemic 

approach of complement inhibition to reduce reperfusion 
injury, these current data suggest that carefully controlled 
local complement inhibition – the proposed mode of ac-
tion of sTyr-PAA – may be just as important and effective 
in damage control in post-reperfusion treatment.

  The future use of sTyr-PAA may be envisaged in situ-
ations which necessitate local modification of a proin-
flammatory and procoagulant vascular environment, 
without systemically influencing the coagulation or com-
plement system. Indeed, this property may prove advan-
tageous for envisaged application in situations where 
bleeding complications are likely or are to be avoided at 
all costs, such as in cerebral I/R injury.
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