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Abstract
Motor tests play a key role in talent selection in football. However, individual motor tests

only focus on specific areas of a player’s complex performance. To evaluate his or her over-

all performance during a game, the current study takes a holistic perspective and uses a

person-oriented approach. In this approach, several factors are viewed together as a sys-

tem, whose state is analysed longitudinally. Based on this idea, six motor tests were aggre-

gated to form theMotor Function subsystem. 104 young, top-level, male football talents

were tested three times (2011, 2012, 2013;Mage, t2011 = 12.26, SD = 0.29), and their overall

level of performance was determined one year later (2014). The data were analysed using

the LICURmethod, a pattern-analytical procedure for person-oriented approaches. At all

three measuring points, four patterns could be identified, which remained stable over time.

One of the patterns found at the third measuring point identified more subsequently suc-

cessful players than random selection would. This pattern is characterised by above-aver-

age, but not necessarily the best, performance on the tests. Developmental paths along

structurally stable patterns that occur more often than predicted by chance indicate that the

Motor Function subsystem is a viable means of forecasting in the age range of 12–15 years.

Above-average, though not necessary outstanding, performance both on fitness and techni-

cal tests appears to be particularly promising. These findings underscore the view that a

holistic perspective may be profitable in talent selection.

Introduction
In order to select talents in football, it is essential to determine the players’ potential perfor-
mance [1]. As it is difficult to assess their complex performance in the game objectively, one
often resorts to fitness and technical tests in practice [2], since these are generally regarded to
provide a high degree of objectivity and reliability [3, 4]. In terms of their validity, such tests
ought to be able to distinguish between players displaying different levels of proficiency (con-
current validity), which they are generally considered to do [5]. However, when diagnosing tal-
ent, the difference in performance that will occur in the future—ideally when reaching the age
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of a competitive athlete—is of particularly great interest. The tests should therefore also be able
to discriminate between players with different levels of potential (predictive validity). The ques-
tion whether the fitness and technical tests currently used are able to meet these requirements
has so far remained largely unanswered [2].

In football, top performance requires a combination of excellent fitness skills and the greatest
possible technical precision. The fitness skills that are particularly important include speed [6]
(starting speed, speed of reaction, speed persistence, agility) and (intermittent) endurance [7].
Among the technical skills, particularly dribbling, passing, and ball handling appear to contribute
substantially to explaining performance [1]. Against this background, it immediately becomes
clear that a talent diagnosis that is based on the results of individual motor test will be inadequate.
If only individual test results and their connection to sports performance are investigated, then
the interactions between different characteristics, and the possibility of their compensating for
each other, will not be taken into account [8]. On top of this, it does not seem plausible that indi-
vidual variables should be able to predict a complex developmental process. Corresponding evi-
dence is also found in developmental psychological research (as already noted byWohlwill, [9]).

In most cases, empirical studies and practical talent selection procedures have aggregated
several variables or test outcomes in order to obtain as comprehensive a picture of the individ-
ual player as possible [10]. However, the question that arises here is how this aggregation
should be done. This is the starting point for the current paper. So far, empirical studies aiming
to assess the quality of the individual variables or test performance scores have developed
models and tested theses using methods based on the General Linear Model (GLM) [11, 12].
Although GLM allows us to determine the variance attributable to individual variables, two
problems still remain unresolved.

Firstly, such procedures generally assume a linear relationship between independent and
dependent variable, an assumption that often turns out to be questionable [13]. When looking
at the motor test results, for example, it is necessary to critically question whether the perfor-
mance in endurance tests is linearly related to a player’s performance on the pitch. Reilly et al.
[10] have been able to demonstrate relatively large differences in the endurance of top football
players. From a methodological point of view, other relationships could also be modelled, for
example curvilinear models. However, in most cases, the nature of the relationship is not ade-
quately explained on a theoretical level, and it may often even be doubtful whether the require-
ment of continuity is fulfilled. In fact, one should not rule out a priori the possibility of having
step functions and thus discontinuous relationships.

Secondly, a further assumption frequently made is that the same relationships apply to all
individuals. However, it seems more plausible that the relationship between a certain character-
istic and the criterion (of potential performance as a player) can only be assessed once the
intra-individual degrees of expression of the other characteristics have been taken into account.
To do justice to such an intra-individual perspective, it is necessary to resort to alternative con-
cepts and methods.

Since the fundamental questions of talent research are always related to processes in human
development, it seems reasonable to base them on developmental scientific concepts. Modern
developmental science takes a dynamic interactionist perspective (for an overview, cf. [14; 15];
in sports science: [16]). Magnusson and Cairns [17] in addition assume a holistic perspective
of human development, which leads to a person-oriented approach [18]. This holistic approach
is able to describe the development of an individual comprehensively, i.e. in the case of talent
promotion, the entire process of developing from a promising young talent to a top athlete.
The developing individual and his or her environment are viewed as a system, which can be
divided up into various operationalisable subsystems. The interacting variables of a (sub-)sys-
tem are called operating factors [19]. As the person-oriented approach does not assume linear
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relationships, it has to dispense with methods based on the GLM. For an overview and compar-
ison of the variable- vs. person-oriented approach, cf. Bergman and Andersson [20].

More recently, talent research has favoured multidimensional approaches [1, 21, 22] which
adopt a perspective that focuses on the development process of the talent [23, 24]. The person-
oriented approach considers both, a multidimensional as well as a developmental perspective
in theoretical and methodological respects. So far, it has been successfully applied in sports tal-
ent research within the subsystems Training [25] andMotivation [26], with promising results.
The idea therefore arises naturally to apply the person-oriented approach to fitness and techni-
cal skills, too, to develop a better understanding of the intra-individual relationship between
different test performance scores and ultimately success.

The Present Research
The present longitudinal study uses a person-oriented approach to map patterns of fitness and
technical test performance scores of young talented football players and identifies developmen-
tal types that are particularly promising in the medium term in adolescence. Furthermore, it
examines the stability of these development patterns, since it is of key importance to talent
selection and promotion. If the same or similar patterns keep emerging over time (structural
stability), it follows that the same types can be distinguished at different times when identifying
talents. If certain developmental pathways are particularly frequent on the individual level
(individual stability) and also associated with success in sports, promoting players of this type
will be particularly promising. If individual stability follows structurally stable patterns, then it
is fair to assume, in addition, that the time at which the type is determined does not matter,
which would be particularly valuable to talent selection.

The analysis is guided by the following questions:

1. Which patterns can be identified in young football talents in terms of their fitness skills and
their technical skills?

2. Can the same or similar patterns be recognised again after one or two years (structural
stability)?

3. Which developmental paths do the top talented football players follow during this time
(individual stability)?

4. Do patterns exist that coincide particularly with sports success a year later?

Method

Participants and procedure
The sample consists of N = 136 top talented male football players who were members of various
regional teams of the Swiss Football Association at the first measuring point (2011) (Mage, t1 =
12.26, SD = 0.29). The players took part in three testing events at one-year intervals, at which
motor tests were conducted. The data analysis only took into account players who were present
for at least two of the three testing sessions. In addition, outliers have been removed (see chapter
Residual Analysis) so that the final sample includes n = 104 players. A year after t3, the talent
cards assigned by the Swiss Football Association were used as an indicator of the level of perfor-
mance reached by the individual players. The topmost talented players are assigned national tal-
ent cards, while other talented players receive regional talent cards. This allows three levels of
performance to be distinguished: players with (1) a national, (2) a regional, or (3) no talent card.
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The participants and their parents provided their written informed consent to participate in
this study. Before each data collection session, all the participants were asked whether they
wanted to participate and were informed that they could discontinue at any time during the
study. All data were treated confidentially. The study including the informed consent forms
was approved by the ethics committee of the Philosophical Humanist Faculty at the University
of Bern.

Measures
In addition to the three fitness and three technical tests described below, age, height, and
weight were ascertained as additional variables, as well as biological maturity on the basis of
the Mirwald Test [27].

Yo-yo test. The intermittent endurance performance was measured by means of the yo-yo
intermittent recovery test [11]. In this test, players run back and forth between two lines, 20
metres apart, at a pace dictated by acoustic signals. Between two laps, there is a pause of 10 sec-
onds. The speed is gradually increased. The test score is the total distance covered up until the
last level reached before dropping out.

Sprint test. Sprinting speed was measured using a 40-metre sprint test without a starting
signal. A twin photoelectric sensor at the starting line triggers the stopwatch and an identical
photoelectric sensor stops the clock at the 40-metre line.

Agility test. In the agility test, the players take a short sprint (without a start signal), then
run around three poles (right, left, right), then do an intermediate sprint, and finally negotiate
three further poles in reverse order (left, right, left) before sprinting over the finishing line [28].
Times are measured using photoelectric sensors, as during the sprint test.

Dribbling test. The dribbling test [28] is set up and carried out identically to the agility
test, the only difference being that it is performed with rather than without a ball.

Passing test. In the passing test (adapted from [28]), players pass the ball as quickly as
possible from a confined zone to bounce it off four walls in turn, one in each direction. After
the fourth pass, the same sequence is repeated in reverse order (reaching a total of nine passes).
The time was measured manually with stopwatches.

Juggling test. In the juggling test, [28] players take turns juggling with their left and right
foot along a marked course shaped like the figure 8. For each quarter of a circle they complete,
they are given a point. The test is stopped as soon as a mistake is made (e.g. left foot twice in
succession, or ball touching the ground) or at the latest after 45 seconds.

With the exception of the yo-yo test, players were given two attempts at each test, whereby
the better of the two was used for the analysis. All the tests were carried out by a trained team
of testers, exclusively on synthetic turf, following a standardised procedure. In the event of
rain, the tests were postponed or interrupted and carried out at a later time.

Data analysis
Since complete sets of data were required for the subsequent cluster analyses, the missing val-
ues were imputed. Little’s MCAR (missing completely at random) test led to a non-significant
result (χ2 = 230.3, df = 197, p = .052), meaning that the missing data are completely at random
and imputation using Expectation Maximization (EM) is therefore permissible [29, 30]. Over-
all, 22.5% of the data were imputed by EM.

LICUR method. The fundamental consequence of abandoning the GLM has already been
discussed in connection with the methodological implementation of the person-oriented
approach. The LICUR method (Linking of Clusters after removal of a Residue, cf. [19]) is a
pattern-analytical procedure that is suitable for implementing person-oriented approaches.

The Motor Subsystem as a Predictor of Success
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The fundamental idea behind it is to form groups (clusters) within individual phases of devel-
opment, which contain subjects displaying similar levels of the operating factors (patterns).
Afterwards, the individual transitions from one cluster to the next in the following phase or to
a certain group with a specific developmental outcome is determined. By comparing the num-
ber of transitions expected with the number actually observed, transitions that occur more
frequently than by chance alone (so-called developmental types) and less frequently than
expected (so-called developmental antitypes) can be identified [31]. The LICUR method is
employed in three steps [19]: first, a residual analysis is conducted. In this, extreme cases (resi-
dues) are identified and removed from the data set as they would otherwise distort the cluster
solution. Next, clusters are formed (cluster analysis) for each measuring point (t1, t2, t3), and
subjects are assigned to these. Finally, similarities in the patterns between different phases are
investigated, with special attention to the frequencies with which subjects make the transitions
between them, which eventually determines the developmental (anti-)types. The first and third
steps were followed using the statistics package SLEIPNER 2.1 [32], whereas the cluster analysis
was performed using IBM SPSS Statistics 22.0.

Residual analysis. During residual analysis, the patterns of pairs of subjects are compared.
Any subject not displaying similarities with at least a predetermined number of other subjects
(squared Euclidian distance) is identified as being a residue. According to Bergman et al. [19],
the number of residues should not exceed 3% of the total sample size. For the analysis, a thresh-
old value of T = 1.2 for the distance was chosen. The minimum number of similar cases was set
to be K = 1, meaning that only those subjects were excluded whose pattern is unique.

Cluster analysis. The Ward procedure using the squared Euclidian distance as a measure
of separation was chosen for the cluster analysis, as recommended in the literature on person-
oriented approaches [19, 33] and as also considered the standard for most other applications
of cluster analyses [34]. The optimum cluster solution was determined based on contents
(interpretability of the clusters) as well as statistical criteria. The statistical criteria included
the elbow criterion as well as the Mojena test [34] with a threshold value of 2.75. Furthermore,
solutions with the smallest number of an F scores>1 were favoured [35]. Afterwards, the clus-
ter solutions that had been found were then optimised by subjecting them to a cluster centre
analysis [35].

Structural stability. Structural stability (SS) refers to the similarity of the patterns found
at different measuring points. If the patterns are replicated in similar forms (i.e. similar cluster
centroids are found), they are said to display high structural stability. To analyse the structural
stability, the average square Euclidian distance between clusters is compared. The clusters are
arranged in pairs with increasing scores, which means that the most similar clusters are located
at the same level alongside each other.

Individual stability (developmental types). To analyse the individual development paths,
the transitions from the clusters of one phase to the clusters of the next phase or to a specific
development outcome are counted and checked for significant deviations from the assumption
of randomness (p<.05) using the exact Fisher 4-field distribution test, based on a hypergeo-
metric distribution [19]. Paths that occur more often than suggested by chance are defined as
developmental types, and less common paths as developmental antitypes. The odds ratio indi-
cates how much the probability of a particular developmental path is increased (developmental
types) or decreased (developmental antitypes).

Results
Initially, two residues (#1, #53) were identified in phase one but none in phases two and three.
This number lies below the 3% limit, and the residues are reasonable in terms of their content.
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In the subsequent cluster analysis, the stated criteria indicated that a 4-cluster solution was the
optimum at all three measuring points. After the cluster centre analysis, the final cluster solu-
tions display an explained error sum of squares (EESS) of 41.5% at the first, 42.2% at the sec-
ond, and 41.2% at the third measuring point (Fig 1).

Table 1 provides an overview of the descriptive statistics of the six operating factors for all
the clusters at the three measuring points.

Fig 1. z-standardised cluster centroids at all three measuring points.Operating factors on the x-axis: 1 = Yo-yo test, 2 = Sprint test, 3 = Agility test,
4 = Dribbling test, 5 = Passing test, 6 = Juggling test. The test results have been adjusted such that for all variables a positive value indicates above-
average performance. EESS = Explained Error Sum of Squares.

doi:10.1371/journal.pone.0161049.g001

Table 1. Descriptive statistics (mean and standard deviation) of the operating factors.

Operating factors Additional variables
(selection)1

Measuring Point 1 Yo-yo test
(metres)

Sprint test
(seconds)

Agility test
(seconds)

Dribbling test
(seconds)

Passing test
(seconds)

Juggling test
(points)

Height
(centimetres)

Biological
maturity2

M SD M SD M SD M SD M SD M SD M SD M SD

Total (n = 104) 811.8 263.2 6.62 0.34 8.19 0.35 10.67 0.61 18.70 2.07 2.58 2.96 151.8 7.3 2.74 0.61

Cluster 1–1 (n = 38) 863.9 199.0 6.47 0.25 8.15 0.26 10.75 0.52 19.97 1.72 1.30 1.49 152.7 8.3 2.74 0.60

Cluster 1–2 (n = 13) 760.0 287.1 6.82 0.21 8.45 0.23 10.66 0.60 18.44 1.60 8.62 2.66 150.2 4.5 3.00 0.00

Cluster 1–3 (n = 25) 569.6 167.4 6.97 0.27 8.43 0.31 11.05 0.61 19.10 1.91 1.04 .61 152.0 7.3 2.48 0.65

Cluster 1–4 (n = 28) 981.4 243.1 6.41 0.25 7.92 0.29 10.22 0.44 16.73 1.20 2.89 2.20 151.0 7.1 2.86 0.65

Measuring Point 2

Total (n = 104) 1064.1 357.9 6.44 0.33 8.09 0.30 10.30 0.52 16.88 1.31 6.46 5.09 158.1 8.3 2.95 0.80

Cluster 2–1 (n = 34) 1333.8 349.9 6.27 0.29 7.85 0.21 10.24 0.39 17.22 1.04 3.97 2.73 157.4 9.1 3.06 0.88

Cluster 2–2 (n = 26) 1117.8 308.1 6.47 0.25 8.08 0.23 10.05 0.36 15.84 1.10 13.57 3.67 157.2 7.2 3.04 0.71

Cluster 2–3 (n = 14) 711.5 142.3 6.74 0.41 8.38 0.29 11.10 0.72 18.61 1.02 3.23 2.72 157.0 9.6 2.85 0.80

Cluster 2–4 (n = 30) 876.5 201.4 6.47 0.30 8.25 0.21 10.21 0.28 16.59 0.82 4.61 2.70 160.6 7.5 2.76 0.78

Measuring Point 3

Total (n = 104) 1379.1 339.9 6.30 0.31 8.11 0.30 10.25 0.60 16.04 1.22 7.44 6.76 164.5 7.5 3.13 0.88

Cluster 3–1 (n = 31) 1427.9 225.9 6.07 0.24 8.01 0.26 10.19 0.36 16.39 1.01 2.83 2.11 164.6 8.7 3.00 0.69

Cluster 3–2 (n = 32) 1608.6 313.5 6.27 0.25 7.95 0.22 9.90 0.38 15.40 1.12 13.98 5.29 163.7 7.5 3.40 0.82

Cluster 3–3 (n = 14) 1091.3 251.4 6.28 0.24 8.16 0.29 11.36 0.49 17.16 1.17 1.74 3.77 166.7 7.1 3.25 0.71

Cluster 3–4 (n = 27) 1200.2 323.4 6.60 0.21 8.41 0.20 10.17 0.39 15.82 1.08 7.93 6.31 164.3 6.7 2.88 1.15

In the numbering of the clusters, the first digit stands for the measuring point, and the digit after the hyphen numbers the clusters within a phase from 1 to 4.
1 For the additional variables, missing values were not imputed, so that the number of cases per cluster are in some cases lower.
2 Mirwald test, scale of 1 to 5; 1 = early development, 5 = late development

doi:10.1371/journal.pone.0161049.t001
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The test results (Table 1) indicate that, as expected, the test results of the players improved
from one measuring point to the next. Only the agility test did not display any improvement
between t2 and t3. Fig 1 depicts the means as profiles of z-standardised values for each cluster.
In the analysis of the profiles, it will be noted that there are large differences between the indi-
vidual cluster profiles at a single measuring point. At t1, there is one cluster that has above-
average scores across all operating factors (1–4), whereas another one has below-average scores
(1–3) throughout. Cluster 1–1 has above-average scores on the fitness tests, but below-average
scores on the technical tests. The profile of Cluster 1–2 is the exact opposite. Over the course of
time (t2 and t3), the various clusters start resembling each other in terms of their profile, but
their heights shift or change with regard to the extent of the operating factors.

With regard to the first question, it will be noted that four patterns were identified at each of
the three measuring points (Fig 1). The clusters are relatively homogeneous at all three measur-
ing points, as demonstrated by the low values of the homogeneity coefficients (HC) (0.86�
HC� 1.79, Fig 2). Concerning the second question, the clusters are found to be replicated in a
similar form at subsequent measuring points. This means they display a high level of structural
stability (SS) (the measured distances lie between 0.11� SS� 0.78). The four existing patterns
of fitness and technical test performance scores change only slightly within two years. Concern-
ing the additional characteristics measured (age, height, weight, and maturity), no differences
can be found between the clusters.

To answer the third question under investigation, Fig 2 depicts all the developmental (anti-)
types from t1 to t3. Three of the four developmental types between t1 and t2 follow structurally
stable clusters. A further developmental type leads from Cluster 1–4 to 2–2, both of which clus-
ters are also fairly similar in terms of their profiles. Developmental types between dissimilar
clusters cannot be observed, which indicates that major changes in the profiles over the period
of a year are fairly rare. The developmental antitypes between all the structurally dissimilar
clusters support this finding. Paths along which no transitions took place are also marked,

Fig 2. z-score profiles of the clusters (cluster centroids) and developmental (anti-)types for t1, t2, and t3 and the performance level at t4.

doi:10.1371/journal.pone.0161049.g002
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which is again observed to occur between dissimilar clusters, as might be expected. The same is
observed with the developmental (anti-)types between t2 and t3; however, this behaviour is
even more pronounced here: all four developmental types follow similar clusters. In other
words, the individual stability follows structurally stable patterns. This means that the observed
values for the motor subsystem remain largely steady over the period of time investigated, and
that the players studied also remain in these groups.

Turning to the fourth question posed in this paper, which is particularly important in terms
of talent development and talent selection, the transition probabilities from t3 to the three levels
of performance are of special interest. One developmental type is found from Cluster 3–2,
whose cluster centroid is the only one at this measuring point to display above-average values
on all factors, to the group of the most successful players (national talent card). The odds ratio
of 2.0 means that twice as many players from this cluster receive a national talent card as
would be expected in a random distribution. A second developmental type leads from Cluster
3–3, characterised by almost entirely below-average scores on the operating factors, to the
group of unsuccessful players (no talent card). Not a single player from this cluster holds a
national talent card one year later. Fewer players from this cluster have a regional talent card
after one year than chance would predict (developmental antitype).

Discussion
In this study, young top promising football players were tested longitudinally at one-year inter-
vals via three general fitness tests and three football-specific tests. The data were then analysed
with a person-oriented approach using the LICUR method, a pattern-analytical procedure.
This procedure focuses not on individual variables, but on several variables which together
form a so-called (sub-)system, corresponding to the use of multidimensional approaches in tal-
ent research. We are interested in the constellation of the operating factors which form a pat-
tern, rather than in the sums or means of the variables. In the present study, four structurally
stable patterns were found for the Motor Function subsystem, indicating that the patterns re-
emerge in a similar form at the next measuring point a year later. The observed developmental
types (significantly higher transition probabilities) follow similar patterns, whereby a high cor-
respondence between structural and individual stability is noted. This means that the relative
proportions of the test performances remain stable over the two years under investigation. This
correspondence is even clearer for the transition from t2 to t3. Since the variance in the matu-
rity increases continuously from t1 to t3 (Table 1), this increasing stability cannot be explained
in terms of a homogenisation of biological age over time. Instead, the causes lie in the structural
circumstances. At the first measuring point, the players were selected for regional teams for the
first time. The systematic process of talent promotion had only just begun. It can therefore be
assumed that the performance-related heterogeneity was greater at this point in time than it
was at a more advanced stage of talent promotion, after one or two years. Looking at a cross-
section of the data, a decreasing variance is indeed observed over time for most of the test
results (Table 1).

The starting point for this paper was that of using a holistic, person-oriented approach to
identify patterns of fitness and technical test performances capable of predicting success. It fol-
lows that the key focus should lie on the final outcome: the transition probabilities from t3 to
the subsequent levels of performance. The LICUR analysis shows that the pattern with above-
average scores on all operating factors is the most promising in the short and medium term.
However, if the strength of the operating factors is considered on its own, patterns are found
which display higher scores on individual factors. For example, players from Cluster 3–1 are
faster on average than the players in the most promising Cluster 3–2. This means that if a
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variable-centred perspective had been adopted and speed were viewed as a one-dimensional
selection criterion, the choice made would be different. The pattern analysis reveals, however,
that the players who perform above average in all the tests are later the most successful. Out-
standing performance in individual areas along with below-average performance in other tests
(Cluster 3–1) appears to be less promising—at least up to the age of 15. As might be expected,
below-average to at best average performance in all tests (Cluster 3–3 and 3–4) is not that
promising.

A developmental type can be identified across all three measuring points, following a struc-
turally similar pattern displaying above-average scores on all operating factors (1–4, 2–2, 3–2).
Since the clusters do not differ in terms of the additionally measured characteristics (especially
in terms of biological maturity), this pattern is independent of the level of physical maturity. In
addition, it is relatively stable on an individual scale since the number of transitions along these
clusters exceeds those dictated by chance. The pattern therefore appears to be promising, inde-
pendently of the time at which it is measured. Consequently, it has a certain prognostic validity,
which is highly relevant to talent selection in practical sports situations. At the first measuring
point, a second cluster is found (1–2), which displays a developmental type to the most promis-
ing pattern at t2, whereby its odds ratio is in fact higher than that of the developmental type
from Cluster 1–4. These are players whose fitness performance is as yet below average, but
whose football-related skills are already above average. For talent selection based on motor pat-
terns, this suggests that the fitness factors at the first measuring point (age 12) are less relevant
and therefore can be assigned less weight. Different scores in the fitness factors combined with
above-average scores for skills specific to football are also more likely to lead to success in the
long run.

In conclusion, the consensual demand for multidimensional and dynamic approaches to
talent research have been implemented theoretically and methodologically. The findings show
that studies based on the person-oriented approach also deliver useful results in the field of fit-
ness skills and technical skills. At the same time, certain limitations in the study should also be
noted. These primarily concern missing values and the imputation of data associated with
these. Longitudinal studies in competitive sports are particularly affected by non-responses:
injury, de-selection, trial training sessions, or medical appointments are just a few of the rea-
sons for not taking part in the tests. Despite careful maintenance of the sample, 22.5% of the
data had to be imputed. However, since the non-responses are random, imputation is permissi-
ble from a methodological point of view, and the results are in principle valid. Furthermore, it
must be noted that the results are dependent on the sample in terms of the age of the players.
Hence in the future it will be necessary to determine whether the patterns also remain stable
during the subsequent career phase (starting at the age of 15–16 years) or whether perhaps
other patterns emerge. This will require further longitudinal data covering even longer periods
of time.

Supporting Information
S1 File. SPSS File containing row data. SPSS data file containing row data of all measuring
points.
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