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The fermion loop formulation naturally separates partition functions into their canonical sectors.
Here we discuss various strategies to make use of this for supersymmetric SU(N) Yang-Mills
quantum mechanics obtained from dimensional reduction in various dimensions and present nu-
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1. Introduction

Since long it is suspected that SU(N) gauge theories can be regarded as the low energy ef-
fective theory of N D-branes in specific parameter regimes. In this way, dimensionally reduced
large-N supersymmetric Yang-Mills (SYM) gauge theories might provide a nonperturbative for-
mulation of the string/M-theory which describes the dynamics of the D-branes. In particular, the
connection between black p-branes and SYM gauge theories in d = (p+1) dimensions allows to
study black hole thermodynamics through the corresponding strongly coupled gauge theory. Apart
from providing tests of the gauge/gravity duality, SYM quantum mechanics is interesting per se.
There are various intriguing expectations concerning the behaviour of the theory in specific sectors
of fixed fermion number [1, 2]. In particular, while certain canonical sectors only have a discrete
energy spectrum, some sectors allow for the discrete spectrum to be immersed in a continuous one
reaching down to zero energy. These continuous spectra can presumably be associated with the
so-called flat directions of the potential which are present in the classical theory, but may or may
not survive the quantisation of the theory.

In these proceedings we report on our ongoing effort to perform nonperturbative calculations
in SYM quantum mechanics with gauge group SU(N). Here we concentrate on N = 4 SYM
quantum mechanics which is obtained from dimensional reduction of the N = 1 SYM gauge
theory in d = 4 dimensions by compactifying the three spatial dimensions. To define the theory
we employ the lattice regularisation in Euclidean time proposed in [3, 4]. The bosonisation of the
theory on the lattice by means of the fermion loop formulation [5, 6, 7] decomposes the fermion
contributions into fermion sectors with fixed fermion number. Our recent progress in understanding
the algebraic structure of the fermion loop formulation allows the explicit construction of transfer
matrices [8]. The transfer matrices in turn provide the starting point for the construction of local
fermion update algorithms which allow to directly simulate fixed canonical sectors of the theory.

In the following we summarise the derivation of the transfer matrices for generic fermion num-
ber sectors, recapitulating our results from [8], and show first results for some simple observables
such as the Polyakov loop, the moduli of the bosonic fields and the fermion action from simulations
in fixed canonical sectors of the theory.

2. Lattice regularisation and canonical sectors

We directly start with N = 4 SYM quantum mechanics obtained from dimensional reduction
of N = 1 SYM in d = 4 dimensions down to d = 1 dimension. The action in Euclidean time can
be written as

S =
1
g2

∫
β

0
dt Tr

{
(DtXi)

2− 1
2
[Xi,X j]

2 +ψDtψ−ψσi [Xi,ψ]

}
(2.1)

where Dt = ∂t − i[A(t), ·] denotes the covariant derivative using the time component of the SU(N)
gauge field A(t), while the spatial components become the bosonic fields Xi(t) with i = 1,2,3. The
anticommuting 2-component complex fermion fields ψ(t), ψ(t) interact with the bosonic fields Xi

through a Yukawa-type interaction involving the three Pauli-matrices σi. We note that all the fields
are in the adjoint representation of SU(N). The discretisation of the Lagrangian on a time lattice
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with Lt points is straightforward and yields for the bosonic part

SB =
1
g2

Lt−1

∑
t=0

Tr
{

DtXi(t)DtXi(t)−
1
2
[Xi(t),X j(t)]

2
}

(2.2)

where DtXi(t) =U(t)Xi(t +1)U†(t)−Xi(t) is the covariant forward derivative and U(t) is an ele-
ment of the gauge group SU(N). For the fermionic part of the action we introduce a Wilson term
with Wilson parameter r = 1 in order to avoid fermion doubling. With this choice of r the massless
Wilson Dirac operator in one dimension involves just the forward derivative and one obtains

SF =
1
g2

Lt−1

∑
t=0

Tr{ψ(t)Dtψ(t)−ψ(t)σi [Xi(t),ψ(t)]} (2.3)

for the fermion action. More specifically, we have

SF =
1

2g2

Lt−1

∑
t=0

[
−ψ

a
α(t)W

ab
αβ

(t)e+µ
ψ

b
β
(t +1)+ψ

a
α(t)Φ

ac
αβ

(t)ψc
β
(t)
]
≡ ψDp,a[U,Xi; µ]ψ (2.4)

where W (t) denote the real adjoint gauge link matrices

W ab
αβ

(t) = 2(σ0)αβ ⊗Tr{T aU(t)T bU(t)†} . (2.5)

Note that we have introduced a chemical potential µ in the standard way [9]. The subscripts p,a
for the Dirac matrix D denote periodic or antiperiodic boundary conditions, respectively, for the
fermionic fields. The Yukawa interaction matrices Φ(t) are nmax

f ×nmax
f with nmax

f = 2(N2−1) and
read

Φ
ac
αβ

(t) = (σ0)αβ ⊗δ
ac−2(σi)αβ ⊗Tr{T a[Xi(t),T c]} . (2.6)

Two remarks are in order. Firstly, all supersymmetry breaking terms apart from the ones
introduced by the discretisation in eq. (2.2) and (2.4) are forbidden by the gauge symmetry. Hence,
supersymmetry is expected to be automatically restored in the continuum limit without any fine
tuning [3, 4]. Secondly, the Wilson term breaks the time reversal symmetry, or equivalently the
particle-hole exchange symmetry. This reflects itself in the fact that the action in eq. (2.4) only
allows forward propagating fermions. As a consequence, the exchange symmetry between the
related fermion sectors with n f and nmax

f −n f becomes exact only in the continuum limit.
Let us now derive exact expressions for the fermionic contributions to the partition function

of the theory for a given fixed gauge and boson field background – the canonical determinants. In
quantum mechanics the lattice regulated determinant of the Dirac matrix can readily be calculated,
and one obtains

detDp,a[U,Xi; µ] = det
[
T ∓ e+µLt

]
with T ≡

Lt−1

∏
t=0

Φ(t)W (t) . (2.7)

This essentially corresponds to the dimensionally reduced determinant for Wilson fermions derived
in [10, 11] except that here the dimensional reduction is from the full matrix to a nmax

f × nmax
f

’flavour’ matrix. It is now easy to get the canonical determinants from the fugacity expansion

detDp,a[U,Xi; µ] =
2(N2−1)

∑
n f =0

(∓eµLt )n f detDn f [U,Xi] (2.8)

3
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which identifies the canonical determinants as the coefficients of the characteristic polynomial.
These coefficients can be expressed in terms of the elementary symmetric functions Sk of order k
of the eigenvalues {τi, i = 1, . . . ,nmax

f } of T ,

Sk(T )≡ Sk({τi}) = ∑
1≤i1<···<ik≤nmax

f

k

∏
j=1

τi j , (2.9)

and one eventually obtains
detDn f [U,Xi] = Snmax

f −n f (T ) . (2.10)

So the crucial object for the calculation of the canonical determinants is the product T of the
matrices Φ(t) and W (t) which in fact is a product of transfer matrices [8], as was suspected already
in [10].

3. Transfer matrices for the canonical sectors

The explicit construction of the fermion transfer matrices for each fermion sector is most easily
done via the fermion loop formulation [8] which in essence is an exact (hopping) expansion of the
fermionic Boltzmann factor to all orders. In this formulation, the contributions of the fermions
to the partition function are obtained by summing over all possible closed oriented fermion loops
which are forward propagating in time for any given gauge and boson field background. The
loop configuration space naturally separates into subspaces characterised by the number of forward
propagating fermions n f . The transfer matrix elements are explicitly given in terms of the cofactors
C(Φ) and the complementary minors M(W ),(

T Φ
n f

)
AB

= C
ABAA
(Φ) = (−1)p(A,B) detΦABAA , (3.1)(

TW
n f

)
AB

= MAB(W ) = detW AB , (3.2)

where A,B are sets of indices A,B⊆ {1, . . . ,nmax
f } of order n f and p(A,B) = ∑i∈A i+∑ j∈B j. ΦABAA

denotes the matrix obtained from Φ by deleting the rows with indices from B and the columns
with indices from A, while W AB denotes the matrix obtained from W by picking only the rows with
indices from A and columns with indices from B. The size of the transfer matrices is given by the
number of such sets for a given n f and corresponds to the number of forward propagating fermion
states Nstates = nmax

f !/(nmax
f −n f )! ·n f !. The fermion contribution to the partition function in sector

n f is then simply given by

detDn f [U,Xi] = Tr

[
Lt−1

∏
t=0

T Φ
n f
(t) ·TW

n f
(t)

]
(3.3)

and one can use the Cauchy-Binet formula and some further algebra [8] to show that[
Lt−1

∏
t=0

T Φ
n f
(t) ·TW

n f
(t)

]
AB

= (−1)p(A,B) detT AAAB =C
AAAB
(T ) , (3.4)

4
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Figure 1: The modulus P of the Polyakov loop as a function of β for SU(3) on a Lt = 5 lattice in various
canonical sectors.

hence the canonical determinant is simply given by the sum over the principal minors of order n f

of T denoted by En f (T ),

detDn f [U,Xi] = ∑
B

detT ABAB ≡ En f (T ) . (3.5)

Finally, it is easy to show that En f (T ) = Snmax
f −n f (T ) which proves the equivalence between the

representation using the transfer matrices and the one in eq. (2.10).
Some remarks are in order. Firstly, we note that the matrix T describes the dimensionally

reduced effective action for the Polyakov loop coupled to the bosonic fields Xi. Secondly, our
result for the canonical determinants in principle allows for local fermion update algorithms, but in
practice only the sectors with n f = 0 and n f = nmax

f can be implemented straightforwardly, while
in other sectors algorithms along the lines in [12] can be employed. Thirdly, the construction of the
transfer matrices and the calculation of the canonical determinants in terms of those is applicable
to QCD, since the algebraic structures of the theories are the same.

4. Canonical simulations

Here we present our first results from simulations of the system employing the gauge group
SU(N) with N = 3 and nmax

f = 16 directly in the various canonical sectors1. First we note that
the canonical determinants are real because the eigenvalues τi of T are real or come in complex
conjugate pairs. Furthermore, for the sectors n f = 0 and n f = nmax

f (quenched) one can prove that
the canonical determinants are positive. In these two sectors we update the bosonic degrees of
freedom using a local Metropolis algorithm. In the other sectors we use Metropolis updates based
on eq. (3.5) and currently simulate only in the configuration space with positive determinants.

In the following we show results on a lattice with temporal extent Lt = 5. We measure the
moduli of the Polyakov loop and the scalar field defined by

P =

∣∣∣∣Tr ∏
t

U(t)
∣∣∣∣ , R2 ≡ |X |2 = Xa

i Xa
i . (4.1)

1Note also the recent effort using the RHMC algorithm for SU(2) in [13].
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Figure 2: The square of the modulus of the scalar field R2 as a function of β for SU(3) on a Lt = 5 lattice in
various canonical sectors.

We note that in some sectors the simulations become unstable and R2 grows without bound. We
believe that this is because the flat directions become unstable due to lattice artefacts, and we expect
the behaviour to disappear towards the continuum limit. In the left panel of Figure 1 we show P as
a function of the temporal extent of the system parametrised by β for the sectors n f = 0 and 16, and
for n f = 1 and 15. Each pair should be degenerate in the continuum and we see that this is indeed
the case for β . 0.6, while for larger values of β lattice artefacts lift the degeneracy. The (physical)
differences between the sectors is illustrated in the right panel of Figure 1 where we show P in the
sectors n f = 16 down to 11.

Next, in Figure 2 we show the square of the modulus of the scalar field R2 as a function of β

for the same combinations of sectors as in Figure 1. Again we find that the degeneracy between the
n f = 0 and 16, n f = 1 and 15, and so on, is lifted by lattice artefacts towards large values of β .

Finally, in Figure 3 we show the fermionic action SF = 〈ln det Dn f 〉n f as a function of β in
various canonical sectors. We find that the degeneracy of this observable between the mirror sectors
becomes better and better towards β → 0, suggesting that reweighting between the mirror sectors
could become feasible in that limit, or more generally towards the continuum limit.
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Figure 3: The fermionic action as a function of β for SU(3) on a Lt = 5 lattice in various canonical sectors.
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5. Summary and outlook

In this contribution we summarise the derivation of explicit transfer matrices for N = 4 SYM
quantum mechanics with generic gauge group SU(N) discretised on a time lattice. The transfer
matrices are defined separately in each canonical sector with fixed fermion number n f and form
the basis for canonical simulations of the theory. One caveat is that in those sectors where the
canonical determinants are not positive definite, the local Metropolis algorithm is currently not
very efficient and only samples configurations with positive determinants.

Several paths are now open for further investigation. From an algorithmic viewpoint, it is in-
teresting to examine the systematics of reweighting ensembles of configurations from one fermion
sector to another, or from simulations at finite (imaginary) chemical potential. Concerning the
physics of the model, it is interesting to calculate correlation functions and energy spectra in the
various canonical sectors. The investigation of the phase transition in the large-N limit of the
N = 16 SYM quantum mechanics is most useful for a further understanding of the thermodynam-
ics of certain black holes. The results in these proceedings are a first step towards these goals.
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