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PURPOSE. To analyze inner retinal changes in patients with geographic atrophy (GA) secondary
to age-related macular degeneration and identify morphological cues for progression.

METHODS. A total of 100 eyes with GA were assessed in this longitudinal, observational case
series. Patients with GA and absent confounding pathology were compared with age-matched
controls. The retinal layers on spectral-domain optical coherence tomography, acquired in
tracking mode, were segmented manually on central scans through the fixation point. Zones
of GA were defined based on choroidal signal enhancement from retinal pigment epithelium
loss. An area of unaffected temporal retina was used for comparison. Progression of GA was
quantified with fundus autofluorescence.

RESULTS. We analyzed 41 eyes of 41 patients (mean age 79.2 6 6.7 years). In areas of GA, the
layer representing the inner nuclear layer (INL) in healthy retina was increased in thickness.
Thickness of this presumptive INL was inversely correlated with best-corrected visual acuity
(r ¼ �0.48, P < 0.01). The presumptive INL thickness increase in atrophic areas was less
marked in eyes with foveal sparing. Increased INL thickness in areas adjacent to GA was
associated with a higher progression rate.

CONCLUSIONS. Optical coherence tomography findings demonstrate that atrophy of the retinal
pigment epithelium-photoreceptor complex in GA is associated with an increase of thickness
of the presumptive INL, presumably caused by remodeling of the degenerating retina. Similar
alterations in the retina adjacent to areas clinically affected by GA were associated with higher
atrophy progression rates.

Keywords: geographic atrophy, retinal segmentation, optical coherence tomography,
autofluorescence, disease progression

Age-related macular degeneration (AMD), characterized by

drusen and pigmentary changes, is the principal cause of

irreversible vision loss in elderly in the Western world.1,2

Geographic atrophy (GA) is a late-stage phenotype that

results in a central scotoma of variable depth and significant
visual impairment.3 Macular atrophy progression is the most

important determinant of visual acuity loss.4 Currently, no

remedy is available to slow down progression of nonexuda-
tive AMD and GA,5 but such treatments may soon become

available.3,6 In order to maximize the cost-benefit ratio from

potential treatments, it would be helpful to have parameters
predicting GA progression, allowing economical allocation of

medication (Zhang H, et al. IOVS 2015;56:ARVO E-Abstract
5149).7,8

Whereas the changes occurring in the outer retina and

the retinal pigment epithelium (RPE) have been well
characterized by optical coherence tomography (OCT),

there is to date little information on the inner retinal layer
changes in nonexudative AMD using this noninvasive

imaging technology.9 From histologic studies of human

donor eyes and animal models, we know that the inner
layers are significantly affected by remodeling in degener-
ating retina, already during the early phases.10,11 In absence
of disease, Müller cells span almost the entire thickness of
the retina, from the outer limiting to the inner limiting
membrane, and have a pivotal role in retinal homeostasis.12

They are among the first to respond in retinal degeneration
primarily affecting the outer layers.13 Due to shortcomings
in resolution and reliable imaging software for automated
layer delineation, it has been difficult to quantify potential
changes in the inner retinal layers in the past. In recent
years, however, significant improvements in retinal segmen-
tation algorithms have been achieved, and many of the new
OCT devices now have inbuilt segmentation software.14

Increasing resolution and computational speed of commer-
cially available spectral-domain (SD) devices have revolu-
tionized the medical retina field and allow an ever more
detailed longitudinal in vivo analysis of the retinal morphol-
ogy in humans (Abdelfattah NS, et al. IOVS 2015;56:ARVO E-
Abstract 892). The purpose of this study was to investigate
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inner retinal layer changes associated with GA, and to

identify potential predictors for GA progression.

METHODS

Participants

This study was a retrospective, longitudinal, observational case
series. Our analysis included 100 patients with GA secondary
to AMD followed in the retina clinic at Bern University Hospital
(Inselspital), Bern, Switzerland. The study followed the tenets
of the Declaration of Helsinki, and ethics committee approval
had been obtained (KEK-Nr. 370/14). The need for informed
consent was waived because of the retrospective nature of the
study. Study data were collected and managed using an
electronic data management tool (REDCap; Vanderbuilt Uni-
versity, Nashville, TN, USA) hosted at our institution.15 The
inclusion criteria were: (1) presence of GA (sharply demarcat-
ed area of RPE hypopigmentation of >175 lm with visible

choroidal vessels) at baseline with no evidence of choroidal
neovascularization during the observational period, (2) pa-
tients aged ‡50 years, (3) follow-up of 6 months or more.16 If
both eyes were affected, one eye was chosen randomly by
tossing a coin. Exclusion criteria (also see Fig. 1) included the
evidence of retinal disease that could influence retinal layer
thickness such as macular edema from diabetic retinopathy,
retinal vein occlusion or other disease, pathologies of the
vitreoretinal interface, hereditary retinal dystrophies, central
serous chorioretinopathy, and glaucoma. Participants with
foveal sparing were identified on SD-OCT.17 We used 16
healthy eyes of 16 age-matched individuals as controls.

Procedures and Imaging

All patients had undergone the following set of imaging at least
twice with an OCT device (Spectralis HRAþOCT; Heidelberg
Engineering, Heidelberg, Germany): combined near-infrared
reflectance and SD-OCT in tracking mode; confocal scanning
laser ophthalmoscopy blue light (488 nm) fundus autofluores-

FIGURE 1. Flow diagram illustrating patient inclusion for statistical analysis.
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cence (FAF). Furthermore, patients underwent a clinical slit-
lamp examination and standardized best-corrected visual acuity
(BCVA) testing. At every visit, logMAR acuity was recorded
using the Early Treatment Diabetic Retinopathy Study (ETDRS)
charts18 and following the standard ETDRS protocol.19 For SD-
OCT, central scans spanning 308 of the retina involving the
fixation point were performed with 28 to 36 frames averaged
for each B-scan in automatic real-time (ART) mode. Addition-
ally, standardized volume scans of the central 208 3 208 were
performed consisting of 49 B-scans, with 9 to 15 frames
averaged per B-scan (ART). They were used to define the
anatomical center of the fovea in cases with eccentric fixation
for layer thickness analysis in the central ETDRS subfield. The
tracking mode allows point-to-point correlation between
consecutive SD-OCT scans.

Image Analysis

The presumptive inner nuclear layer (INL) was segmented on
the central scan using commercial software (Heidelberg Eye
Explorer, version 1.9.10.0). The term ‘‘presumptive’’ is used
because architectural changes could affect segmentation. In
this manuscript, the abbreviation ‘‘INL’’ refers to the layer on
OCT segmentation that, based on the reflectance pattern,
presumptively corresponds to the INL. Each central scan was
corrected manually (DJ) and then validated independently by
two retinal specialists (AE, MZ). In ambiguous cases, both
senior investigators discussed the segmentation and reached an
agreement on the final outline. The segmented images were
exported (see Supplementary Methods) to ImageJ (version
1.48v) (http://imagej.nih.gov; provided in the public domain
by the National Institutes of Health, Bethesda, MD, USA).

The borders of atrophic zones (AZ) with relevant RPE
atrophy were defined based on the choroidal signal enhance-
ment resulting from RPE loss and thinning of the outer retinal
layers.17,20 At the edges of GA, this signal discontinuity is
generally marked and unequivocal (Fig. 2A). A temporal zone
(TZ) of 1.5 mm immediately adjacent to the AZ was defined for
comparison, unless this TZ was partially within 1 mm from the
fixation point, in which case the starting edge of this TZ zone
was defined at 1 mm from the fixation point. This was
necessary to avoid flawing of data by the naturally decreased
INL thickness in the fovea. If the atrophic zone was very wide,
the TZ in some cases reached beyond the length of the scan
image and was then less than 1.5 mm long. The average layer
thicknesses (ALTs) of the INL in the AZ and the TZ were
calculated by dividing the area under the curve of the INL
thickness profile by the width of the respective zone. For
comparison, the INL-ALTs at a comparable location were
determined in an age-matched control group. To define the size
of this central zone (CZ) in the controls, we calculated the
average width of the AZ in the AMD-affected eyes. The central
zone was centered at the fovea (Fig. 2B). In eyes with GA, we
furthermore measured the ALT of the INL in the central ETDRS
subfield (1 mm; red zone in Fig. 2) of the baseline scan in an
analogous way to investigate associations with BCVA.

To analyze the progression of atrophy, we manually
measured the GA lesion size on FAF using the region overlay
tool of the Heidelberg Eye Explorer software at baseline and
last follow-up. The individual yearly progression rate of the GA
was calculated (see Supplementary Calculations).

Statistical Analysis

Statistical software was used to conduct data analysis (Prism 6;
GraphPad Software, Inc., La Jolla, CA, USA). Distribution of
data was tested using the D’Agostino-Pearson omnibus
normality test. Data of all parameters followed a Gaussian

distribution, except yearly GA progression rate. The two-sided
Student’s t-test was used to compare means of normally
distributed data. Paired analysis was done for dependent data.
Linear association was quantified by calculating the Pearson
correlation coefficient for normally distributed data. Other-
wise, the Spearman’s rank correlation coefficient was comput-
ed. Confidence intervals were two-sided, and a P value of <
0.05 was considered statistically significant.

RESULTS

We identified 100 patients with GA in at least one eye; 59 of
these patients were excluded for various reasons illustrated in
Figure 1. A total of 41 participants had imaging data suitable for
layer segmentation and detailed analysis. The mean age 6 SD
of included subjects was 79.2 6 6.7 years. Twenty patients
were female, 21 male. The mean BCVA at baseline was 53.8 6
22.9 ETDRS letters. Foveal sparing was identified in seven eyes.
The mean follow-up was 36.6 6 18.6 months. The mean size of
GA at baseline and follow-up were 6.9 6 5.5 mm2 and 11.8 6
7.0 mm2, respectively. The mean ALTs of the INL in AZ and TZ
were 43.0 6 6.6 lm and 28.6 6 3.7 lm, respectively. The
difference between ALTs was significant (P < 0.0001, paired t-
test; Fig. 2A). In controls (n ¼ 16), the mean age was 78.5 6
4.2 years and the mean ALTs of the TZ- and AZ-analogue zone
(CZ) were 29.0 6 2.9 lm and 27.9 6 3.3 lm, respectively. The
difference between TZ-analogue and AZ-analogue zones was
not significant in the control group (Fig. 2B). Although GA
progressed over time (Fig. 3), the ALT of the INL in the AZ
remained stable (43.5 6 10.1 lm at baseline and 43.0 6 6.4
lm at last follow-up; P ¼ 0.626). When analyzing the
association between INL thickness in the central ETDRS
subfield and visual acuity at baseline, we detected a significant
negative correlation (Pearson r ¼ �0.48, P ¼ 0.01, Fig. 4);
increased INL thickness seemed to be linked to poor BCVA.
Thirty-four eyes were included in this analysis because baseline
visual acuity data was missing from seven patients. Seven eyes
with foveal sparing are highlighted in Figure 4A. These eyes
were excluded in a second analysis, yielding a similar outcome
(Fig. 4B).

We also searched for an association between the ALT of the
INL in the retina adjacent to GA (TZ) and the GA progression
rate (Supplementary Figure). Figure 5 shows the positive
correlation (Spearman r ¼ 0.48, P < 0.01, n ¼ 39) detected
between the average INL thickness (measurements from all
visits of a particular patient between baseline and last follow-
up) and the yearly GA progression rate.

DISCUSSION

The aim of this study was to investigate novel parameters from
retinal layer segmentation that might predict the progression
rate of GA. Previous studies have linked distinct FAF
patterns,21–23 drusen type (Zhang H, et al. IOVS 2015;56:ARVO
E-Abstract 5149),24 shape of the atrophic area,25 specific
changes of the RPE/Bruch membrane complex in SD-OCT such
as outer retinal tubulations,26 inner/outer segment disruption
in en face imaging,27 and genetic predisposition28 to the
progression rate of GA. The most striking finding of our
analysis was marked thickening of the presumptive INL over
areas of degenerated photoreceptors. Furthermore, thickening
of the INL in the adjacent TZ correlated with the yearly GA
progression rate. We also found a negative correlation between
the presumptive INL thickness in the central ETDRS subfield
and BCVA. However, this association is prone to confounding
bias, since thickening of the presumptive INL is related to the
presence of GA. Hence, photoreceptor loss is more likely the
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FIGURE 2. Illustration of segmentation protocol for quantitative analysis of the INL using SD-OCT in patients with geographic atrophy secondary to
AMD and age-matched controls. (A) Near-infrared (IR) image and central SD-OCT scan of a representative patient affected by geographic atrophy
with corresponding analysis of presumptive INL thickness (bottom right). TZ, unaffected temporal zone (width 1.5 mm); AZ, atrophic zone (GA);
CSF, central ETDRS subfield. Bottom left: Graph showing the mean thicknesses of the INL for the AZ and the TZ. Error bars: standard deviation.
Two-sided paired Student’s t-test (n¼ 41). (B) Scan of subject without AMD with corresponding analysis of INL thickness (bottom right). CZ, AZ-
analogue zone. Bottom left: Graph showing the mean thicknesses of the INL for TZ and CZ. Error bars: standard deviation. Two-sided paired
Student’s t-test (n¼ 16; difference not significant).
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reason for impaired BCVA, rather than neural remodeling of the
inner retinal layers.

Remodeling of the Retina in Degeneration

Remodeling of the mammalian retina in degenerative pathol-
ogy occurs in three phases and affects both the sensory
(compartment limited by the basolateral tight junctions of the
RPE distally and intermediate junctions formed by Müller cell
apical microvilli proximally) and the neural retina (compart-
ment between external and internal limiting membrane).
While the focus of pathology during the early phases is in
the sensory retina, global remodeling occurs during phase 3,
significantly affecting the inner retinal layers.10 Changes
comprise cellular atrophy, cell death, reshaping of axonal and

dendritic trees, and transformation of glia. Gliosis is seen as
either ‘‘conservative’’ or ‘‘proliferative reactive.’’ In conserva-
tive gliosis, which is supposedly neuroprotective and occurs
early after insult, proliferation is absent. In the more advanced
stages of degeneration with significantly impaired tissue
homeostasis, Müller cells are dedifferentiated, depolarized,
and proliferating.29 During the remodeling process, the
boundaries of the retinal compartments shift. In healthy retina
the neural compartment is entirely sealed by Müller cell
intermediate junctions: apical microvilli distally, foot pieces
proximally, and internally by processes wrapping the blood
vessels. Degeneration and disappearance of the sensory retina
leads to Müller cell hypertrophy, migration, and formation of a
distal fibrotic seal, which then forms the border between the
retina and the equally degenerating choroid. In AMD remod-

FIGURE 3. Representative images of a patient showing progression of GA with stable average thickness of the INL within the atrophic zone over 72
months. (A) Near-IR images with scan position. (B) Central SD-OCT scans with INL segmentation. (C) Corresponding INL thickness profile (atrophic
zones with black shading). (D) Fundus autofluorescence images with outlined borders (green) of GA.

FIGURE 4. Scatterplots showing BCVA at baseline plotted against INL thickness in the central 1 mm of the central scan (corresponding to central
ETDRS subfield) for individual patients. (A) All patients (n¼ 34), including individuals with foveal sparing (n¼7) marked in red (Pearson r¼�0.48;
P < 0.01). (B) Patients with foveal sparing excluded (Pearson r ¼�0.50; P < 0.01).
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eling, Müller cells increasingly express intermediate filaments
like vimentin and glial fibrillary acidic protein.30 Extracellular
matrix changes characterized by depositions of proteoglycans
and altered composition have previously been reported to be
associated with the pathogenesis of AMD.31 Migration of RPE
into the retina also occurs in advanced pathology. Such
profound modification of the retinal architecture might alter
the signaling properties of the retina in OCT, which is based on
reflective index changes in the tissue. Therefore, it seems
prudent to use the adjective ‘‘presumptive’’ when referring to
the INL in severely degenerated retina. The crude layer
thickness measurement by OCT currently does not allow
drawing conclusions on the exact composition and cellular
content of tissue, nor function or biochemical changes at the
cellular level. Nevertheless, the observed thickening of the
presumptive INL in areas of GA is most likely closely related to
tissue remodeling and can be used as a surrogate marker for
functional loss of the fovea.

Spreading Patterns and Role of Adjacent INL

From histological assessment of human eyes with GA, we
know that in AMD photoreceptor loss precedes degeneration
and atrophy of the RPE32 and rods are affected earlier than
cones.33,34 Retina adjacent to areas of GA histologically shows
different levels of subclinical damage. Different transition
patterns exist both clinically35,36 and histologically37 at the
edges of GA. While in the abrupt pattern—present in a
minority of eyes—both photoreceptor segments are simulta-
neously affected, most eyes display a more gradual transition
characterized by outer segment loss but variably preserved
inner segments. In these eyes, the zone with histological
abnormalities extends as far as approximately 1500 lm
distally.37 The role of the surrounding retinal tissue in
predicting GA progression has been investigated by several
groups.35,38,39 Geographic atrophy generally spreads in a
centrifugal pattern. Growth characteristics of GA can be
predicted by specific FAF patterns, which have previously
been described.21,23,40,41 Functional methods have also been
shown to be useful in predicting GA progression.42–44

However, focal differences exist sometimes in a single eye,
which suggests a substantial influence of local factors.45 In the
subgroup of patients with foveal sparing, GA spread is
significantly greater in the centrifugal than the centripetal

direction.46 In these individuals, the fovea is affected by
atrophy only late in the course of the disease, which results in
relatively well-preserved central vision despite gradually
enlarging paracentral visual field defects. In the current series,
we found an association between INL thickness in the retina
adjacent to GA and progression. This suggests that inner retina
homeostasis disturbance and remodeling occur before GA
becomes clinically evident. Meticulous assessment of these
adjacent areas might produce meaningful clues to predict
general and local atrophy progression.

Study Limitations

Limitations of this study include the small sample size and the
retrospective design, which allows detection of associations
only. However, the acquisition of the data and imaging was
done in a very standardized fashion with a single specific SD-
OCT device. Secondly, the central OCT scans always included
the fixation point of the individual, which in GA affecting the
fovea is often located eccentrically, and not coinciding with the
anatomical foveola. Therefore, the variability of layer thick-
nesses is arguably increased. The definition of GA in this
manuscript was based on choroidal hypertransmission in OCT,
which may have led to the inclusion of cases with RPE
depigmentation only, rather than real GA with RPE atrophy.
More sophisticated, possibly more accurate definitions exist.8

Finally, the TZ used as internal control could have been already
subclinically altered, since it corresponds to about the area of
retina adjacent to GA in which histological evidence of early
degeneration can be found.37 However, the INL thickness in
this zone (TZ) was similar to age-matched controls.

In conclusion, in this retrospective case series, we found
that increased thickness of the presumptive INL within areas of
GA was associated with poor visual acuity. However, con-
founding may well be present since the INL thickness changes
are associated with photoreceptor degeneration. Increased INL
thickness in the retina immediately adjacent to the edges of GA
was associated with a higher progression rate of GA.
Information on expected atrophy progression might be helpful
in allocating future treatments for nonexudative AMD to
suitable patients, and reduce costs for health care systems as
well as treatment burden for patients (Abdelfattah NS, et al.
IOVS 2015;56:ARVO E-Abstract 892). However, prospective
studies would be needed to corroborate our findings.
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