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A dispersive treatment of K`4 decays
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K`4 decays have several features of interest: they allow an accurate measurement of ππ-scattering
lengths; the decay is the best source for the determination of some low-energy constants of chiral
perturbation theory (χPT); one form factor of the decay is connected to the chiral anomaly.
We present the results of our dispersive analysis of K`4 decays, which provides a resummation of
ππ- and Kπ-rescattering effects. The free parameters of the dispersion relation are fitted to the
data of the high-statistics experiments E865 and NA48/2. The data input is corrected for addi-
tional isospin-breaking effects, which were not taken into account in the experimental analyses.
By matching to χPT at NLO and NNLO, we determine the low-energy constants Lr

1, Lr
2 and Lr

3.
In contrast to a pure chiral treatment, the dispersion relation describes the observed curvature of
one of the K`4 form factors, which we understand as an effect of rescattering beyond NNLO.
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1. Motivation

K`4, the semileptonic decay of a kaon into two pions and a lepton-neutrino pair, plays a crucial
role in the context of low-energy hadron physics, because it provides almost unique information
about some of the O(p4) low-energy constants (LECs) of chiral perturbation theory, the low-energy
effective theory of QCD [1 – 3]. The physical region of K`4 starts already at the ππ threshold, thus
it happens at lower energies than e.g. elastic Kπ scattering. Although the K`4 decay offers similar
information as Kπ scattering, it happens in a kinematical region where the chiral expansion is more
reliable.

Besides, as the hadronic final state contains two pions, K`4 is also one of the best sources of
information on ππ interaction [4 – 6].

On the experimental side, we are confronted with impressive precision from the high-statistics
measurements of the E865 experiment at BNL [7, 8] and the NA48/2 experiment at CERN [6, 9].
The statistical errors of the S-wave of one form factor reach in both experiments the sub-percent
level. Matching this precision requires a theoretical treatment beyond one-loop order in the chiral
expansion. A first treatment beyond one loop, based on dispersion relations, was already done
twenty years ago [10]. The full two-loop calculation became available in 2000 [11]. However, as
we will show below, even at two loops χPT is not able to predict the curvature of one of the form
factors.

Here, we present the results of a new dispersive treatment of K`4 decays [12, 13]. We do not
solve an exact dispersion relation for this process, but an approximate form, which follows if the
contribution of D- and higher waves to the discontinuities are neglected. This approximation is
violated only at O(p8) in the chiral counting. The effects due to ππ and Kπ rescattering in S- and
P-wave are resummed to all orders. We expect this to capture the most important contributions
beyond O(p6). Indeed it turns out that the dispersive description is able to reproduce the curvature
of the form factor.

Our final analysis of K`4 decays represents an extension and a major improvement of our
previous dispersive framework [14 – 16]. Instead of a single linear combination of form factors,
now we describe the two form factors F and G simultaneously, including more experimental data
in the fits. The new framework is valid also for non-vanishing invariant energies of the lepton pair.
We apply corrections for isospin-breaking effects in the fitted data that have not been taken into
account in the experimental analyses [17]. Besides a matching to one-loop χPT, we also study the
matching at two-loop level.

2. Dispersion relation for K`4

2.1 Matrix element and form factors

We consider the charged decay mode

K+(p)→ π
+(p1)π

−(p2)`
+(p`)ν`(pν), (2.1)

where ` ∈ {e,µ} is either an electron or a muon. Experimental data is available on the electron
mode.
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After integrating out the W boson, we end up with a Fermi type current-current interaction
and the matrix element splits up into a leptonic times a hadronic part. The leptonic matrix element
can be treated in a standard way. The hadronic matrix element exhibits the usual V −A structure of
weak interaction. Its Lorentz structure allows us to write the two contributions as〈

π
+(p1)π

−(p2)
∣∣Vµ(0)

∣∣K+(p)
〉
=− H

M3
K

εµνρσ LνPρQσ , (2.2)

〈
π
+(p1)π

−(p2)
∣∣Aµ(0)

∣∣K+(p)
〉
=−i

1
MK

(
PµF +QµG+LµR

)
, (2.3)

where P = p1 + p2, Q = p1− p2, L = p− p1− p2. The form factors F , G, H and R are dimen-
sionless scalar functions of the usual Mandelstam variables s, t and u. In Ke4 experiments, R is not
accessible. H gets a first contribution only at O(p4) due to the chiral anomaly. Here we focus on
the form factors F and G.

2.2 Reconstruction theorem and integral equations

Let us for the moment regard the di-lepton invariant squared energy s` = L2 as a fixed param-
eter. Based on fixed-s/t/u dispersion relations, one can derive a decomposition of the form factors
into functions of only one Mandelstam variable, known as ‘reconstruction theorem’ [18, 19]. The
derivation neglects the imaginary parts of D- and higher partial waves, an O(p8) effect:

F(s, t,u) = M0(s)+
u− t
M2

K
M1(s)+(terms involving functions of t or u)+O(p8),

G(s, t,u) = M̃1(s)+(terms involving functions of t or u)+O(p8),

(2.4)

where the functions of one variable M0, . . . are defined to contain only the right-hand cut of the
partial waves of the form factors F and G in the three channels. E.g. the function M0 contains the
right-hand cut of the s-channel S-wave f0 of the form factor F :

M0(s) = P(s)+
s2

π

∫
∞

4M2
π

ds′
Im f0(s)

(s′− s− iε)s′2
, (2.5)

where P(s) is a subtraction polynomial. Eight more functions M1, . . . take care of the right-hand
cuts of S- and P-waves in all channels, such that all the discontinuities are divided up into functions
of a single variable. They satisfy inhomogeneous Omnès equations with the solution

M0(s) = Ω
0
0(s)

{
P̃(s)+

s3

π

∫
Λ2

4M2
π

ds′
M̂0(s′)sinδ 0

0 (s
′)

|Ω0
0(s′)|(s′− s− iε)s′3

}
, (2.6)

where P̃(s) is a new subtraction polynomial and the Omnès function is given by

Ω
0
0(s) = exp

{
s
π

∫
∞

4M2
π

ds′
δ 0

0 (s
′)

(s′− s− iε)s′

}
. (2.7)

In total, 9 subtraction constants appear. We need the following elastic ππ and Kπ phase shifts as
input, which we assume to reach a multiple of π at the cut-off Λ2:

• δ 0
0 , δ 1

1 : elastic ππ-scattering phase shifts [20, 21],

3
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• δ
1/2
0 , δ

1/2
1 , δ

3/2
0 , δ

3/2
1 : elastic Kπ-scattering phase shifts [22, 23].

The inhomogeneities in the Omnès problem are given by the differences of the functions M0, . . .
and the corresponding partial wave, e.g. M̂0(s) = f0(s)−M0(s). These ‘hat functions’ contain the
left-hand cut of the partial wave and we compute them by projecting out the partial wave of the
decomposed form factor (2.4). The inhomogeneities M̂0, . . . are then given as angular averages of
all the functions M0, . . .. Hence, we face a set of coupled integral equations: the functions M0, . . .
are defined by dispersion integrals involving the inhomogeneities M̂0, . . ., which are again defined
as angular integrals of the functions M0, . . .. This system can be solved by iteration.

2.3 Numerical solution of the dispersion relation

We note that the integral equations are linear in the subtraction constants. Therefore, for each
subtraction constant we construct a basis solution, which we obtain by solving numerically the
integral equations in an iterative procedure. The final result is a linear combination of these basis
solutions.

We determine the subtraction constants using three sources of information: first, we fit the
experimental data on the form factors F and G from the high-statistics experiments NA48/2 [6, 9]
and E865 [7, 8]. Secondly, we use as an additional constraint the well-known soft-pion theorem
[24 – 27], which establishes the following relations between F , G and f+, the K`3 vector form
factor:

F(M2
π ,M

2
K ,M

2
π + s`)−G(M2

π ,M
2
K ,M

2
π + s`) = O(M2

π),

F(M2
π ,M

2
π + s`,M2

K)+G(M2
π ,M

2
π + s`,M2

K) =

√
2MK

Fπ

f+(M2
π + s`)+O(M2

π).
(2.8)

Finally, we fix the subtraction constants that are not well determined by the data with chiral input.

3. Results

3.1 Fits to data

We perform a fit of the dispersion relation to both, the E865 [7, 8] and NA48/2 data sets [6, 9],
corrected for additional isospin-breaking effects that were not taken into account in the experimen-
tal analyses [17]. Recently, a two-dimensional data set on the S-wave of F has become available
(addendum to [9]): in this set, not only a single bin but up to 10 bins are used in s`-direction. If we
allow for varying values of the di-lepton invariant squared energy s`, the subtraction constants be-
come functions of this parameter and the functions M0, . . . depend on two variables, e.g. M0(s,s`).
We perform our fits in the two-dimensional (s,s`)-plane using the full available data sets on the S-
and P-waves of the form factors, given by

Fs(s,s`) =
(
M0(s,s`)+ M̂0(s,s`)

)
e−iδ 0

0 (s),

F̃p(s,s`) =
(
M1(s,s`)+ M̂1(s,s`)

)
e−iδ 1

1 (s),

Gp(s,s`) =
(

M̃1(s,s`)+ ˆ̃M1(s,s`)
)

e−iδ 1
1 (s).

(3.1)
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Figure 1 shows the fit results for the S-wave of the form factor F . The two-dimensional phase space
is projected on the s-axis and only the data sets with a single bin in s`-direction are plotted. The
dispersive description reproduces beautifully the observed curvature of the form factor Fs. Note
that χPT alone is not able to describe this curvature, which can be understood as a higher-order
effect of ππ rescattering, fully taken into account in the dispersive Omnès representation of the
form factor.

The P-waves of F and G, which are fitted simultaneously with the S-wave, are shown in
figure 2.
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Figure 1: Fit result for the S-wave of the form factor F . The dispersive description reproduces beautifully the
curvature of the form factor. The (s,s`)-phase space is projected on the s-axis, the plotted lines correspond
to splines through the (s,s`)-values of the data sets with a single bin in s`-direction.
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Figure 2: Fit results for the P-waves of the form factors F and G. The (s,s`)-phase space is again projected
on the s-axis.

3.2 Matching to χPT

We perform the matching to χPT directly on the level of the subtraction constants. This
means that we decompose the chiral expression at NLO or NNLO according to the reconstruction
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theorem and write the functions M0, . . . in a chirally expanded Omnès form. This allows us to
directly identify the subtraction polynomials P̃(s) in (2.6) with chiral expressions. Such a procedure
separates the resummation of rescattering effects from the chiral matching. Note also that we
subtract all the functions M0, . . . at zero energy.

By matching the dispersion relation to χPT, we are able to determine the LECs Lr
1, Lr

2 and Lr
3.

Using the information on the s`-dependence of the form factors, also Lr
9 can be extracted, though

the present experimental data does not allow a precise determination.
If we perform the matching at two-loop level, many NNLO LECs Cr

i enter the matching equa-
tions. We compare different input values for the Cr

i [28 – 30] and assign a 50% uncertainty to the
contribution of the Cr

i to the subtraction constants. This Cr
i contribution is then fitted as well, using

constraints on the chiral convergence of the subtraction constants. We find that the Cr
i input values

of the BE14 global fit [30] lead to the best chiral convergence and a good χ2 of the whole fit.
In table 1, we show the results of the matching at NLO and NNLO for the low-energy constants

Lr
1, Lr

2 and Lr
3. For comparison, we also quote the values of the BE14 global fit [30].

Table 1: Results for the LECs (µ = 770 MeV).

103 ·Lr
1 103 ·Lr

2 103 ·Lr
3

Dispersive treatment, NLO matching 0.51(6) 0.89(9) −2.82(12)
Dispersive treatment, NNLO matching 0.69(18) 0.63(13) −2.63(46)

BE14 global fit [30] 0.53(6) 0.81(4) −3.07(20)

At NLO, a large contribution to the uncertainties comes from the high-energy behaviour of the
phase shifts, either from the ππ phases in the case of Lr

1 and Lr
2 or the Kπ phases in the case of Lr

3.
At NNLO, the largest uncertainty is due to the fitted contribution of the Cr

i .

4. Conclusions

We have presented a dispersive representation of K`4 decays that provides a model indepen-
dent parametrisation valid up to and including O(p6).1 The dispersion relation is based on unitarity,
analyticity and crossing. It includes a full resummation of ππ- and Kπ-rescattering effects. The
dispersion relation is parametrised by subtraction constants that we determine by fitting experimen-
tal data and by using the soft-pion theorem as well as chiral input.

In contrast to a pure chiral description, the dispersion relation describes perfectly the experi-
mentally observed curvature of the S-wave of the form factor F , which we interpret as a result of
significant ππ-rescattering effects. This is yet another case in which high-precision data clearly
call for effects which go even beyond NNLO in χPT.

By using the matching equations to χPT we have extracted the values of the low-energy con-
stants Lr

1, Lr
2 and Lr

3. The correction from NLO to NNLO, when matching the chiral and dispersive
representations and fitting the latter to the data are smaller than the corrections from NLO to NNLO

1In [31, 32] the reconstruction theorem is used for a similar dispersive description of the K`4 form factors in order
to study isospin-breaking effects in the phases at two loops.
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observed in direct χPT fits. Constraints on the chiral convergence of the subtraction constants al-
low us to reduce the dependence on the input values for the Cr

i . Still, the poorly known values of
the Cr

i are responsible for the larger uncertainties in the matching at NNLO.
The two-dimensional NA48/2 data set for the S-wave of F , which shows both the s- as well

as the s`-dependence, has allowed us to extract a value for Lr
9 [13], which is roughly compatible

with previous determinations. In accuracy, however, it cannot compete yet, as it reflects the low
precision in the measurement of the s`-dependence of F .
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